Modeling and optimizing evolving security situations

Andres Ojamaa Joint work with CCD COE

Institute of Cybernetics at TUT

SiMa and Cyber Security seminar, May 21 2009, Tallinn

Outline

Introduction Background and Motivation

Graded Security Model

Security Goals Parameters and Functions Optimizing Security Measures

Expert System Visual Specification Example of Results

Security Situation Management

- The aim is to provide the best possible security of a system with given amount of resources, taking existing situation into account.
- At the same time at least the standard requirements should be satisfied, if possible.
- Solutions are usually needed yesterday. Therefore detailed risk analysis is not a good option.
- The goal is achieved by coarse-grained analysis of security situation and optimisation of resource usage.

Situation Description: Security Goals

Security class is determined by security levels, associated with security goals:

- confidentiality (C),
- integrity (I),
- availability (A),
- non-repudiation (N).
- **e.g.** C2 I1 A1 N2

The model can be *extended* by adding security goals.

Situation Description: Parameters of the Model

- Available resources r
- Integral measure of security S
- Security measures groups g₁, g₂,..., g_n
- Security levels of measures groups $-l_1, l_2, \ldots, l_n$
- Security confidences granted by measures groups q_1, q_2, \ldots, q_n
- Relative importance of measures groups: weights —

$$a_1, a_2, ..., a_n$$
, where $\sum_{i=1}^n a_i = 1$

Abstract Security Profile

An *abstract security profile p* is an assignment of security levels to each group of security measures:

$$p = (l_1, l_2, \ldots, l_n)$$

Cost Function

The cost function *h* gives the costs h(I, g) required for implementing security measures of a group *g* for a level *I*. The costs of implementing a given abstract security profile:

$$costs(p) = \sum_{i=1}^{n} h(l_i, g_i)$$

Goal 1: Keep the value of costs(p) as low as possible.

Levels Requirement Function

Function *s* produces a required security level s(c, g) for a group *g* when the security class is *c*. The requirements may be prescribed by security standards such as BSI, NISPOM or ISKE.

The overall security of a system is described by means of an integrated security metrics (integral security confidence) *S*.

$$S = \sum_{i=1}^n a_i q_i$$

Goal 2: Increase security confidence of a system.

Dependencies

Conventional Graded Security Solution

Graded Security Expert System

Visual Specification

Knowledge Modules as Decision Tables

smcomplex-gses (table.tbl) - Expert Table																								
<u>File Edit View H</u> elp																								
-Horizontal																								
	ſ	+Rule +Column					H	₩	兽			7		늼	늼	늼	늼	H	Η	늼	늼	cn = C cn = I		
+Rule	l						ŏ	ŏ	$\overline{\Box}$		Ö	Ö	Ö					ŏ				cn = A		
-Rule -Row				-Rule -Column																\checkmark	\checkmark	\checkmark	\checkmark	cn = M
										믜	님			님	님	\checkmark		믜	ᆜ			님		cl = 0
(<)>							M		늼	님			늼	늼	M		늼	Η			늼	cl = 1		
m m.	m	m	m	m	m	ŏ	H	Ħ		H	H	Ħ		허	허	Ħ		H	H	Ħ		cl = 3		
								0	1	2	3	0	1	1	1	0	1	1	1	0	0	0	1	
								0	0	0	1	0	0	2	3	0	0	2	3	0	0	0	1	
								0	1	3	3	0	1	2	3	0	1	2	3	0	1	2	3	
		\checkmark						0	1	1	3	0	1	2	3	0	1	2	3	0	1	2	3	
								0	1	1	3	0	1	2	3	0	1	2	3	0	1	3	3	
								0	0	0	2	0	0	0	2	1	2	2	3	0	0	0	2	
								0	1	1	3	0	1	2	3	0	1	2	3	0	1	2	3	
	18	닏	닏	닏	닏			0	1	1	3	0	1	2	3	0	1	2	3	0	1	2	3	
								0	1	1	3	0	1	2	3	0	1	2	3	0	1	2	3	

Example of Results

Example of Results with Constraints

Future Work

- Combine the optimization package with risk analysis tools (e.g. attack trees)?
- Improve the visual language and the user interface
- Collect and accumulate expert knowledge and real data
- Experiments with real data
- Implement dependant measure groups
- Analyze sensitivity of results wrt inaccurate input data

Summary

A CoCoViLa package was developed to help the IT manager/security expert answer the following questions quickly:

- How much resources are needed to achieve the required level of information security?
- What is the best way to spend the IT security budget?

There is a pilot project to test the system in practice.

19

References

- CoCoViLa Compiler Compiler for Visual Languages, http://www.cs.ioc.ee/cocovila/
- A. Ojamaa, E. Tyugu, J. Kivimaa. Pareto-optimal situation analysis for selection of security measures. In: MILCOM 08: Assuring Mission Success: Unclassified Proceedings, November 17-19 San Diego, 2008, 7 p.

