RAK

Best RRKUR Arengukava

Toetab Euroopa Liit

IKT DK

CAMBRIDGE STUDIES IN
ADVANCED MATHEMATICS 1

EDITORIAL BOARD
D. J. H. GARLING, D. GORENSTEIN, T. TOM DIECK, P. WALTERS

Algebraic automata theory




Algebraic
automata theory

W.M.L.HOLCOMBE

Department of Pure Mathematics, The Queen’s University of Belfast

CAMBRIDGE UNIVERSITY PRESS
CAMBRIDGE

LONDON NEW YORK NEWROCHELLE
MELBOURNE SYDNEY



TTU Kibernestika Instituut
RAAMATUKOGU

Kvo3
5639

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York NY 10011-4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcén 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 1982

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 1982

First paperback edition 2004 4

A catalogue record for this book is available from the British Library
Library of Congress catalogue card number: 81-18169

ISBN 0521 23196 5 hardback
ISBN 0 521 60492 3 paperback

To Jill, Lucy, and my mother, and in fond memory of
my father and grandfather




1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

31
32
33
34
35
3.6

Contents

Introduction

Semigroups and their relatives
Relations

Semigroups and homomorphisms
Products

Groups

Permutation groups

Exercises

Machines and semigroups

State machines

The semigroup of a state machine
Homomorphisms and quotients
Coverings

Mealy machines

Products of transformation semigroups
More on products

Examples and applications

Exercises

Decompositions

Decompositions

Orthogonal partitions

General admissible partitions
Permutation-reset machines

Group machines

Connected transformation semigroups

vii

ix

15
19
21
22

25
26
31
36
43
47
52
61
64
71

76
71
79
82
86
91
94




3.7
3.8
39
3.10

4.1
4.2
4.3
44
4.5
4.6

5.1
5.2
53
5.4
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Automorphism decompositions
Admissible subset system decompositions
Complexity

Exercises

The holonomy decomposition

Relational coverings

The skeleton and height functions

The holonomy groups

An ‘improved’ holonomy decomposition and examples
The Krohn-Rhodes decomposition

Exercises

Recognizers

Automata or recognizers

Minimal recognizers

Recognizable sets

The syntactic monoid

Rational decompositions of recognizable sets

Prefix decompositions of recognizable sets

The pumping lemma and the size of a recognizable set
Exercises

Sequential machines and functions
Mealy machines again

Minimizing Mealy machines

Two sorts of covering

Sequential functions

Decompositions of sequential functions
Conclusion

Exercises

Appendix

References
Index of notation

Index

98
102
105
113

114
115
118
123
133
141
143

145
145
152
156
159
162
166
172
176

177
177
182
196
202
208
212
212

215

221
223
226

i

Introduction

In recent years there has been a growing awareness that many complex
processes can be regarded as behaving rather like machines. The theory
of machines that has developed in the last twenty or so years has had
a considerable influence, not only on the development of computer
systems and their associated languages and software, but also in biology,
psychology, biochemistry, etc. The so-called ‘cybernetic view’ has been
of tremendous value in fundamental research in many different areas.
Underlying all this work is the mathematical theory of various types of
machine. It is this subject that we will be studying here, along with
examples of its applications in theoretical biology, etc.

The area of mathematics that is of most use to us is that which is
known as modern (or abstract) algebra. For a hundred years or more,
algebra has developed enormously in many different directions. These
all had origins in difficult problems in the theory of equations, number
theory, geometry, etc. but in many areas the subject has taken on its
own momentum, the problems arising from within the subject, and as
a result there has been a general feeling that much of abstract algebra
is of little practical value. The advent of the theory of machines, however,
has provided us with new motivation for the development of algebra
since it raises very real practical problems that can be examined using
many of the abstract tools that have been developed in algebra. This,
to me, is the most exciting aspect of the subject, the ability of using
algebra in a useful and meaningful way to tackle some of the fundamental
questions facing us today: What can machines do? How do we think
and speak? How do cells repair themselves? How do biochemical systems
function? How do organisms grow and develop? etc. We will not be
able to answer these questions here, that is neither possible nor the aim

ix




of this book. What we will be doing is to lay the foundations for the
algebraic study of machines, by looking at various types of machines,
their properties, and ways in which complex machines can be simulated
by simpler machines joined together in some way. This will then provide
a theoretical framework for the more detailed analysis of the applications
of machine theory in these subjects, with the ultimate aim of explaining
many natural and artificial phenomena. Perhaps a later work devoted
to the applications of machine theory would make use of the develop-
ments outlined here.

We begin with some elementary material concerning the theory of
semigroups. This is presented as concisely as possible; it may be omitted
by those readers familiar with the material. Others could easily start by
reading the first few pages of chapter 2, which introduces the state
machine, before returning (hopefully better motivated) to the details of
chapter 1.

The second chapter examines many elementary properties of the state
machine, the ways in which it can be connected together with others,
and finishes with some applications. I have tried to include as wide a
variety as possible and I have not treated them in great depth because
the required background knowledge in biology, biochemistry, etc. may
not be available. For those interested, the references provide sources
of further reading.

Chapter 3 develops the idea of a covering, by which state machines
can be simulated by other, perhaps simpler, state machines in various
configurations. This area represents a major change in philosophy in
algebra since we do not attempt to describe the machine exactly but
rather what it can do. There are some general results that enable us to
start with an arbitrary state machine and simulate it with simpler
machines constructed from finite simple groups and elementary ‘twe-
state’ machines connected up suitably. The best known method for doing
this, the holonomy decomposition, is examined in chapter 4. However,
this process leads to simulating machines that can be very large and thus
relatively inefficient. In specific situations it is possible to develop much
better simulators and a variety of techniques for doing this are examined
in chapter 3.

The theory of recognizers is intimately connected with the theory of
state machines and is of considerable importance in the theory of
computers. This area is studied in chapter 5.

Finally we end with a more practical and realistic type of machine
and apply the previous results to this situation in chapter 6.

Some of this material would be suitable for an advanced undergraduate
course on applied algebra or automata theory and I have indeed given
such a course for some years at Queen’s University, Belfast. The more
advanced material (chapters 4, 6) would be suitable for a graduate course.

I hope that this book can help forge links between pure
mathematicians, computer scientists and theoretical biologists. There
are great benefits in a dialogue between practitioners of these subjects
and although I realize that the approach here is rather mathematical, I
hope that it will not prevent others from making use of the material.
With this in mind I have included as an appendix a computer program
for evaluating the semigroup of a state machine. This has been developed
for me by Dr A. W. Wickstead (Pure Mathematics, Q.U.B.) and I would
like to take this opportunity of thanking him for his help. The program
is suitable for use on a microcomputer, something that is becoming
readily available these days.

My other thanks go to many of my colleagues at Queen’s who have
helped me with various questions. As usual, though, I have to take
responsibility for any errors that may occur in this work.

Sheila O'Brien (Q.U.B.) made an excellent job of typing my manu-
script and I would like to record my gratitude here.

I must also thank Dr E. Dilger (Tiibingen) for reading the manuscript
and Dr B. McMaster for helping me with the proofs.

Michael Holcombe (July 1981)




T

1

Semigroups and their relatives

We may as well begin at the beginning and this will involve us in a brief
excursion through some of the fundamental concepts essential for any
algebraic subject. It will also enable us to become acquainted with the
notation used, although the experienced reader could easily skip through
this chapter. We will assume that the reader has a knowledge of elemen-
tary set theory.

1.1 Relations

One of the fundamental concepts in mathematics is that of a
relation. It can be introduced in a variety of ways but the most useful
one for us is the following abstract approach.

Let A be a non-empty set. A relation, ®, on A is a subset R c A X A.
If (a, a’)e A X A and (a, a’) € R we say that a is R-related to a’. Some-
times a natural notation is used in mathematics to express this
relationship between two elements of a set, for example if A =2, the
set of all integers, then there is a relation < that can be defined on y
We write a < a' if the number a’ —a is not negative and theset R c ZxZ
defining this relation consists of all ordered pairs (a, a') € Z X Z such that
asa'.

A relation & on the set A is an equivalence relation if:

@) (a,a)eR forallacA
(i) (a,aYeRD(a',a)eR fora,a’'eA
(iii) (a,a")eR and (a’,a" e R>(a,a")eR fora,a’, a"€A.

The existence of an equivalence relation is a very useful fact because it
means that we can partition the set A into a disjoint union of subsets
in a natural way.



:)hfeAset [a)e ={a’c Al{a, aVeR]. w ] ﬂi;ﬂn subset of all elements
that are related to.a ander .18 is ealled the equivalence class

deﬁned.by a. If the I&ﬁ & E-Wuhvm [a].
Consider now the collection of all the distiner subsets of the form [a]

where a € A. If we denote this colléction by the o
notation
establish the following: hcd A/R we can

Theorem 1.1.1

. Let R be an equivalence relation on the set A. The set A/R
consists of a collection of pairwise disjoint subsets of A that cover A

l:.y this we mean that if the collection A/® is indexed by some set I so
that

A/R ={H,|iel} where each H; is of the form [a]

for some a € A then

) UH,=A

iel

(i) HNH,=Q& ifi*j(,jel).

o Proof Let a€ A, then (a,a)e R and so a €[a] and thus there
is i €I such that [a]= H, Hence a € H, for some i € I. This proves (i)
Now suppose that a € H; for some i € I, then there exists a'c A sucl;
that a €[a’] where H, =[a’). Let b €[a], then (a, b)e R, but (a’, a") e R
and so (a’, b)e R, which means b €[a’}. Hence [a]<[a'). Let 'c €la’]
then (a’, c) € R, however (a’, a) € R implies (a, a’) € R and then(a, c) € 95
and c €[a]. Hence [a]=[a’). Finally choose d € H,N H; where H, =[a’]
and H; =[a"}. Since [a']=[d] and [a"] =[d] from the above it is clear
that H, = H; and so i =, This proves (ii). 0

The s'et A/ is called the quotient set of A with respect to R.

' If Aisasetand # ={H,|ieI}is a collection of subsets of A satisfying
(i) U,erHi=A and (i) HiNH; = @ if i #j, (i, je I); then  is called a
part.ition of A. We call the subsets H; (i € I), the #-blocks. Clearly an
equfvalence relation defines a partition based upon the distinct
equivalence classes. Conversely, given a partition 7 = {H;|i € I} we can
define an equivalence relation % in the following way:

aRa’ & there exists i € I such that a € H; and a’ € H..

So two elements are equivalent precisely when they belong to the same

e T s ey

B s o s o O

e —

w-block. It will sometimes be convenient to identify an equivalence
relation with its partition.

Associated with a general relation & on a set A are two subsets of
A defined as follows:

D(R) ={a e Al(a, b)e R for some b € A}
R(R)={acA|(b, a)e R forsome b € A}.

We call D(R) the domain of R and R(R) the range of R. If R is an
equivalence relation then D(R) = R(R) = A.

One of the benefits of taking this approach to relations is the ease of
generalizing ideas to relations between sets.

Let X and Y be sets, a relation R from X to Y is a subset # < X X Y.
As before we will say that elements (x, y) belonging to & are R-related,
(x € X, y € Y). Let us denote this relation by the symbols & : X~~Y.

There are certain ‘extreme’ situations that we will briefly examine
now. We no longer prevent the sets X and Y from being empty. If
either X or Y or both are empty then X x Y is defined to be the empty
set. So that we can certainly define a relation from the empty set @to
a set Y, or from a set X to the empty set &, in both cases R =D is the
only possible relation. In fact the empty relation ® = @ can be defined
from any set X to any set Y, we write it as 6: X-Y.

As before we can define the concepts of domain and range, thus if
R . X~Y is a relation then

D(R)={x € X|(x, y)e R forsome y € Y}
R(R)={y € Y|(x, y) €  for some x € X}
Clearly D(R) < X, R(®R)< Y and one or both may be &.

Suppose, now, that #: XY is a relation, so that ® < X x Y. Define
a relation ®~': Ya=X as follows:

R'={(y,x)e Y X X|(x,y)e R} Y XX,
We call R the inverse relation of #. Then DR ) =R(R) and
R@R™")=DAR).

A function (or mapping) is a special type of relation. Let R: X~Y

be a relation such that

if (x, y)e R and (x, y)€ R theny = ¥
where xe X;y,y'e Y. We call ® a partial function and write it as
R:X - Y. A relation is thus a partial function if each element of the

domain D(R) is related to exactly one element of the range R(R).
A function is a partial function &: X - Y such that D(R)=X.




Example 1.1

Let X={a,b,c}, Y={w,x,y,2z}. If R;: XY is defined by
Ry ={(a, w), (a, x), (c, w)} then R, is a relation, itis not a partial function
since (a, w)e R, and (a, x) e ®,. Also note that

D(R)={a,c}, R(R,)={w,x}

R7': Y~ X is given by R;' ={(w, a), (x, a), (w, ¢)}.

Now let R;: X~+Y be defined by R,={(a, w), (b, w)} then R, is a
partial function, D(R;) ={a, b} # X, R(R,)={w}# Y and R3': YrX
is given by R3' = {(w, a), (w, b)}. Note that R3" is not a partial function.

Finally define ;5: X > Y by R3={(a, w), (b, w), (c, x)}, then R; is a
function. D(R3) = X, R(R3) ={x, w}# Y. The relation R3':Y X is
not a partial function.

Suppose that : X~+Y is a relation. We say that R is surjective if
R(R) =Y, and R is called injective if, given

(x,y)eR and (x', y)e R then x = x'.

Theorem 1.1.2

Let #: X~Y be a relation.

(i) If R is injective then R~ is a partial function.

(ii) If R is injective and surjective then # ! is a function.

Proof (i) We must show that R~': YaeX is a partial function,
so that if

(y,x)eR 'and (y,x)e R 'thenx =x’'

but (y,x)e R is equivalent to (x,y)e R and similarly (y,x')e R~
yields (x’, y)e R. The injectivity of # gives us x=x' and so ® ' is a
partial function. f
(i) Since DR ) =R(R)=Y we see that ®~': Y » X is now a func-
tion. 0

Examples 1.2
Let X ={a,b,c}, Y ={w,x,y, z}. Define R4:X~Y by R,=
{(a, x), (a, y), (b, )} then R, is injective and R3' ={(x, a), (, a), (2, b)}
is a partial function ®;': Y > X,
!fl Qg XY is given lby 925 = {(a’ x)s (a9 Y). (b) Z), (as W)} then
Rs” :Y>X becomes Rs' ={(w, a), (x, a), (y,a), (z, b)} which is a
function.

In many cases we will indicate the definition of a relation by using a
diagram, for example the relation R is represented by the arrows in
the following:

Theorem 1.1.3
Let & : X - Y be a function, then 2 ': Y - X is a function if

and only if R is surjective and injective.

Proof If ® is an injective, surjective function then R 'is a
function by 1.1.2. If ® " is a function and @ is a function then D(® ') =
Y = R(R) and so R is surjective. Suppose that (x, y)e R and (x', y)e R
for some x,x'€ X, ye Y, then (y,x)e® " and (y,x)e R™'. But R is
a function and so x = x’, which means that R is injective. 0

There is a natural concept of inclusion that can be defined between
relations. If & : X~»Y and & :X~=Y are relations then # € X X Y and
P < X x Y. Suppose that R c & then we see that

given (x, y) e ® then (x, y) € &.

This inclusion of relations may also be applied to partial functions in
the natural way.




Example 1.3
The relation R¢: XY given by

4

: X
\ y
< 2z
is such that R¢ < Rs where R is defined in example 1.2.
The partial function R,: X - Y defined in example 1.1 is

>

and so R, R,.

Finally we examine the problem of defining functions between empty
sets. We have already noted that @ x Y and X X @ both equal the
empty set J, consequently there are relations @: @~ Y and &: X ~wJ,
where X and Y are sets. Both of these relations are in fact partial
functions since the condition for a partial function is satisfied vacuously.
However J:@-Y is a function whereas @: X > is not if X #QJ
since D(F) =D # X in this case. ’

(Notice that a relation R : X~=Y will not be a partial function if we
can find x€ X, y,y'e Y such that (x, y)e®R and (x, y')e R and y #y'.
In neither of these last two cases can this be done and so both &: s Y

and @: X -+ are partial functions. The relations &:F>J, 0: X » Y
are in fact partial functions.)

L

The relation notation used here is sometimes a little cumbersome in
practice and we propose to adjust it slightly especially when we are
dealing with functions and partial functions.

Let R:X - Y be a partial function and suppose that x € X, then either
there exists a y € Y such that (x, y)€ & or no such y exists. In the first
case we will write y =% (x) and in the second case & =%R(x). By a
natural extension of this we will use the notation &(X) for R(%), the
range of &. Generally if X' < X then we write

R(X")={ye Y|(x', y)e R for some x'e X'}.
Now let X; (i € I') be a family of subsets of X. Then
Q(UX,) ={ye Y|(x', y)€ R for some x'eUX,}
iel iel

=J{ye Yl(x, y) e R for some x; € X}
iel

= U R(X,).

iel
We describe this situation by saying that the relation R is completely

additive.
If ®:X~Y is arelation and x € X then we define

R(x)={ye Y|(x,y)eR).

In some circumstances R (x) is a singleton (for example when & is a
function) and it is convenient to identify this singleton subset with the
element it contains and in this way we may establish a coherent notation.
So that if ® : X~Y and ¥: XY are relations and x, x'e X then the
phrase R (x) c P(x") will be meaningful whether & and & are functions
or not.

From example 1.3 we have ®R(a)< Ri(a) meaning Riy(a) = Ri(a)
and R,(c) € Rs(c) which means Sc{x}.

IfR:X~Y and ¥: Y~Z are relations then we define the composition
or product relation FoR :X~Z by (x,z)e LR if and only if there
exists y € Y such that (x, y)€ ® and (y, z) € &. Clearly if REAND(L) =
@ then PoR=D. When R:X > Y and ¥:Y »Z are functions then
PoR:X ~»Z is also a function (except in the case when ¥ =0 and
X = Q).

In all cases (PoR)(x)=L(R(x)) where F(R(x)) is defined to be

U{#(y)ly e R(x)}.

Since relations are defined as subsets it is possible to consider the
intersection of two relations. So that if ®:X~Y and &: X~Y are
relations then RcXxY and <X xY. The intersection relation



S i s L

RNF:X~Y is then defined to be the subset RN <X X Y. One
particular example of interest is the case where X =Y and ® and &
are equivalence relations. If a € X then [alany=[alaN[aly, where

[a)ans means the equivalence class of a with respect to the equivalence
relation R N 4.

1.2 Semigroups and homomorphisms

On many occasions we will be dealing with a set § which has
some additional structure. This will often take the form of a rule for
‘combining’ certain elements of S to ‘produce’ a unique element of S.
We shall refer to such processes as multiplications on S.

If s and s, are elements of S and they can be combined to form a
new element of § we would write this as s-s, =s, where s,€S. This
process is somewhat more precisely stated if we use the concept of a
relation. Then we are considering a relation R : S x S~S defined by
((s, 51), s2) € R if and only if s-5,=s5,. In fact ® is a partial function
since we want s; to be a unique element. The domain D(%) may be a
proper subset of $xS§ in which case we cannot multiply an arbitrary
pair of elements of S. & is said to define a closed partial binary operation
on S. If D(R)=SxS then R is a closed binary operation on S, in this
case we can multiply any two elements of S to obtain an element of S.
We will usually drop the multiplication symbol when dealing with
products of elements in S, writing ss; in place of s - ;.

If S has a closed binary operation satisfying the associativity condition
a(bc) = (ab)c for every a,b,cc S we call S a semigroup. If we need to
specify the operation involved we will write ‘(S,-) is a semigroup’.
Semigroups are very common in many branches of mathematics and
they certainly play a central role in the theory of automata so we had
better look at some of their more important properties. First of alf we
will examine some examples.

Examples 1.4
(i) The set of natural numbers {1,2,...} is a semigroup with
respect to both the binary operations of addition and multiplication.
(ii) The set of all integers is a semigroup with respect to the binary
operations of addition and multiplication.
(iii) Let A be a set and S the set of all relations that can be defined

on A. Suppose that R :A~A and R': A~A are both members of S,
as before we define a new relation RoR’': A~A by

(2, b)e RoR'¢>3c € A such that (a,c)e R’ and (c, b)e R.

This process defines a closed binary operation on the set S which is
associative and so § is a semigroup.

(iv) If A is a set and S is the set of all functions from A to A tl:e'n
we can define a closed binary operation on § in the same way as in (iii).
Soif #:A-»A and ®': A > A are functions we define a new function
RoR':A-> A by:

RoR'(a)=be>3c e Asuchthat R'(a)=cand R(c)=b.
ie. RoR'(a)=bSR(R'(a))=>.

Therefore the binary operation is just function composition. .

The set of all partial functions from A to A is a semigroup under this
operation, the partial function 0: A - A belongs to the set; we denote
it by PF(A). . .

(v) Let S be any non-empty set. A string ot word from ) 1s. any finite
sequence of elements from . Define a closed binary oper?tlon :)n the
set £+ of all words from 3. as follows. Let o ...0n 01...0m €2, then
Oy...0n" O ... 0 is called their concatenation and is clearly a worfi
from 3. It is easy to see that * is a semigroup with respect to this
operation. We shall call S* the free semigroup generated by the set %.
We regard X as being embedded in 3*. o

(vi) The empty set is a semigroup, the binary operation 1s the e{npty
function &:@ %@~ @ which is associative — a set S with a closed binary
operation is a semigroup unless we can find elements a, b, ¢ € § such that

a(bc) # (ab)c.
If (S, -) is a semigroupand Ac S, Bc S are subsets we define

AB={seS|s=abforsomeacA, beB}.

Closely associated with the idea of a semigroup is the concept of a
monoid. For this we need another definition.

Let S be a semigroup, an element e € S is called a um't'element of $
if ae = ea = a for every a € S. A simple exercise shows that if S possesses
a unit element then that element is unique.

A semigroup possessing a unit element is called a monoid.

Examples 1.5 ' o
(i) Both semigroups in example 1.4(i) are monoids, in fact a!l
the semigroups in that example with the exception of 1.4(v) and 1.4(vi)
are monoids. )
(i) Let T be a non-empty set. We have already examined the set b
consisting of all words from Z. Let us adjoin an extra element, called



the null word and denoted by A, this is just the empty sequence and
has the following formal properties:
if

aeX
then

Aa=aA=a

and so A acts like a unit. If we define * =3* U{A} then =* is a monoid.
It is called the free monoid generated by the set X.

This procedure gives us a general method for transforming a semigroup
into a monoid.

Let S be a semigroup. Suppose that § is not a monoid, choose any
element e£ S and form the set $"=SU{e}, we define a multiplication
denoted by * on S’ by extending the multiplication already on S so that

ab ifa, beS
a*b=<{b ifa=e
a ifb=e

where a, be §'.

Clearly S" is a monoid with unit element e. If S is already a monoid
we will define $'=S.

Let (S, +) and (T, *) be semigroups and f:S->T be a mapping. We
call f a semigroup homomorphism if
fla)*f(b)=f(ab) foralla,beS.

If (S, -) and (T, *) are monoids with identities ¢ and e’ respectively
and f:§ - T is a semigroup homomorphism such that

fle)=¢'

then f is called a monoid homomorphism. .
Semigroup homomorphisms forge a strong link between the semigroup

structures concerned and are of great importance in the development
of the theory. Sometimes, however, it is necessary to consider slightly
more general relationships between semigroups. If ®: S~T is a relation
then it is called a semigroup relation if

R(a)«R(b)=R(ab) fora,bes.
What does this mean? Well suppose that c € T with (a,c)e ® andde T
with (b, d) e R, then

cxdeR(a)*R(b)c R(ab)
which means that (ab, c *d)e .

-

Example 1.6
Let S ={0, 1} and T ={a, b, ¢, d} with multiplications defined by
the following tables:

S 0 1 T a b c d
0 0 1 b d
1 1 1 ¢ d
a d
d d

an oN
/AN R
NOK O

so that, for example a *c =c, where c is the common entry in the row
labelled a and the column labelled c, etc. .
We will define various relations and functions between these semi-

groups:

This is a semigroup relation (in fact a
partial function) since
c R1(0)*R1(0) ={a *a}={a} = R:(0).

0 a

This is not a semigroup relation since

b R (1)*R(1)={b, c}*{b, c}=
\ {a’ b’ C} ga2(l) = {b’ C},

¢ although R,(1) *R(0) =
{b, c}*{a} ={b, c}= Rs(1) etc.

0 a

This is a semigroup homomorphism.




This is a semigroup relation,
(R4(0)*R4(0) = {d} = R4(0)
I ¢ R4(1)*R4(0) = {d} = R4(1) etc.).
\ d
Let S be a semigroup and S’ a subset of S such that if a, be S’ then
ab e S', then we say that S’ is a subsemigroup of S. Usually we denote
this by §’ = § and rely on the context to indicate that S’ is a subsemigroup
of § rather than just a subset. If X is a subset of S define (X) to be the
intersection of all subsemigroups of S that contain X. Then (X ) is the
subsemigroup generated by X.
In the case where S is a monoid with unit element e€ S then a
subsemigroup S’ S is a submonoid of S if e also belongs to §".
The proof of the following elementary fact is left to the reader.

Lemma 1.2.1

Let S and T be semigroups and f:S -+ T a partial semigroup
homomorphism. Then £(S) is a subsemigroup of T.

If S and T are monoids then f(S) may not be a submonoid of T unless
fle) is the unit element of T, where e is the unit of . Semigroup
homomorphisms possessing this unit-preserving property are the monoid
homomorphisms.

We next examine the structure induced on a semigroup by the
existence of a semigroup homomorphism.

Let f:§- T be a semigroup homomorphism, define a relation ~ on
S by

a ~ b if and only if f(a) = £(b), fora,beS.

It is easily verified that ~ is an equivalence relation on the set S. It also
satisfies the property that if a, b€ S,a~b and se S then as~bs and
sa ~ sb. This is because f(as) = f(a)*f(s) = f(b) *f(s) = f(bs) etc. Such a
relation is called the congruence relation on S defined by f.

Given any semigroup S a congruence relation on $ is an equivalence
relation ~ satisfying:

a~b=>as~bs and sa ~ sb forallsesS.

We shall shortly see that every congruence relation is defined by some
suitable semigroup homomorphism. g .

First let S be a semigroup and ~ a congruence relation on S. (.Ionmder
the set of all equivalence classes defined on S by ~, denote this set by
S/~. We define a multiplication on S/ ~ as follows:

let{a),[b]le S/~
put[a]*{b)=[ab] (a,b€S).

This operation is well defined for if

{a)=[c}and [b]=[d] then

a ~ ¢ and b ~ d, consequently

ab ~ cb and ¢b ~ c¢d and so ab ~cd

that is [ab] =[cd] and thus [a]+[b]=[c]*[d].

Furthermore S/~ under the operation * is a semigroup. Vfle call (S! ~, %)
the quotient semigroup of S with respect to ~. There IS' a' semigroup
homomorphism f: S - S/~ defined by f(a)=[a], a € S. This is called the
natural homomorphism onto S/~. o

Notice further that the congruence relation on S defined by f is just
the relation ~ that we started with. There is thus a precise correspon-
dence between semigroup homomorphisms and congruences.

We will finish this section with two important but elementary results
that are of fundamental importance.

Theorem 1.2.2 .

Let f:S~ T be a surjective semigroup homomorphism and ~
the congruence induced on S by f. There exists a bijective homomorph-
ism f*:S/~ - T such that f*([a])=f(a) for each a € S.

Proof The definition of f* specified in the hypo.t.hesis is well-
defined and using it we will just establish that f* is bijective and a
semigroup homomorphism. First let f*{a)) =r*([(b)) where [a], [b].e
S/~ then f(a)=f(b) and so a ~b which means {a)=[b). Thus f* l;
injective. Next let t€ T, then there exists a.e S. s'uch that ¢ = f(a) an
consequently f*({a]) = f(a) = ¢ giving the surjectivity of f*.

Finally let {a], [b]€ S/ ~, then {a)*[b)=[ab] and

f*@a)*[b] = f*(ab)) = f(ab) = f(a)f(b) = f*([aDf* (6]

proving that f* is a semigroup homomorphism. 0




We usually call a bijective semigroup homomorphism f:S->T an
isomorphism and write S=T to indicate that an isomorphism exists
between S and T.

Theorem 1.2.3

Let £ be a non-empty set, T asemigroup and f: 2 - T a mapping.
There is a mapping g:£* - T which is a semigroup homomorphism and
such that g(o)=f(o) forall ce .

Proof Let aeX’ then a=0,0,...0, for some o,€l; i=
1,2,...,n Define g(a)=f(o1)f(c2) ... f(o.) (using the multiplication
in T) and so g:=* - T is defined. For a, b € £ it is immediate that

glab)=g(a)g(b)

and so g is a semigroup homomorphism. 0

In fact g is the unique homomorphism satisfying g(o’) =f(o)foror e Z.
This property of the semigroup £* is what gives it the name ‘free
semigroup’. :

Now let S be a semigroup, a semigroup homomorphism f:S - S will
be called an endomorphism. For any semigroup S the set of all
endomorphisms will be denoted by End(S). The set End(S) has a natural
semigroup structure with respect to ‘composition of mappings’. Since
the identity mapping 15: S+ S defined by 15(a) = a for all a € S is clearly
an endomorphism we see that End(S) is actually a monoid.

If S is a semigroup and X is a non-empty subset of § we define the
subsemigroup of S generated by X to be the intersection of all the
subsemigroups of S that contain the subset X and denote this by (X).

Let n be a positive integer and write

n={0,1,...,n-1}
Consider the set S of all functions of n into itself. This is a semigroup
under the operation of function composition. The semigroup S has order

n" and is in fact a monoid with identity the identity map 1,.
Let s € S be defined by:

s(x)=x+1 for0=x<n-1
s(n-1)=0.

The subsemigroup generated by the set {s} is the set
Ush={as s ...,s"Y)

which is a group satisfying s" = 1,.

14

B s s

Another subsemigroup of interest is the subset
R ={teS||tm)| =1}
={klk en}
where k is the function defined by
k(x)=k

forall xen.

1.3 Products
Semigroups can be joined together in various ways to produce
more semigroups. We will examine here some important methods of
doing this. .
Let S and T be semigroups. Consider the set §x T, the cartesian
product of S and T, and define a multiplication on S x T as follows:

(a, x)" (b, y)=(ab, xy)
where a,be S;x,yeT.

The result is a semigroup (S % T, +) which is called the direct product
of S and T, written S x T. Associated with the direct product S X T are
two important functions:

p1:8X T > S defined by pi(a, x)=a (aeS,xeT)
and
p2:S X T > T defined by pa(a, x)=x (a eS xeT).

These are called the projections onto the first and second factors
respectively and are easily seen to be surjective semigroup homomorph-
isms. They satisfy an important property:

Theorem 1.3.1

Let S, T and W be semigroups and f1:W-S, [ W->T semi-
group homomorphisms. There exists a unique semigroup homomorph-
ism g: W §x T such that p,og =f; fori= 1,2.

Proof Define g(w)=(fi(w), fo(w))eSXT for each we W.
Then for w,w'e W

g(ww') = (fr(ww), fo(ww"))
= (fi(w)fs(w"), f2(W)f2(W"))
= (fi(w), fo(w)) - (fr(w), fo(W")
=g(w) - g(w’)
and so g is a semigroup homomorphism.




Clearly
Pi(g(w)) = pi(fi(w), f2(w)) = f1(w)

and

p2(g(w)) = pa(f1(w), fo(w)) = fa(w).

Finally let h: W - § x T also be a semigroup homomorphism with the
progerty that poh=f, i=1,2. Now let h(w)=(a, x) where we W,
acS, xeT. Then p,(h(w))=a=fi(w), pa(h(w))=x=f(w) and ’
h(w) = (fi(w), f2(w)) = g(w). ) 83

Given three semigroups S, T, W we can form S$XT and then
(S xT)x W; similarly § x (T x W) can be constructed and it is natural
to ask about the relationship between these two semigroups.

Lemma 1.3.2
SXT)XW=8x(TxW).
X Proof The isomorphism is f:(S X T)x W - § x (T x W) defined
y
fl(a, b),c)=(a, (b, c))
where ae S, beT,ce W, g

Nf)w let $ and T be semigroups and suppose that 6: T->End S is a
semigroup homomorphism. We will define another product on the set
SXT, let t,t'eT; s, s'eS put (s, N®(s', 1) = (s6(r)(s'), #t'), where
6(1):S-+S and so 0(r)(s')€ S. Clearly Sx T is a semigroup with respect
to this product, since

(s, N®(s', ) ®(s", t")
= (s6(6)(s"), 1t ®(s", 1)
=(s0(r)(s")0(tt')(s"), 11't")
= (s0(r)(s")6(r)(6(t')(s")), t't"), as @ is a homomorphism,
= (s0(r)(s'0(t')(s™)), #'t"), as @(t)cEnd S,
= (s, N®(s'6(¢')(s), 1't")
=(s, N®((s', )@ (s", 1))

This semigroup is called the semidirect product of S and T with respect
to 0 and denoted by S x,T.

]

Our third product is constructed in the following way, let ST denote
the set of all functions from the monoid T to the semigroup S. We

I S——————————

define a multiplication ¢ on the set S™ x T by putting

(f,)e(g, ) =(fog, 1)
where fogeST is defined by (fog)(x) =f(x)g(xr) for x € T, f,geS",
tteT.ltf,gheST and 1t {"eT then

((f, Yo (g, D)o (h, 1) =(fog, tt')o(h, 1)

=((fog)oh, t't")

and

(f, (g, t)o(h, M) = (fo(g°h), 't").
Now if x € T then

((feg)oh)(x)=(fog)(x)h(xtr')
= f(x)g(xt)h(xtt")
and
{fe(goh))(x)=f(x)(geh)(xt)
= f(x)g(xt)h(xtt’)
and thus we have established the associativity of the multiplication on
the set ST x T. We call the semigroup S™ x T the wreath product of S
and T and write it as SoT.

Now let S and T be semigroups and consider the set S T of all mappings
from T into S. Suppose that f: T"> S and te T then we may define a
mapping f,: T" - S by fi(x) = f(xt) where x € T .ThesetS” isasemigroup
under the multiplication induced by the semigroup S, for example if
f.geST then

(fg)x)=f(x)g(x)eS wherexeT (*)
Furthermore the mapping 6,:S™ =S defined by

6(f)=fo feST
is an endomorphism, for if f, ge S” then 6,(fg) = (fg). where (fg)(x)=
faxn)=f(xt)g(xt) by (*) and 6,(f)-6(g)=fg where (fg)(x)=
f.(x)g:(x) = f(xt)g(xr) and thus

6.(fg) = 6.(B.(g).

Consequently there exists a mapping 6: T - End(S T') defined by 6(r) = 6,
for te T, It is now possible to define the semidirect product § T'xoT and
we note that if (f, ¢), (g, t') € ST x T then their semidirect multiplication
is given by

(,! ')@(8» ") = (fol(g)o "')

| (7w TTU Kibemestika Instituut

. . — —




where
(f8,(8))(x)=f(x)g(xt) forallxeT

=(fog)(x) forallxeT"
and so

(£ 0@, )= (f, t)o(g, ¥').
We thus have:

Theorem 1.3.3

If §$ and T are semigroups then there exists 8: T - End(sT)
such that

SeT=8S"x,T.
Before we examine the last method for combining two semigroups

we must introduce the idea of a zero.
If § is a semigroup an element s € S is called a zero of S if

sa=as=s forallaes.

The empty partial function 8: A - A is a zero for PF(A).

A zero .lement, if it exists, is necessarily unique. Not all semigroups
possess a zero but one can easily be adjoined, so that if § is an arbitrary
semigroup without a zero element we define $°=$ U {0} where 0¢ § and
define
ab ifa,beS

a*h= {
0 otherwise,

then $°is a semigroup under * and 0 is the zero element of S°.

Now let § and T be semigroups and suppose that S = and T # Q.
Consider their disjoint union SU T': this is not in general a semigroup
but if we adjoint a zero element in a suitable way we can construct a
semigroup multiplication.

Let 0¢SUT and put
SvT=SUTU{0}
and define

ab ifa,bes
axb=<ab ifa,beT
0 otherwise.

Then Sv T is a semigroup under * with a zero. We call it the join of
Sand T.

A e o d Lz

Occasionally we need to consider the case when either S or T is the
empty semigroup & in which case we define

Svd=gvSsS=S.

1.4 Groups

Let G be a monoid with identity e, Suppose that for each ge G
there exists an element g € G such that g§ =¢ = gg. We say that G is a
group and usually write the element § as g ™' and call it the inverse of g.

Groups are an important mathematical concept, they arise in many
situations and we now briefly state some of their important properties
that we will need later.

A group G is abelian if gg, = g:1g for any g, g, € G.

The cyclic group of order n is the set

n={0,1,...,n-1}
with multiplication defined by

xy=r
where x + y = qn +r and 0 =7 = n — 1, This group is abelian and is usually
written as Z,.

A subgroup of a group G is a submonoid H < G such that kh;' e H
for each h, h; € H. A subgroup must contain {e}. The identity singleton
{e} and the group G are both subgroups of G. If they are the only
subgroups then G =Z, for some prime number p. (Groups are said to
be isomorphic if they are isomorphic as monoids.)

Let H be a subgroup of G, we say that H is normal in G, written
H <G, if g'hgeH for all he H, geG. This is equivalent to saying
that a semigroup homomorphism f: G » G’ exists where G and G' are
groups, H = f"'({e"}) and ¢' is th= identity of G'.

Given any finite group G and a subgroup H we form the right cosets
of H in G. These are all subsets of the form Hg = {hg|h € H}. It is easily
verified that the set G/H of distinct right cosets forms a partition of the
set G. The equivalence relation defined by this partition is given by

g~ g1 =hg
for some ke H where g, g1€ G.
If H is normal in G we can define a multiplication on the set, G/H,
of all distinct right cosets of H in G by
Hg. H81 = ngh HS, Hgl € G/H.

This turns G/H into a group with identity He = H.



The function fy : G-+ G/H defined by
fu(g)=Hg forgeG

is a homomorphism onto G/H and H = {3 ({H}). We call fy; the natural
(or canonical) homomorphism onto G/H.

Theorem 1.4.1

Let f: G -+ G, be a homomorphism of the
group G onto G,. If
I-I=f"({e|}) then GlzG/H. l

Proof Construct a function ¢: G/H - G, by

#(Hg)=f(g) for Hge G/H.
This is well-defined for if Hg=Hg' then g'= hg for some he H and
¢ (Hg') = f(g") = f(hg) = f(h)f(g) = e1 f(g) = f(g) = $ (H). "

Furthermore it is easy to establish that ¢ is an isomorphism. ul

Theorem 1.4.2

Let H<aG. There is a one-one correspondence between the
subgroups of G/H and subgroups of G that contain H.

Proof Let K be a subgroup of G/H, so that K is a collection
of cosets of the form Hpg, (g € G). Recall that fu:G-> G/H is an onto
homomorphism. Let L = f3; (K), then L < G. Since He, the identity of
G/H, belongs to K we see that H = f}' (He)c L. If I, I, € L then

fa(IT')Y=HUT' = HI(HI,) ‘e K

so L is. a subgroup. Similarly given a subgroup L < G with H< L then
fu(L) is a subgroup of G/H. 0

A group G, with |G|>1, is simple if its only normal subgroups are
{e} and G. A normal subgroup H<1G is a maximal proper normal

subgroup if H+# G and whenever Hc K =G with K #G and K< G
then K =H.

Let G be a group and H<G. H is a maximal
. , proper normal subgrou
if and only if G/H is simple. SOt
Our next result is of particular importance.

Theorem 1.4.3
Let G be a finite group. A sequence of subgroups

G=G,‘DG,|-1D.--DGIDGO={C}

exists such that
(i) Gl<GH.| forl'=0,. . .,n—l
(ii) Gi+1/G;issimplefori=0,...,n-1.

Proof Choose first a maximal proper normal subgroup of G. If
this is {¢} then G is simple and the result holds. If not, let this subgroup
be H, then |H| <|G| and G/H is simple. Now put G,-, = H. Consider
G,-1 and choose a maximal proper normal subgroup of G,-1, call it
G._2, then G._1/G._»is simple. We may continue this process, the finite-~
ness of the set G will force an end after a finite number of steps. 0

We call such a sequence a composition series for G of length n. The
following theorem, known as the Jordan-Holder theorem, is proved in
most text-books on group theory.

Theorem 1.4.4
Let

G=G.|DG,|_|3...DG1DGO={€}
and
G=K, DK,,._lD...DK1DKo={e}

be composition series for the finite group G. Then m =n and for each
j€{0, ..., m~1) there exists a distinct i € {0, . . ., n — 1} such that

K;+1/K; = G;.1/G,, and conversely.

1.5 Permutation groups

Let Q be a finite non-empty set with |Q|> 1. The set A of all
bijective functions of Q onto Q can be given the structure of a group,
by using the composition of functions as a multiplication. We will write
the operation of the function on the right hand side, so that if g € Q and
a € A then ga will denote the image of g under a.

Now let @, a’c A and define aa’ by q(aa’)=(qa)a’ for all g€ Q.
Then aa’'€ A and under this multiplication A becomes a group with
identity 14.

We call A the group of all permutationsof Q. 1fQ =n={0, 1,...,n -1}
we denote A by S,. The subgroups G of A are called permutation groups
on Q. Notice that if G is a permutation group on Q then the following
conditions are satisfied:




o € -

(i) There exists a function F: Q X G - Q defined by F(q, g)=
q8, q € Q; g € G, called the action of G on Q.
(i) (gg)g1=4q(gg1) for € Q; g, 8:1€G.
(iii) If qg = qg, for all g€ Q then g =g, (g, g1€ G).

If G is a permutation group on Q we call G transitive on Q if given
q, q' € Q there exists g € G such that q' = qg. If G equals A, the set of
all bijective mappings of Q onto Q, then it is transitive. If G is a subgroup
of A it may not be transitive. Given q € Q the subset qG = {qg|g € G}
is called the orbit of q. The set of distinct orbits of Q (with respect to
G) partitions the set Q, for if G Nq'G #J then x =qg =q'g’ for some
g g € G.Then q' = qg(g") "' 50 ¢'G < qG and similarly 4G < q'G. Finally
for g € Q we have q = g1 € qG. This partition is called the orbit decompo -
sition of Q (with respect to G). There is an equivalence relation on Q
associated with this partition, it is defined by

q~q9'&q'=qg forsomegeG.
A transitive permutation group yields an orbit decomposition involving
one orbit, namely Q = qG for any q € Q.

Let G be a transitive permutation group on Q, a subset P c Q such
that|P|>1, P# Q and PN Pg = P or Jfor each g € G is called a primitive
block of Q with respect to G. Thus each permutation either fixes P, i.e.
Pg = P, or moves it away from P (PN Pg =J). A primitive permutation
group is a transitive permutation group with no primitive blocks. An
imprimitive permutation group is a transitive permutation group with
primitive blocks.

1.6 Exercises

1.1 Let Z be the set of all integers and let n be any positive integer.
Define a relation &, by

(a,a") e R, & n dividesa—a’. 4
Prove that R, is an equivalence relation. Describe the set Z/R,..
1.2 Prove that a relation R : X~ Y may be identified with a function
f:P(X)»P(Y) satisfying the condition f(UierA;)=Ulierf(A))

where {A,|i e I'} is any collection of subsets of X. (Note that (X))
is the set of subsets of X.)

1.3 Let A be a non-empty set and # an equivalence relation on A.
Define the relation : AmA/R by
R ={(a,[a])|a c A).
Prove that & is a surjective function.

e

1.4 If A is any non-empty set show that no surjective function f: A >
®(A) can exist. Can a surjective relation R : AP (A) exist?

1.5 Let R : X~+Y be any relation, show that
1SR R, lnmcR 'R
If R is injective establish

RV R =1pa)
If R is a partial function prove that
gl°gt_l =4 lm(a).

If R is an injective function then
R VeR=1x, RR'=lna.

If R is a surjective partial function show that
RoR ' =1y.

If & is a surjective function establish that
ReR =1y, 1xSR 'R

If & is a surjective and injective function prove that
RR =1y, R 'eR=1x

1.6 If R :S~T is a semigroup relation show that
R TS
is also a semigroup relation.

1.7 Investigate the monoid analogues of theorems 1.2.2 and 1.2.3.

1.8 Let S be a finite semigroup. Let s€S, consider the set
{s,s%...,s"...). Since § is finite we must have integers p and r
such that s**" = s®. Show that, if p and r are chosen suitably the

set %, s°*,...,s°*"" is a subgroup of S.

1.9 Show that a finite semigroup S contains an elements€ S satisfying
2
s°=s,

1.10 A semigroup S is called free on T if aset T exists such that S =%".
Prove that § is free on X.if and only if < S and every element
of S can be expressed uniquely as a finite product of elements of
X

1.11 If S=3" then T =S\S? where S>={s 51|, s1€ S}.




PR

1.12 § is a free semigroup if and only if
(i) sa=sb=>a=b,
(ii) as=bs>a=0»,
(iii) s has no identity element,
(iv) if as = bt then either a=b, a=bc or b=ad for c,
des,
(v) each element has a finite number of left divisors.
1.13 Let T be a subsemigroup of £* then T is a free semigroup if and
only if
TsNT#D and sTNT#OJ
implies se T.

1.14 Find an example of a subsemigroup T <" such that T is not a
free semigroup.

e i ot

o

2

Machines and semigroups

One of the achievements of modern science has been the realization
that very few things in the world are completely static. The behaviour
of many systems, both organic and synthetic, is influenced greatly by
environmental changes. This interaction between a system and its
environment can be vastly complicated and yet it is an area that we
must try to understand if we are going to be in a position to predict the
behaviour of the system and its effect on its environment.

The particular type of analysis that we present here is based on
techniques that are generally referred to as algebraic. In some cases we
will draw on established algebraic results but in general it is a new type
of algebra that has arisen from a desire to understand the behaviour of
a system in an environment. This is perhaps the most refreshing aspect
of the theory. Here, for a change, is a subject whose motivation can be
linked to very real problems in the modern world, a subject that has
a short but dramatic history and one which has played a large role in
the development of the fundamentals of computer science. However
its achievements have not been restricted to this case alone and we
hope to illustrate this when we examine the examples at the end of this
chapter.

In many of the systems environmental changes alter the behaviour
of the system and these changes in behaviour then affect the environ-
ment in some way. In other examples the only thing altered in the
system is some internal quality. These latter systems are easier to
analyse mathematically and so we shall start our considerations
with them, although, as we see later, the other types of system can
also be brought into this discussion in a meaningful and elementary
way.




2.1 State machines

Suppose that we have a system which is reacting to certain
changes in its immediate environment and suppose, further, that this
reaction is entirely one of changes in the internal qualities of the system.
First of all we identify within the system the set of these internal qualities
which we will call internal states. If we denote this set of internal states
by the set Q we can then agree that at any given time, ¢, the system is
in a particular internal state, q(f), which is an element of the set Q.
What these internal states are is not of great importance in general, we
deliberately keep the definition fairly vague in order that we can then
apply our model to a great many distinct situations.

Some examples of systems and possible sets of internal states may
help to give a more intuitive idea of what we mean. Consider an electronic
system, which involves various electrical components, such as transistors,
connected together in a complex electrical circuit. As currents flow
through the system some of these transistors ‘fire’, while others do not.
If at a given time, ¢, we have a complete knowledge of what the various
components of the circuit are doing, either firing or not firing, then we
say that we know the state, g(¢), of the system at the time ¢. The set Q
will then be the set of all the states q(f) that are possible at some time
or other. Obviously the larger the system, the more difficult will the
definition of an internal state be, and the larger the set Q of all internal
states. However, the total number of internal states will always be finite
in examples of this kind.

For a biological example consider a single cell from a biological
organism. Inside the cell there will be many chemical reactions taking
place as the cell performs its role in the organism. Many chemicals are
being formed and consumed in the cell, but at a given time, 4, it is possible
to conceive, at least theoretically, that each chemical has reached a
certain concentration in the cell as a result of the reactions taking place.
Thus the internal state, q(t), at that time would be a list of all the
chemical concentrations in the cell then. Clearly this would be a pheno-
menally complex piece of information, but the number of chemicals
involved would again be finite. In this case the complete set of internal
states may not be finite, since each chemical could clearly exist in one
of an infinite number of concentrations. We overcome this difficulty by
using the idea of a threshold. It is clear that some chemicals can exist
in very tiny concentrations without substantially changing the behaviour
of the cell, and as it is the behaviour of the cell, and in particular its
response to changes in its environment, that interests us, we can often

replace the infinite sets of chemical concentrations by finite ones, sir.ice
the behaviour of the cell may change only after a chemical concentration
has crossed a threshold value. (See example 2.8.)

Let us now consider the system as being described by a finite set Q
of internal states. Changes in its environment will in many cases force
changes in its internal state and we will now make the added assumptio.n
that this is the only way that internal states can be changed. So that if
there is no change in the environment between times ¢ and f, then

=q(t).
q(t!){ovg (c;l we model the environmental influences? Consider the
environment and the system at a given time, {, and note all the relevant
environmental factors that can affect the system; this particular environ-
mental profile will be denoted by o(f). The set of all such o (1) that. can
affect the system is called 2, the set of environmental inputs or the input
alphabet. .

In the examples discussed above the environmental input to t.he
computer system at time ¢ is either a pulse of electricity applied
to the system or no electrical charge. For the biological example the
input will be a particular profile involving, Perhaps temperature,
quantity of light, concentrations of various chemicals .etc. and as before
it may be considered to be a finite set by applying the threshold
‘principle. .

We are then left with two finite sets, Q representing the mtefnal states
of the system, and = representing the possible environn‘aental mﬂue.nces
acting on the system. Since the system will react to different en.vtron-
mental inputs by changing its internal state, the final stage in tl.\e
modelling of the system is a function that tells us how the syster.n will
behave. We agree first that the internal changes and t!1e reception of
inputs take place in the context of a suitable discrete tlm.e scale base.d
on the length of time that the system takes to react. I‘n this way \n.re will
remove problems associated with the influence of time on the inputs
and the internal states. .

Let the system be in state g€ Q and suppose that the environment
changes to o € £. The change will cause the state to change at the next
point on the time scale to a new state q'€ Q and so we hflve the resultant
of applying the environmental input o to the systan n.r state q If we
specify this resultant for some of the possible combmatlons. of mterflal
state and environmental input, we will be specifying a partial function
F:Qx3Z- Q in such a way that F((q,0))=q’ where g€ Q, reX and
q' is the result of applying o to the system in state q.

E
!
1



A state machine or semiautomaton is a triple 4 = (Q, X, F) where Q
and X are finite sets and F is a partial function F: Q XX - Q. (We allow
the possibilities that either Q or X or both are empty.) A state machine
M =(Q, 3, F) is called complete if the partial function F: Q@ x3-Q is
in fact a function. In this situation we can specify what the resultant
F((q, o)) is for all possible combinations of ge Q and r € £.

Such a system is clearly very general and can be applied to many
different situations. It is almost too general, from a mathematical point
of view, and the fact that we can investigate such systems successfully
using algebraic techniques, is, in my opinion, one of the most remarkable
achievements of modern mathematics.

One advantage of such a general definition is that it is easy to find

simple examples and their study amply repays the effort involved. We
shall look at some now.

Examples 2.1

(i) Some simple cases are where Q and X are both singletons.
Let Q={0} and X ={c}, then we can have F:QxZ-Q defined by
F(0, o) =0. This is illustrated with a simple diagram:

~

where the arrow is labelled by the only input, o.
(i) Suppose that |Q]=1 and I is any finite set, we don’t really get
anything very different, just F((0,0))=0 Vo €Z, or in diagrammatic

form:
allo
N

(iii) Letting |Q]>1 does introduce some more interesting exaﬁples,
thus if @ ={0, 1} and |Z| =1 we could have any of the following:

(a) (‘;)0 mﬂ
or .

b) o__;__o
or

© G—2
or

(d) 0—-;—:—|

(iv) These examples are all complete, and in fact incomplete state
machines need not have any arrows. For example:

0 could represent ({0}, {c}, F) where
F: Qx3- Q is not defined for (0,0)e Q xX.
Another incomplete state machine is:

1

0
0

and here F(1, o) is undefined.

(v) We will introduce a cyclic state machine as follows. Let p, r be
positive integers and put Q = 0,1,2,...,r+p—1}, £={o}. Consider
the diagram

so that F(0,0)=1, F(1,0) =2 etc. . 1
This is called the cyclic state machine with stem of length r and cycle
of length p; we note that this machine is complete. '

These diagrams, or directed graphs, are sometimes quite useful t.ools.
In these simple cases they clearly define the state machine precisely,
and we will often use them for this purpose. '

They can, however, also tell us something about the properties of the
state machines. Take a look at the cyclic machine above, the s'.»tates
0,...,r—1 have the property that once the machine leaves them it can
never return. We could call these ‘states of no return’. The cycle of
statesr, r+1,...,r+p—1isa‘cycle of no escape’. | .

Another way of specifying a state machine is by writing out the partial
function F in tabular form, for example:

(vi) 0=1{0,1,2},2={o, 7} and

F 0 1 2

o 0 0
T 1 1] 1

(Here F((1, 7)) is undefined, we write it as & in the table.)



This represents the same machine as the diagram:

The fact that F((1, 7)) is undefined is indicated on the diagram by the
lack of an arrow labelled by + emanating from the state 1.

An incomplete state machine can be completed by introducing new

arrows from states that are lacking them. However we choose a more
systematic method.

_W.e introduce a new state to the machine and arrange for all the
missing arrows to go to this new state.

For example in (vi) above we introduce the new state z so that
Q={0,1,2,z}, £={o, 7} and the graph of the completed machine is:

(T
/|
oo

Formall? let #£ =(Q, %, F) be an incomplete state machine. Define the
completion M* = (Q', T, F'), of 4 by putting

Q' =QU({z} *
where z¢ Q, and

F(q o)) = [F (g, 0) if q.e Q and F(q, o) is defined
z otherwise.
The new state z is called the sink state of A°.
We will examine some practical examples of such machines at the end
of the chapter. Our next task is to look at the way these machines operate.
Generally speaking we will present the machine 4 =(Q, X, F) with a
symbol o €X while it is in some state, say q € Q. The machine then
moves to state F((q, o)) € Q. This notation is a little cumbersome and
we will introduce the idea of the state mapping induced by the input.

This concept is defined thus:

let €2, define F,: Q> Q by

qF,=F((q,0)) foreachqeQ.
Since the machine may not be complete, F, may onlybe a partial function
of Q to itself. Each input symbol o from X yields a partial function
F,:Q-Q.

Now suppose that o is applied to the machine in the state q and
consequently the machine moves to state qF,. (Using the usual conven-
tion that gF, =@ if F((q, 0)) is undefined.) If, further, another input,
say o' € 3, is applied to the machine we get the resultant state gFoFo.
We may extend our notation in the following way. Let a € 2* be a word
of length at least 1 with symbols from 3.

Suppose that a = 0102 . . . 0% then we define

F,:Q-»Q
by
qFy=qF s Fo,...Fo.

Now it is perhaps apparent why we are writing the result of state

mappings in the form gF, rather than F,(q), itis caused by our convention

of writing words from left to right!

Each word from £* will therefore correspond to some partial function
of Q to itself.

Returning, once more, to example 2.1(vi) we note that some of the
partial functions induced by words from Z* are:

[

SRR
o.—@o-—c (=
Qy—AQNv-‘N [ ]

Note that F ., is the empty function 8:Q -~ Q and so we have a natural
example of what one might have originally thought was a rather artificial
concept. The function F., is, like F., a partial function.

2.2 The semigroup of a state machine
The state set of a state machine is finite and so the number of
partial mappings definable on the state set is also finite. Therefore the



number of distinct state mappings induced by words from the symbol
set is also finite, Consequently some words will yield the same state
mappings. We will use this idea to introduce a relation on the free
semigroup generated by the symbol set.

Let # =(Q, =, F) be a state machine and consider the set £* of all

words of length greater than or equal to 1 in the alphabet X. Define a
relation ~ on £* by

a~B&F,=F,; wherea,fel’

This relation is easily seen to be an equivalence relation. Since * has
a natural semigroup structure, using concatenation of words as the
operation, it is natural to ask whether ~ is a congruence on X*. This is
indeed the case, for example if «, 8, y€ £* and a ~ B then F, = F5 and
for any qeQ, gF,. =qF,F,=(qF,)F,=(qF,)Fg=qF,s and so
F ., =F,g which yields ya ~ y8, etc. We now construct the quotient
semigroup X'/~ and call it the semigroup of the state machine A, the
notation used being S(#). The elements of S(#4) will be equivalence
classes [a), € X",

We have already noted that each o eX defines a partial mapping
F,:Q- Q and so there is a natural function F:X - PF(Q), given by
F(o) = F, for o € 3. If we denote by (F(#)) the subsemigroup of PF(Q)
generated by the set of functions {F, |o € £} we obtain an isomorphic
copy of the semigroup S(#) of the state machine 4. To see this just
note that there is a surjection 6 from $* onto (F(#)) defined by 8(a)=F,
for a €X*, with corresponding congruence defined by the relation ~.
The first isomorphism theorem for semigroups yields tue result. We thus
have:

[ 4

Proposition 2.2.1

Let # =(Q, =, F) be a state machine and (F(4)) the subsemi-
group of PF(Q) generated by {F, | ¢ £}, then (F(#))=S(#)=2"/~.
Furthermore S(4) is a finite semigroup.

The last statement follows from the fact that PF(Q) is finite when Q
is finite.

The semigroup PF(Q) is actually a monoid and while S(4) may also
be a monoid it can happen that S(4) does not possess an identity. We
can easily construct a monoid from the state machine 4 by forming the
monoid 2* of all words in ¥, including the empty word A, and extending

the relation ~ to £* by putting
a~B&F,=F; fora,BeX*.

Again ~ is a congruence, but 3*/~ is a finite monoid isomorphic to
(F(M))U{1g}. We write £*/~ as M(4(), and call it the monoid of M.
Note that in both cases the relations ~ defined on $* and 2* depend
on the state machine 4. However, it is quite possible for different state
machines to have the same, or at least isomorphic, semigroups.
Given a state machine 4 =(Q, Z, F) we have now associated with it
a semigroup S(4). In many situations it is more convenient to study
this semigroup rather than the original machine 4. However we don’t
want to lose sight of the set of states and so we consider the pair (Q, S(A))
consisting of the set of states Q of # and the semigroup S(#) of 4.
Each element of S(#) is an equivalence class of ¥*, which acts on Q
as follows: qla]=qF, where q€Q, a€ $*. This is an example of a
transformation semigroup and it is these that we will be studying in detail.
A transformation semigroup is a pair (Q, S) consisting of a finite set
0O, a finite semigroup S and an action of S on Q, that is a partial function
A : Q x S - Q satisfying two conditions:
(i) A(A(q,s), s1)=A(qg, ss1) forallqe Q; s, 51€8.
(i) A(q, s)=A(q, 51) for all g€ Q implies s =5, where s, 51 € S.
Itis usual to write A(q, s)as q-sorgs forqe Q,s € S and these conditions
become
(i) (gs)si=q(ss)) forallge Q; s, 51€S.
(i) gs =gs) for all q € Q implies s =s, where s, 5, € S.
We write the operation of S on Q on the right to preserve the connection
with state machines. Notice that there is a natural embedding of the
semigroup S into the monoid PF(Q) obtained by defining 8(s): Q> Q
to be given by qf(s)=gs for each g€ Q, and each s€S. Then 6:S~>
PF(Q) is a semigroup monomorphism. Conversely given any set Q and
a subsemigroup S € PF(Q) then (Q, S) is a transformation semigroup.
Associated with any state machine 4 = (Q, %, F) there is then a
transformation semigroup (Q, S(#)) which we will denote by TS(#) and
call the transformation semigroup of M.
Now each transformation semigroup determines a state machine, for
suppose that £ =(Q,S) is a transformation semigroup, we define the
state machine # = (Q, S, F) where

F:QOx$S-0Q
is given by
F(q,s)=qs forallqeQ,seS.



Clearly 4 is a state machine, we call it the state machine of (Q, S)
and denote it by SM(&f). The relationship between state machines ;nd
transformation semigroups is very close.

In some situations the semigroup S(#) of a state machine # is in fact
a monoid and TS(#) is a transformation monoid. Generally we define
a fransformation monoid as a transformation semigroup (Q, S) where
S is a monoid and the identity 1 of S satisfies ’

q-1=q forallqeQ.
For a given state machine /4 = (Q, £, F) we may define the transforma-

tion monoid of M, TM(A), as being (Q, M(4)).
Now is the time to look at some examples.

Examples 2.2

(i) The examples of state machines discussed in 2.1(i) and (ii)
both yield the transformation monoid ({0}, §) where S is the group of
order 1.

(i) The transformation semigroups of the examples in 2.1(jii) are

(a) ({0, 1}, S), which is a transformation monoid, with S ={1o};

(») (o, 1}, {o}), which is not a transformation monoid althougl;

=0,

(c) also of the form ({0, 1}, {o’}) with o* = & although the action

is not the same;

(d) ({0, 1}, {0, *}) with o =1,.

(iii) Example 2.1(vi) has the transformation semigroup ({0, 1, 2},

{e, o, 01, 10, oro}) with the semigroup composition given by the fol-
lowing table:

<

wm
S
EEERRIE
Jeonge
373733
ERLFRIE
133333

. Si'nce we will be repeatedly dealing with transformation semigroups
it will be convenient to introduce some notation to help us refer to some
of the more common types. First we will consider a general finite set
Q. Let q € Q, then there is a mapping §: Q- Q defined by yj = q for

all ye Q. Thus § is the constant mapping defined by the element q.
The set of all the constant mappings on Q generates a semigroup Qas
a subsemigroup of PF(Q). We can now consider the transformation
semigroup (Q, Q).

Let £ =(Q, S) be any transformation semigroup, define the closure
o of o to be the transformation semigroup (Q, (SU Q)). We call o
closed if A = A.

Given any transformation semigroup o =(Q, S) define the transfor-
mation monoid &' =(Q, SU{1o}). For any finite set Q we can form a
transformation semigroup 2 =(Q, @). Then if n is a positive integer
recall that the set n={0, 1, ..., n—1} and so we have a transformation
semigroup, also denoted by n and given by n=(n, &J). We can now
specify some of the transformation semigroups in examples 2.2, these
are:

2.2 1, 2.2Gi) 2.

The example 2.2(ii)(b) will be denoted by €.
The transformation semigroup generated by the state machine

’+l ——-’..

o -
r+p - IC-G-

will be written €,, »

If G is a group then G may be considered as the transformation
monoid (G, G) where the group G acts on the set G by right multiplica-
tion, thatisg'g =g' * g (g'€ G, g€ G), we will denote this transformation
monoid by ¥, and since the monoid is a group it will be sensible to call
it a transformation group. Thus example 2.1(iii)(d) generates (Z2, Z>), a
transformation group; we will write this as Z».

In the case of the transformation group 4 formed from a group G it
is clear that the action is faithful. However if S isa semigroup the action
of S on the set S defined by right multiplication need not be faithful.
This is a special case of a more general situation.

Suppose that Q is a finite set and S is a semigroup, suppose further
that an action gqs (g€ Q, s €S) is given. The pair (Q, ) may not be a
transformation semigroup even if the action satisfies (gs)s: = q(ss,) for
allqe€ Q, s, s, € S. However such a pair may be converted into a transfor-
mation semigroup. Let ~ define a relation on § defined by s ~51¢gs =
gs1 for all g € Q. Then ~ is a congruence and we may form the quotient



semigroup S/~. The pair (Q, S/~) now becomes a transformation semi-
group with action defined by gq[s]=gs, g€ Q, [s]€ S/~. We call this the
transformation semigroup represented by the pair (Q, S).

Now if § is a semigroup then the pair (S, S) represents a transformation
semigroup (S, S/~).

Another way of defining a transformation semigroup from an arbitrary
semigroup is to consider the ‘semigroup made into a monoid® by the
adjunction of an identity element. So if S is a semigroup which is not
a monoid then §" =8 U {e} where eg § is suitably chosen and is defined
to act as an identity for §. Then we can construct a transformation
semigroup (§', S) with action by right multiplication; this is denoted by
¥.If S is a monoid then (S, S) is a transformation monoid, also written
as &.

A transformation semigroup &£ = (Q, S) may not be complete, that is

qs may not be defined for some g€ Q, seS. The completion, o, is
defined to be

oA°=(Q, S)
where

Q'=QU{z}
for some z¢ Q and

oe=|98 if 4 € Q and gs is defined in o

1 z otherwise,

Naturally, if o is complete we will define &/ = o.

If #£=(Q,S) is a transformation monoid, Q # & and § is a group,
we call o a transformation group. If o =(Q, §) is such that either of
is a transformation group or Q# (J and S = we say that o is a
generalized transformation group. »

2.3 Homomorphisms and quotients

Let 4 =(Q, X, F) and 4'=(Q', X', F') be state machines. Let
a:Q-Q', B:2-3 be mappings such that

a(qFa) S (a (q))F'B(v)

for any qe€ Q, o€X. (This means that if gF, is undefined we put
a(qF,) = and if qF, is defined then so is («(q))Fp() and a(gF,)=
(@(q))Fp(0).)

We call the pair (a, B) a state machine homomorphism from 4 to 4’
and write (a, B8): M > H'.

If « and B are both one-one mappings then we call (a,B) a
monomorphism and if a and B are both onto mappings. then. (a, B) is
called an epimorphism. An isomorphism of state mac!\mes is b?th a
monomorphism and an epimorphism, in this case we write M=M.

Example 2.3 '
Let /4 = (Q, I, F) be the state machine defined by the diagram

Lz) This is example 2.1 (vi).
0

where Q' ={a, b, c} and ' = {0, 7, p},

define
a:Q0-Q bya®)=a)=a,a(l)=b
B:2-3 byBlo)=a,B(1)=T

Then (a, 8): 4 -» M’ is a homomorphism; note that
a(2F) = c(a(2))Fpm =b
a(0F,)=a=(a(0)Fp»)

etc. '
If £ =(Q,S), ' =(Q', S") are transformation semigroups, f: Q- O
is a mapping and g:S - S' a semigroup homomorphism, ﬂ'xen the pair
(f. g) is said to be a transformation semigroup homomorphism from s
to o' if
flgs)sf(q): gls) forallgeQ,seS.

(It should be realized that in incomplete transformation s?migroups the
left hand side may be undefined and is then by convention the empty
set.) As before we write (f,g): s+ o',



e B e i T

(f, g) is a monomorphism if f and g are one-one; an epimorphism if
f and g are onto; and an isomorphism if (f, g) is both a monomorphism
and an epimorphism, we then write of =’

Theorem 2.3.1

Let # =(Q, X, F), #'=(Q', X', F') be complete state machines
and (a,B): 4 >4 a homomorphism with a onto. There exists a
homomorphism

(fav 83)3Ts(4”)"’Ts(-/a')-

Proof Define f,:Q-+>Q' by f,=a. Let S=8S(#), S'=S(H’)
and suppose that s S. Then there exists a € 2* such that s =[a], the
~-equivalence class containing a. Suppose that a=0y...0,, 01€X
define gg(s) =[B(a)) where [B(a)] is the ~'-equivalence class contaihing
B(a)=B(a1)...B(o.)e (). (Note that ~ is induced by # and ~' is
induced by ')

We must first establish that gg:S —» S’ is well-defined. Suppose that
s=[b)where beZ* thenb=r1,... 7, where 1;€Z. Now for any g € Q,
qf". ,= qF,. Let q'e Q’, there exists g€ Q such that q'=a(q). Then
q'Fa@ =(@(q))Fpa and q'Fge) =(a(q))Fpe). However a(qFa)=
a(qF,) and then a(qF.) = (a(q))F g(a) = (@(@))F ) 50 q'Fio(a) = q'Fe).
Thus B(a) ~' B(b) and g is well-defined. Now let g€ Q, s€ S, then

£(qs) = a(gs) = a(qF,) = (a(q))F g = fa(q)[B(a)] =fa(q)gs(s), Where
s=[a)and aeX’. 0

This result gives us some useful information concerning the relation-
ship between a state machine homomorphism and a homomorphism of
the related transformation semigroups. We consider, now, two efemen-
tary results that link state machines with transformation semigroups.

Theorem 2.3.2
Let o = (Q, S) be a transformation semigroup; then

TS(SM(H)) = oA.

Proof Let SM(#)=(Q, S, F) and consider the semigroup K =
(F(SM(#£))) generated by SM(#f). There is clearly an isomorphism
0:S-+K defined by 6(s)=F,, s€S and this yields the isomorphism
(1o, 0): A - TS(SM(sA)). 0

Theorem 2.3.3
Let 4 =(Q,X, F) be a state machine; there exists a state

machine monomorphism

(a, B): M > SM(TS(A)).

As with most algebraic systems, homomorphisms are closely linked
with ‘congruence’ relations. Suppose that we have a homomorphism of
state machines

(a, B): M~>M' where M= (Q, %, F)and M#'=(Q", 2, F").
The mapping a : Q -» Q' induces an equivalence relation R, on the set
Q defined by

qR.1a(q)=alq)) forg,q:€ Q.

The relation R, satisfies the following condition: let qR,q: and o €2
and suppose that qF, and q:F, are both defined, then

(qF,)Ra(a1Fo).
This follows because a(qF,) = a(q@)Fpw) = a(q1)F pior = a(@1Fo).

The relation R, is an example of an admissible relation on Q. Formally
if £ =(Q,2,F)is astate machine then a relation R on Q is admissible
if:

(i) R is an equivalence relation;

(ii) givenq, 1€ Q,0€X such that gRq, and both gF,, 1 F, are

defined then (gF,)R(q1F0).

An admissible relation R defines a partition on the set Q of the state
machine 4 = (Q, £, F). Suppose we denote this partition by 7 ={Hi}ies
where each H, is an equivalence class of Q foriel Then Q =Uier Hi
and HNH;=@fori#ji,jel Furthermore given H;e mw and o € 2 we
form the set H,F,={qF,|qeH)} and then H/F, < H, for some jel.
(Clearly H,F, may be empty.) Consequently we have a special type of
partition 7 which will be called an admissible partition.

Thus a partition ={H,}ic1 Of the state set Q of the state machine
M=(Q,2,F)is called admissible if given iel,c€X either there exists

j €I such that

H,F,cH;
or
H]F, = Q .

If the machine 4 is complete then the choice of j, given i and o, is
unique. For incomplete machines this is not always true.



Turning now to transformation semigroups we make the following
parallel definitions.

Let & =(Q, S) be a transformation semigroup, an admissible relation
on Q is a relation R such that if ¢, 1€ Q, s€ S, qs# O, q;5s # I and
qRq, then gsRqs.

A partition m={H}ie1 on Q is admissible if given iel, se S either
there exists j € I such that

Hls c HI
or

Hs=3.

The idea of an admissible partition leads to a procedure for construct-
ing quotient systems in the following way.

Let # =(Q, X, F) be a state machine and 7 ={H;};c; an admissible
partition on Q, construct a state machine #/n =(Y, X, G) by defining
Y =z, the set of #-blocks, and putting H;G, = H; where

HF, c H;
HG,=0 {HF,=0

This definition of G, is well-defined since  is a partition and admiss-
ible. The state machine 4/~ is called the quotient state machine of M
with respect to .

If we change the scene to that of transformation semigroups a similar
construction emerges.

Let o =(Q, S) be a transformation semigroup and 7 ={H};c; an
admissible partition on Q, construct a pair (Y, S) where Y =, the set
of w-blocks. Now S acts on Y with respect to the operation * defined by:

H; * s =H,¢>H,SQH,
Hi»s=0&Hs=0
Clearly (H, * s) * s' = H, = (ss') but it may be that H, * s = H, * s* for all
H;e Y and yet s #5'. To make (Y, §) into a transformation semigroup

it is necessary that we remove this possibility. The usual procedure is
to define a relation ~, this time on the semigroup S.

Puts~s'¢H, *s=H, »s',i eI, where s, s'€ S. This relation is clearly
a congruence on S and if we form the quotient semigroup §' =S/~ we
now obtain a transformation semigroup

A(m)=(Y,S")
with the operation * defined by
Hix[s]=H, *s
where {s] denotes the ~-class containing s (H; e Y, s€ S).

}(i,jel,ae):).

}(i,jeI, ses).

Some remarks concerning the relationships between these two con-
cepts of quotients are worth making.

First of all consider the state machine 4 = (Q, £, F)andits transforma-
tion semigroup TS(4). A pattition 7 on Q is admissible with respect
to 4 if and only if it is admissible with respect to TS(H).

Secondly the transformation semigroup of A/, TS(AH/ ), is isomor-
phic to

(TS(H)) /(). .

There are natural epimorphisms defined by quotient state machines
and quotient transformation semigroups. o

If 4 =(Q,3,F) is a state machine and 7= {H\}ier is an admissible
partition on 4 then the epimorphism (a”, 15):# > M/m d.eﬁned .by
a"(q)=H/&qeH, (qeQ, Hie ), is called the rfatural epimorphism
defined by m. If £=(Q,S)isa transformation semlgro::p tnd n={H}
is an admissible partition on & then the epimorphism (f", g"):sf > Afm
defined by

f(q)=H©&qeH, (qeQHem)
g (s)=[s] (seS)
is called the natural epimorphism defined by .

Suppose that 4 =(Q, 2, F) is a state machine, and l.et i =.{H,}.;e,,
7' ={K;};c, be admissible partitions on M. If =<', thatis, |f. given x.e I
there exists jeJ with H,cK, we can construct an eplmorphfsm
(a, 15): M/ 7> M/ 7' by a(H))= K;. This leads us to a homomorphism
theorem for state machines.

Theorem 2.3.4 .

Let 4 =(Q,3, F) and 4'=(Q', X', F') be state m.ac!\mes an.d
(a, B):# - M’ an epimorphism. Suppose that =, is the ad.mlssxble parti-
tion defined by a on # (so m, is the partition of the. relfmon R, def.itred
by a) and that 7 is an admissible partition on .# satlsfymg'the condition
< . then there exists an epimorphism (A, ) : M/ m > A’ such that the
following diagram of homomorphisms is commutative:

(o, )

A

(ﬂ'.lz) (k’“)

M|
Furthermore if 7 = 7, then (A, ) is an isomorphism.



Proof Let w={H}icr, ma={K;};es. We define A:7> Q' by
A(H,;) = a(q) where q € H; (i € I). This is well-defined for if q, € H, then
q,q:€ H,c K; for some jeJ and so a(q) = a(q,). If we define u: 2%’
by putting u = 8 the result then follows easily. 0

Theorem 2.3.5

Let o =(Q, S) and o' =(Q’, §’) be transformation semigroups
and (f, g): of > o' an epimorphism. Suppose that =, is the admissible
partition defined on &f by f and that 7 is an admissible partition on &f
satisfying the condition 7 <=, then there exists an epimorphism

(I, m): o#/(m)~> o' such that the following diagram of homomorphisms
is commutative,

. g)
o s o

v".g") U, m)

o (x)

Furthermore if 7+ = 7, then (/, m) is an isomorphism.
Proof See exercise 2.2.

There are many other results concerned with homomorphisms and
quotients of both state machines and transformation semigroups. While
these are of independent algebraic interest they have not yet proved
particularly useful in the study of automata and related areast In fact
the algebraic theory of machines diverges from the direction taken in
other algebraic theories in one important respect. The idea of isomorph-
ism is crucially important in many algebraic theories and many important
classification theorems involve the establishment of isomorphisms
between particular algebraic objects: an example would be the Wedder-
burn-Artin theorem for semi-simple Artinian associative rings which
are shown to be isomorphic to a direct sum of matrix rings over various
division rings. The emphasis in automata theory is, however, not what
machines ‘look like’ but what ‘they can do’. We will regard two machines
as being very closely related if they can both ‘do the same thing’, they
may however not be algebraically isomorphic!

2.4 Coverings

Before we can talk about two state machines doing the same
thing we must first examine what the function of a state machine actually
is. Let # = (Q, X, F) be a complete state machine and choose any g € Q.
Each word a € £* defines a partial function F, : Q » Q given by

qF,=F(q,a)forallge Q.
Therefore 4 is just a collection of partial functions {F, |« € £*}. Now
suppose that #'=(Q’, I, F') is another state machine that ‘performs
the same function’ as /. Each state in /# must correspond to a state in
A’ in such a way that the image under F, in # corresponds to the image
under F., in A’ for each « € £*. Formally we require a surjective partial
function n:Q’' - Q, called a covering, such that n(q')F, = n(q'F.) for
all « € =* and all ¢’ belonging to the domain of 7. To tidy up the notation
and also to extend the notion to incomplete state machines we will write
n(q") = @ if q' does not belong to the domain of 7 and also qF, = J if
F(q, a) is undefined. We may then define the covering requirement as

n(q")F.cn(q'Fa),
so that if ¢’ is not in the domain of n we have
@ sn(q'F.),
similarly if
F(n(q"), @)
is undefined then again
D en(q'Fo).
However, if for some reason n(q'F.) = &, then unless n(q')F, = @ also,
the partial function n will not be a covering.
In general the input alphabets of # and #' may not be the same and
s0 we must extend our covering concept to include this case.
Let #£=(Q, 2, F), #'=(Q', 2, F') be state machines. If ¢£:Z>2' is
a function and n : Q' - Q is a surjective partial function such that
n(q')Fa = n(q,FIG(a))

for each q'€ Q' and « € I*, we say that (n, £) is a covering of M by M',
written M < ',

Examples 2.4

(i) Let # =(Q, %, F) be a state machine, define a relation ~
on 2 by

o~oF,=F,, foro,o€X.



Construct a state machine #'=(Q, 3X/~, F) by defining F(q,[c]) =
F(q, o) for g€ Q and [0]e £/~. Now form £:3 X/~ by putting

to)=[o] foroel
and

7:0-Q
by

n(q)=q forqeQ

and we will obtain a covering (n, £) of # by #'. We say that 4’ has
been constructed from # by ‘coinciding equal inputs’.
(ii) Let # be defined by the diagram

@ o}

and #' by

g

3
NS
7y,

Defining :0-0, 1-» 1 does not yield a covering (7, 1) since
n(F, =0g(1F;)=02.

However by putting ':0-+0,2-1 we may check that (n’', 15) gives
a covering M = M'.

(iii). Let #£=(Q,X, F), #,=(Q4, 2, F)) and #' =(Q', X, F') be state
machines. Suppose that (f,13):M'># and (fi, 15): M > H, are
homomorphisms with f an injective function and f, surjective. Construct

a partial mapping n:Q-Q, by 7n(q)=,i1(f"(q)) £ '
qef(Q"), a€3*, ‘ (@) for qef(Q"). For

7(q@)F1a =[fi(f ' (@))Fia
=f((f ' @)F2)
=fil(ff@)F,) ifq=fq).q'cQ’
=f1(4'F:.)
=fi(f'f(q'F.))
=fif (f(q")F.)
=n(qFa)

For q € Q\f(Q"), n(q)F1, = @ < n(qF.). Thus M, <M.

The concept of covering also has an important role to play in transfor-
mation semigroups.

Let o =(Q, S), B = (P, T) be transformation semigroups and suppose
that n: P Q is a surjective partial function and that for each s € § there
exists a #, € T such that

n(p)-scn(p-t) forpeP. (%)
We say that B covers o, written o = # and that 7 is a covering of £

by ®. Furthermore we will say that £, is a covering element for s.

If s, s'e S then

a(p)-ss'=(n(p)-s)-s'sa(p-t)-s'Sa(p -t ts)
and so by defining ¢, =1, - s the relationship (*) is satisfied.

This is a slightly more general concept for transformation semigroups
than might seem necessary from the analogy with state machines. We
could have asked for a semigroup homomorphism £:85->T such that
n(p) - scn(p - &) for p e P, however this possibility for a definition
of covering is too restrictive for our purposes. See exercise 2.33. If we
define £(s) to be some element 1, € T that covers s we will have to show
that &(s - ) = &(s) - £(s), for s, s'€ S and the element chosen as £(s - s')
may differ from £(s) - £(s’).

Theorem 2.4.1
Let 4, A' be state machines such that M=AM', then

TS(M) < TS(A').

Proof Let #=(Q,%, F), M=(Q,2,F)let n:Q'>Q be a
surjective partial covering function and ¢£:3- 2’ a function, then

1(q"VF. € 1(q'Fe)

forq'eQ',aeX*.

Suppose that TS(#)=(Q, S) and TS(A')= (Q', S"). Let seS, then
ae3* such that s =[a). Put 1, =[¢(a)leS'". Now if q'e Q' nq) s=
(¢ Fac1(q'Feay) =n(q't,) and s0 1 defines a covering

TS(AH) =TS(A"). 0

Recall the definition of the transformation semigroup of a finite
semigroup §, it is the pair (S, §). Suppose that T is also a semigroup
and form the transformation semigroup (T, T); if (S, S) is covered by
(T, T) what can be said about the relationship between S and T?



Theorem 2.4.2
. Let S, T be finite semigfoups. then (§°, S)=<(T", T) if and only
if there exists a subsemigroup T of T such that S is a homomorphic
image of T.

. Proof Let (S, S)<(T', T), then there exists a surjective partial
function n: T"- §", and for each s € S there exists ¢, € T such that
n(y)-ssn(y-t,) forallyeT.
If n is a surjective partial function there exists a right inverse n™': 8> T
deﬁtlc:,d by choosing a y such that n(y) = x and putting n~'(x) = y. Then
n(n"(x))=x for each x € S". Now n(n(x)) - scn(n~'(x) " 1,) and so
x-sen(n”'(x)- 1)
However, x - s # @ in this case, thus x - s = n(n~'(x) - t,) for x € §'. Now
suppose that there exists s’ € S such that
n(y) - s'en(y-t,) forallyeT,
so that when x € §,
x s'=n(n"'x) 4)=x"s.
How.rever this implies that s'=s because of the faithfulness of the
semigroup action. We may now define a partial function f: T > S by
f(D=sSt=¢,teT.

Suppose that T is the domain of f, and #,, e T, then ¢, = te, 2=t,,
for sy, s2€S. Since 1, * #,, =1,,,, =1, -  we see that t, - & T and so
T is a subsemigroup of_T. Finally, f(t, - t2) = f(t,,.5,) =51 s2=f(8;) - f(t2)
and so f restricted to T is a semigroup homomorphism onto S.

Conversely lgt g:T-+S be a semigroup homomorphism from a
subsemigroup T of T onto S. Consider the partial function g: T->S
defined by

gt)=g(t) ifteT
g)=1 if1eT\T.

Then g’ is a surjective partial function from T" onto §'. Let s € S, there
exists a € T such that s = g(¢) and we write £, = 1.

Now for yeT, g(y)-s=g(y)-s=g(y) - g(t)=gly - )=g(y - 1,) if
yeT,andg(1)-s=1-s=g()=g(1-1,)=g(1-1¢) and so g’ is a cover-
ing map and

(5, S)=(T,T). a
We say that S divides T in this situation and write S|T.

2.5 Mealy machines

So far we have examined state machines without any formal
output, and we will now digress for a short while to look at machines
with outputs. The reason for this is to motivate the next section on
state machine products. Throughout this section all state machines
are assumed to be complete.

Let 4 =(Q, I, F) be a state machine, and suppose that O is a non-
empty finite set and G:QxZ -0 is a function. The quintuple M=
(Q, 2, ©, F, G) will be called a Mealy machine (after G. Mealy, 1955),
T is the input alphabet, F the state transition function, ©® the output
alphabet and G the output function. The machine works as follows.

Suppose that the input word o € X is applied to the machine in state g,
the machine then moves to state gF,, and produces an output G(q, o) € ©®
at the same instant. We will have, for each o € X, a mapping

G,:Q-+© definedby ¢G,=G(q,0),q€Q.

To see what the machine does when we apply an input word a =
1. ..0x €3* to the machine in state g it is best to imagine the symbols
printed on a tape and treat the machine as a black box that changes
state and at the same time prints symbols from © on an output tape.
The input tape will be fed into the machine on the right hand side and
will move from right to left. The output tape also moves from right to
left. See figure 2.1.

output state input
q AKA 1 ox ]
0, aFs, |[0] for]
0,| 0, O ‘ qF,

Figure 2.1. The action of a Mealy machine.



48 Machines and semigroups

The final state will be gF, and the output word is 8 = 6,6, ... 6, € ©*
where

01 = qG"l’ 02 = qu.Ga” LU
0 =qF,, ... Fo,_,Go,.

We will study the theory of Mealy machines in more detail later, it
is sufficient to remark that a suitable notion of covering of Mealy
machines can be formulated and this concept is closely related to the
covering of the underlying state machines, for inside every Mealy
machine there is a state machine.

A Mealy machine is just a set of translators, one for each internal
state, which translates words of length k in * into words of length k
in ©*, in fact each translator is nothing more than a rather special
semigroup homomorphism.

These Mealy machines have been introduced here for the sole purpose
of examining how they may be connected together to produce other
Mealy machines. Each machine will be regarded as a black box with an
input channel and an output channel.

€S gE€EZ

A
v 4

There are two major methods of connecting up two Mealy machines,
by parallel and by series.

Parallel connections
Suppose that 4 =(Q,%, 0, F,G) and A'=(Q",%, 0, F',G"
are Mealy machines with the same input set 2. Connecting them up in
parallel as in figure 2.2 will produce a new Mealy machine:
MNA=(QxQ',2,0%x0', FAF, GArG')
where
(F A F,)((q’ ql)’ U) = (F(q’ U), F,(q" U)) 13
(GArG)@4q),0)=(G(q,0),G'(q o)

foreachoel, (q,4)e Q% Q"

Mealy machines 49
3
€O
A
0€EZ
—_—] Q
g'ce’
‘)'

Figure 2.2. A restricted parallel connection.

We call this machine the restricted direct product of M an.d A and it
clearly produces words in (6 X ©')* as outputs in response to input words
from =*. .
Another type of parallel connection can be made, even when the input
alphabets are different. .
Let £ =(Q,%,6,F,G), A'=(Q', %, 0, F',G') be Mealy machines
and define

AxA=(QxQ, ExE,0%x0, FXF',GxG)
where

(FxF)(4.4), (0,00 = (Flg,0), F (', @")

(Gx G4 q), (0,0 =(G(4,0),Gq, )

for each (0, o) €2 %Y, (¢, q') € oxQ'. . .
This Mealy machine is called the (full) direct product of 4 and M.
It converts words from (£xZ)* into words from (®x 9’)":. See ﬁgu,r:
2.3. Note that each input word (o1, 71)(o2 a3)... (o oK) E(EXT)
can be written as (0102 . . .'O%, 0102 . .« ak)e* x (2)* but not any word

Q
A

J ¥ L
©@.0hecexe (0,0NEEIXE

0
).

Figure 2.3. A full parallel connection,




50 Machines and semigroups

from %*x (2')* can be used as an input unless it is of the form (a, a')
where the length of a equals the length of a'.

This can be generalized in the following way. Consider figure 2.4,
where A :£ -3 x 3’ represents a mapping.

The machine is (@ % Q", £, 8x &', F*, G*) where

F'((4,9"), &)= (F(q, ;7A(G)), F "q@', P2A(G)))
G*((4,9), 5)=(G(q, p1A (&), G'(q', p2A(3)))

for (4,4')€ Q xQ’, ¢ € X and p, p, are the projection mappings associ-
ated with £x3'. This machine generalizes both forms of the direct

product and will be denoted by M« A' and called the general direct
product.

(XX
e
0€EZ
A
A del
¢'EZ
9'eo ¢
jl

Figure 2.4. A general parallel connection.

Series connections

If we wish to connect two Mealy machines up in series we must
ensure that we can ‘hook up’ the output from the first machine to the
input of the second. See figure 2.5. One way of doing this is to define
a function A :©'-» X and so convert each output word 8’ (8')* into an
input word A (B’) e I* before applying it to the machine /.

fceo 0 0EZ fxl g'ce o €T
-~ —U =
M A

Figure 2.5. A cascade connection.

Once such a mapping A is specified we can define a mapping w : Q' x
>3 by w(q',o')=A(G'(q',0")). Then each input o'eX’ deﬁges a
mapping

w,: Q'3

Mealy machines 51

by
ws(q)=w(q, o)

forq'e Q.

The Mealy machine we have formed is:

Mol =(QxQ', %, 8, F,G")

where
F*((q. 9", ") =(F(q, w(q"), F'(q', 0")
G*(4.9"), o) =G4, ws(q")

fora'es’, (9,4 QxQ". P
Such a machine is called the cascade product of M and A’ induced
by w.

€O
o .
vee ¢ o€

j'
Figure 2.6. An alternative interpretation of a cascade connection.
s ’ o
Since » defines a set of mappings Q={w, : Q' » I} ex &I™ we can

visualize the connections as depicted in figure 2.6. This is but g' short
step from the useful generalization of figure 2.7 where {}=2". The

0 : e’

g6

N

oreel U'Ez

Figure 2.7. A wreath connection.



52 Machines and semigroups

wreath product of M and A’ is

MoM=(QxQ, 22 %3, 0%, F°, G°)
where

F°((q, 9", (f,0") = (F(q,f(q"), F'(q', ")
G°((4, 9", (f,0")=(G(q,f(q"), G'(q’, o))
foro'es, fe2?, (q,9)e Q% Q"

There. are further types of connection, most notably the feedback
connections, but we will not be requiring them here.

The various products of Mealy machines show us how to define

products of state machines; we merely remove the output sets and
functions.

Let #£=(Q,X,F), #'=(Q', X, F') be state machines. Define their
restricted direct product:

A /\J"=(Oxo" Z,FAF'),
in the special case where £ =3’ only, by:
(FAF')(q,9"),0)=(F(q,0), F'(q', 0))
foroel, (9,4 QxQ".
Let M xM' =(QxQ', ZXT, FxF') be the (full) direct product of #
and #' where
(FxF')(q, 9", (0, 0"))=(F(q, 0), F'(q', o)
foroel, 0'el, (9,4 QxQ".
Define the cascade product of # and M’ with respectto w: Q' XZ'> 3
by
MoM'=(QxQ', T, F”)
where F((q,q"), o) =(F(q, w(q', ¢"), F'(q',0"), for o'€¥’, (q,9")e
QxQ'.
Finally we consider the wreath product, MM’ of # and M’ where
MoM'=(QxQ, 27 %E, F)
and
F°((a. 9", (f,0))=(F(q,f(q"), F'(q', o)
foro'eX, fes?, 49,9)¢QxQ'.

2.6 Products of transformation semigroups

The most useful ways of forming products of transformation
semigroups will emerge if we consider the transformation semigroup of
a product of state machines and compare it with the transformation

Products of transformation semigroups 53

semigroups of the original state machines. Again all state machines and
transformation semigroups will be assumed to be complete in this section.
We examine the restricted direct product 4 A #', where # =(Q, X, F),
and M’ = (Q', £, F'), and find its transformation semigroup.

Let a € $*, then a defines a class [a], with respect to the state machine
M AM'. Now let B€Z", then B €[a], if and only if

(FAaF')(q,9",B)=(FArF') (4,9, a)
forall (g, qYe @x Q' i.e.

(4Fe, 4'F) = (qFa q'F o)
ie.
qFs =qF, forallqeQ
and
q'Fe=q'F, foralq'eQ".
Thus B €{a]. if and only if B e[a]N[a] where [a] and [a] are the
equivalence classes containing « with respect to the state machines #

and (' respectively. Therefore the semigroup of # A A’ is isomorphic
to the quotient semigroup

T/ ~N~'
where ~ and ~' are the equivalence relations defined by # and !
respectively.

It is clear that we will not be able to form a restricted direct product
between two arbitrary transformation semigroups. If A=(Q,8), A'=
(Q', S') are transformation semigroups and there exists a free semigroup
$* with epimorphisms §:3" - S, §': £ - §’ then we can form the trans-
formation semigroup

dAnsd'=(QxQ',T)
where T =X*/(RoN R4) (here R, corresponds to ~ and R¢ to ~') and
the action is given by:

(¢, 9)al. = (q0(a), q'0'(a))

for (¢,9") e @x Q' and [al.€ T. (It is an easy matter to check that T
acts faithfully on @ x Q"))

The definition of & A s’ will depend on the choice of 6 and 9', so we
call £ A sf' the restricted direct product of s and ' (with respect to 0
and 6'). We can now state:



54 Machines and semigroups

Theorem 2.6.1
Let#=(Q, 2, F)and #'=(Q", 2, F') then
TS A M) =TS(AH) ATS(H'")

(for suitable epimorphisms 6 :3* - S(#), 8':2* > S(4")).

Turning our attention to the full direct product we immediately see
that the situation is more straightforward. In chapter 1 the direct product
of two semigroups was introduced. We can extend this concept easily
to the (full) direct product of two transformation semigroups.

Let o =(Q, S), &' =(Q’, S') be transformation semigroups, define the
(full) direct product

Axd'=(QxQ',§xS")
where the action is given by:
(9, 9')s, s") = (g5, q's")
for (4,94)e Q% Q', (s,s) e S X S".
Clearly the action is faithful.

We write IT of to denote of X of %...x s (r times).

Theorem 2.6.2
Let M =(Q, 2, F), #'=(Q', L, F') be state machines.
TS(AM X M")<TS(M) < TS(H").

Proof Now M xHM'=(QxQ',ExZ, FxF'), and so S(# X"
will be a quotient semigroup of the free semigroup (Ex X')*. Let (a, B) €
(Ex )", then

(av ﬂ) = (alv a'l) o ((rm 0:.)

forsome o,€2, 0,2, i=1,...,n The elements of S(/# X .4') will be
equivalence classes of the form [(a, 8)}x where

(@, B)~x (a1, B1) > (F X F)o8)=(F X F') a8y
OF, =F.‘ and F’p =F'g‘ &Sa~aj and ﬁ~'ﬁ1.

Define a function g : S(# X .#')-> S(H) X S(H") by
gl(a, B)) =[], [B])

for each [(a, B))x € S(# % 4'). It is a routine matter to establish that g
is a semigroup monomorphism and finally (1oxo, 8):TS(H XAH')~>
TS(A#) x TS(H#) is a transformation semigroup covering. 0

Products of transformation semigroups 55

Theorem 2.6.3

Let £ =(Q, S), &' =(Q', §’) be transformation semigroups, X
a finite non-empty set and 6:3* > S, ':X* > S’ semigroup epimorph-
isms, then

TS(ANA)<TS(A X A").

Proof Using the notation of 2.6.1 we will take the identity map
1oxq as the covering map. Now let [a], € T, the semigroup of & A &',
g0 that a« € *. Consider 8(a)€ S and ¢'(a)€ S’ and define (6(a), 6'(a))
to be a covering element for [a],. Then, for (9, 9) € Q X Q’, we have

(@, 9" al. = (g6(a), q'0'(x))
=(q, q9")(0(a), 6'(a))
and so the covering exists. 0

Our next topic is the examination of the cascade and wreath products
and their implications for transformation semigroup theory. Suppose
that 4 =(Q, %, F), #' = (Q', L', F') are state machines and w : Q'x¥->»
S is a mapping. Let & =(Q,S), &' =(Q',S") be the transformation
semigroups of 4 and 4’ respectively. If 8 =(Q x Q’, T)is the transfor-
mation semigroup of #w#', we wish to find a relationship between A,
of' and ®. Unfortunately there is no simple straightforward construction
that yields the transformation semigroup % from a suitable combination
of o and s¢'. What we will do here is to show that 3B can be covered
by the wreath product of the transformation semigroups s and #'. This
will now be defined.

Let £ =(0Q,S), o' =(Q", S") be transformation semigroups. Define

dod'=(QxQ', S xS")
where S is the set of all mappings from Q' to S. The set §7 xS’ is a
semigroup, for if f: Q' S, f1:Q'>S, §', s} €S’ then we may define a
mapping f*f,:Q'> S by

f*fil@V=f@q" fr(@'s"
for all g'€ Q' and put (£, ) * (f1, 5") =(f * 1, 5s"). Then the action of
$? xS on Q x Q' is defined by

(.9, s") = (q(f(@)) q's")

for(g,4)eQx Q' (f,seS? x5
The faithfulness of this action is easily checked and thus sfosf’ is a
transformation semigroup, called the wreath product of o and A If



56 Machines and semigroups

Z=(S5,8) and J =(T, T) are transformation semigroups with § and
T semigroups then Fo T =(§%XT,S°T) where ST is defined in
section 1.3. We have the following result.

Theorem 2.6.4

Let #4=(Q,2,F), #'=(Q',Z,F') be state machines and
w:Q'xZ' >3 a mapping.

(i) TS(Mw My <TS(H) TS(A')

(i) TS(HM o M) <TS(M) - TS(H").

Proof (i) Let a'e(Z")" and consider the element [a']. defined
by a' in the semigroup S(#Hw'). We must find an element of the
semigroup S x S’ which will cover this element [a'), where S =S(#)
and S’ =S8(#'). The word a’ will clearly define an element [a'Y of S’
but we must also find a suitable mapping f. : Q' S. First of all we have
to examine the mapping w : Q' X' - X. Each o' € £' defines a mapping
wy,: Q'+ X by

wy,(q)=w(q', o)
for all g'e Q'. The mapping w describes the link-up between the two
machines in the cascade connection, so we must investigate what happens
when we input a word from (') into the leading machine. Suppose
that we apply a word of length 2 from (2')*.

If (9,4"Ye Q% Q’, o', 0] €2 then
(q' q')F:'ai =(un(q'.¢')s q,F:I' )F:i
=(@F viwoFuwFyoin @' FoFo)
= (qu(q'.c')w(q'F(,f.vi)’ q'F'c'ai ). (*)
It makes sense to define a generalization of the map w to cover the
cases of words in (2)* of length greater than 1. To do this we will define
©*:Q'x(Z)" X" in such a way that

(9 q')F:'wi =(qF o*q'0'o i) q'F:I'ai)
and so we need

w'(q',o'o1)=w(q', 0w (q'Fy, 0})
by analogy with (+). Generalizing further we define w*: Q' %X (Z')* »2*
inductively by w*(¢’,0'a)=w(q', ") w*(¢'F,, a') if a'e ()" and
w*(q', o) =w(q', o) where '€ X', a'€ ()", ¢'€ Q'. Then (¢, ¢')F2. =
(@F w*q'.an q'Fa) for a’€(2)*. Now, for each a'e(Z')* we have a
mapping w,:,: Q'+ (Z)* defined by w3 (") = w*(q’, '), ¢' € Q'. Return-

Products of transformation semigroups 57
ing to our problem we can now define
fu:Q»S by fo(Q)=[0z(g]
for ¢'€ Q'. Then to each [a'), we will associate the pair (fa’, [@']). The
first thing to check is that this definition is well-defined. 'Suppo'se :'hat
p'e(Z)" and that [a'). =[B')s, then for (q,q)eQ*Q', (q.9')Fa =
(9, q")Fg thatis
qF o+ q'.ah =qF o8
for each g€ Q and
qFo=qFg
for each q'€ Q'.
Therefore
fo@)=lwp(a"]
=[w*(q', 8]
=(w’(q', "]
=fa'(q)
foreachq'€ Q'and[a’]u= [B').. Hence[a'l. =[B")w imp}ies (fa -[a']') =
(fs- [B'). Our final task is the verification ?f the covering relationship
using the identity mapping on Q xQ'. Thatis
@q) 1@ q) (far [a])
or in other words,
(qF o*iq'am q'FL')E q: [w*(lf. a'),q - [«
=" fa(@),q [])
=(q.q) (far [']).
ing i lished.
Th(?i)co\;gl:gil:slteha‘:feeilt:abproof of the covering TS(A4 ° A{')STS(.,#)G
TS(A') as an exercise.

The product o o.. .o with r factors is written o',

Example 2.5
Consider the state machine 4 defined by:
g

0 i
L

with transformation semigroup Z; and the state machine (' defined by:

S ¥




58 Machines and semigroups

with transformation semigroup €. We may form the restricted direct
product .# A #' which can be described by the diagram:

(0,0) a,0

©,1 > - a.n
a a

This has semigroup {0, o’} with the identity o’ = 0. The full direct
product 4 X 4’ has the same description: in this case because the input
alphabets to # and #' are both singletons. However if 4" is given by

0—=——0
ry O 1 4o
r
with transformation semigroup 2 then . A 4" cannot be defined and
M X M" is given by

(0.7) (0,7)
0,0) —»———«— (1,0)

©, 1) —————— (1, )
(0,0) (0,0)

The semigroup of /4 x #" has four elements and TS(# x #")=Z, x 2.

Example 2.6
Let 4 be given by

g Y
T

and 4’ be given by-

.4
0————-—
[

Products of transformation semigroups 59

Define a mapping w : Q' x X' > where Q' ={0, 1}, 2' = {0}, 2 ={o, 7} by
w(0,0)=0, w(l,o)=1
It is now possible to define the cascade product #w.#' which has diagram

0,0) 1,0

g
o
[
o0 an
and semigroup {0, o} subject to the relation o’ = o.

Finally we examine the wreath product of .4 and ', this has input
alphabet £9'x3'. Denote the four elements of 2% by a, B, v, 5 where

a(0)=a(l)=0,B8(0)=0, B(1)=1,
y(0) =1, y(1)=0, 8(0)=6(1)=1.
Then the state machine 4 o' has the table

0,00 1,0 (©1) 11

(a,0) 1,1y (1) 1,0 1,0
8,0) 1Ly @1 (0,0 (0,0
(v o) 0,1 (©1) (1,0 (1,0
(8,0) o1 (©1) (0,0 (0,0

The semigroup of this machine has eight elements and the transforma-
' tion semigroup is isomorphic to the wreath product 2°Z,.
However the state table of #'°4 is given by

0,0 @10 (1) (1,1)

(a, ) Ly o1 11 (01
(a, 7) (1,0 0,00 1,0 (0,0

where o : Q - 3. This has a semigroup with four elements whereas the
semigroup of Z,°2 has eight elements. Hence the covering in 2.6.4(ii)
eamnot in general be replaced by an isomorphism.

Our final task in this section is to examine the associativity of the two
sain product constructions.

L R e e T e



60 Machines and semigroups

Theorem 2.6.5
Let (Q,, S;) be transformation semigroups for i =1, 2, 3, then
(Q4, $1) X ((Q7, $2) X (Q4, S3)) = ((Q4, $1) X (Q2, $2)) X(Q;, S3).

Proof This is left to the reader. a

Before embarking on a similar result for the wreath product it is best
to examine in detail what the wreath product (Q;, $1)°((Q3, $2)°(Q3, S3))
looks like.

Now
(Q3, 52)°(Q3, S3) = (Q: X Q3, S5 X S3)
and
(Q1, $1) ° ((Q2, $2) ° (@3, S3)) = (Q1 X (Q2 X Q3), TP x (S92 X S3)).
Similarly
((Q1, $1)°(Q2, $2)) ° (Qs, $3) = (Q1 X Qy, ST X S3) * (Q3, S3)

=((Q1 X Q)X Qs, (S72 X §2) % % S3).

However (S?2 X Sz)o’ is the set of maps from Q, to 8§22 xS, and if
f:Qs+S72 xS, we can consider the mappings fi=pi°f, fa=ps°f
obtained by projecting f onto the factors. Then

f1:Q3»ST and f,:Q3~S,.
Let g3€ 0_3, then f1(q3) = g say, where g:Q;~ S;. We can construct a
mapping f1: @, X Q3~ S, by

f1(q2, 43) = 8(q2) = (f1(q2))(q2).
It is a routine matter to check that the function

0:(S72 % 5,) 2 x 53 §72"% x (ST X S5)

defined by O(f, s3)=(fi,(f2,53) for fe (§7:%85)%, s;€8,, is an
isomorphism of semigroups. Thus we may establish:

Theorem 2.6.6
If (Q, S;) are transformation semigroups for i =1, 2, 3 then

(Q1, $1)° ((Q2, $2) ° (Q3, $3)) = ((Q1, $1) 2 (Q2, 52)) ° (Qs, S3).

Associativity relations for the other products defined in this chapter
will be examined in the exercises. As for the direct product and wreath
product of any finite number of transformation semigroups, we shall
usually rearrange brackets or remove them altogether when this serves
to clarify the notation.

More on products 61

There are some ‘distributive laws’ connecting the direct product and
the wreath product but we will postpone discussion of these until the
next section.

2.7 More on products
We now extend our definitions of products of state machines
and transformation semigroups to include the incomplete cases.
First let 4 =(Q, =, F) be a state machine and suppose that P<Q.
Define the restriction of A to P to be the state machine

Mlp=(P, 2, F)
where
F :Px%i-P
is defined by
Fi(p,0)= {F(p, o) if F(p, fr)eP.
’ 1) otherwise.

What this amounts to is that all the states in Q\P have been removed
together with all the arrows leading to or from these states.
From example 2.1(vi) we have the state machine /4 given by

0
1 g 1 C)
and if P = {0, 2} then 4|5 is given by:

2 (®

Mp O
F, 0 2 2
F, e @ Qa

Now suppose that & =(Q, §) is a transformation semigroup and P < Q.
We define the restriction #|p to be the transformation semigroup
TS((SM(0))|p). Now SM(&#) = (Q, S, F) where F:QOxS->Qis deﬁne'd
by qF,=gs for all g€ Q, s€S. The restriction (SM(s))|p is (P, S, F')



3 e

TN

62 Machines and semigroups

where F': P xS - P is defined by
_[ps ifpseP
& otherwise
Now TS((SM(s#))|p) = (P, T) where T =S((P, S, F'))=S*/~ and ~ is
defined by a ~ B ¢>pF; =pFj for all pe P, and a, 8 € S*. Note that if
a is the word sy ... s, € $* then [a] =[s] where s is the product in S of
$i...5n, and [s] is the equivalence class containing s.
Thus
oA|p=(P,S/~).
Another way of looking at of|p is to consider the pair (P, S) with the
operation * defined by

pF,

ps ifpseP
& otherwise.

Under this operation § may not be faithful on P and so we have to
define the relation p on S by

p*s=

sps'prs=px*s' forall peP, wheres, s'eS.

Thus /|, may be regarded as the transformation semigroup (P, S/p)
under the operation induced by *, namely

p{s)=p*s forpeP, (s)eS/p.
In our example o|p= (P, {c, 8)) where > =0 =15.

Now let #£=(Q, %, F), #'=(Q', ¥, F’) be two state machines which
are not necessarily complete. Define # X M' = (M° x (#")*)oxo'. SO we
complete 4 and ' if necessary, form the direct product with the
complete machines and then restrict the resultant to the product of the
original state sets.

Similarly MAM = (M A (M) )oxg f =3, and MoM'=
(M o (M'))| oxo. Now let w : Q' x T’ - £ be a function, and suppose that
A’ is incomplete. If §' is the new sink state for 4’ define

0 (QU{FHXT X
by

0(q', o) =w(q, o)
forg’'eQ’,o0'ey

w*(§', o') = arbitrary
for o’'eX’. Now put MwM' = (M (M) )oxo. We make similar
definitions for transformation semigroups. If o =(Q, §), &' =(Q’, S’)
then

Axo'=(A (A ) oxo

Motre on products 63

and
Aod'=(A° o (') Noxo-

We now prove some straightfoward identities. As usual we will assume
that all things are complete but the necessary adjustments for the
incomplete cases should be regarded as exercises.

Theorem 2.7.1
Let of =(Q, S), B = (P, T) be transformation semigroups. Then

(AoBysof B,

Proof We will only consider the case where &/ and ® are both
. nmot transformation monoids. Then #=(Q,SU{lg}) and F=
(P, TU{1,)). We have (s ° B) = (Q x P,(S” x T)U{1 oxs}). Define 1 oxp
as the covering function, for (f,1)e S x T we will use (f, r) where
f:P->SU{15} is defined by

F(p)=f(p)
for pe P; and for (1q, 1) we will use (g, r) where

g:P->SU{lo}
18 defined by

g(p)=1o
forpeP.

Now

@ p)f, 0=(af(p), PO <= (a PX]. 1)

(9. p)10, ) =(q, p1) = (4, P)(8, 1)
and the covering is established. 0

Theorem 2.7.2
Let oy, A5, B, B, be transformation semigroups, then

(1 © A2) X (B 0 B) =< (ofy X By) © (A2 X Ba).

Pfoof Let dl = (ob SI)' Ql = (Ph n) fol' i= 1' 2-
(st 0 ) X (B © B) = (Q1 X Q; X Py X Py, 72 x S, X T{2 X T)

(1 X By) o (A2 X B) ,
=(Q1 X Py X @y %X Py, (§; X T1) 92 F2x 8, X T).

Define ¢ : Q1 X Py X Q3 X Py Q1 X Q2 X Py X P, by
4’(41, P, q2, pZ) bl (qh q2, P, pZ)



64 Machines and semigroups

forq.€ Q, pie P, i =1,2. Then (fy, 52, g1, 12) Where f,: Q,+ Sy, g, : P>

T, 52€ S,, t€ T, is covered by (f1 X g1, s3, 12) where
/|X31:QZXP2-»SIXT1

is defined by

(f1 % 81)(q2, p2) = (f1(q2), g81(P2))- |

Theorem 2.7.3

Let o, of', B be transformation semigroups such that of <3,
Then

AoA'=sRogf'

Proof Suppose that o =(Q,S), B=(P, T), ' =(Q", S') and
¢ :P- Q is a surjective partial covering function, and given s € S there
is an element £, € T covering s. Define ¢ :PxQ'>Qx Q' by ¢(p, q') =
(#(p),q") for (p,q"Y e Px Q".

Now let s’ §' and f: Q' > S, define the pair (g, s') where g: Q' T is
given by

8@)=tyq) forq'eQ’,

(trq is an element of T that covers the element f(q')).
Now

o(p, a'Xf,s)=(#(p)f(q'). q's")
< (@(ptyan), 4's")
=dé((p,q')g 5)
and so (g, s') covers (f, s") with respect to ¢. a

2.8 Examples and applications

Having patiently worked through some of the abstract theory
of state machines we can now come to a brief survey of situations that
give rise to such objects.

Example 2.7 Transistor components

The NAND-, component consists of two transistors connected
up in a simple circuit as in figure 2.8. The input at terminal I, is either
a current applied denoted by 1; or no current applied, denoted by 0. The
same choice of inputs are applied to I,. The complete input description
is an ordered pair of the form (a, b) where a, b € {0, 1}. The transistors
T, and T; are either ‘off’, when a current is flowing through CE; or
‘on’, when no current can flow through CE. The internal states of the

Examples and applications 65

Figure 2.8. NAND, circuit.

circuit are thus described by the ordered pair (a, B) where a,B8€
{OFF, ON}. There is an output at K, either a current (1) or no current
(0). We can now describe this circuit by means of a Mealy machine
A =(0,3, 0, F,G)where

Q = {{off, off), (off, on), (on, off), {on, on)}

s ={0, 1} x{0,1},©={0, 1},

F is given by:
F (off, off) (off, on) (on, off) {on, on)
0,0 fi, {off, off) {off, off) {oft, off)
EO. 1; ﬁgﬂ. 2:3 (oft, on) {off, on) (oft, on)
(1,0) (on,off) {on, off) (on, off) (on, off)
(1,1)  {(on,o0n) {on, on) {on, on) {on, on)
G is given by:
G (oft, off) {(oft, on) (on, off) {on, on)
0,0 1 1 1 1
20, 1; 1 1 1 1
(LOo) 1 1 1 1
1,1y o 0 0 0




66 Machines and semigroups

Many types of electronic components, from simple cases like this to
complete computers can be analysed in terms of Mealy machines.
Naturally the Mealy machine associated with a computer will have an
enormous set of internal states, but since this set is finite the theory of
finite state machines is still applicable.

As well as computer hardware it is possible to consider computer
software as a type of state machine. See Chittenden [1978].

Example 2.8 Biological cells

The many complex chemical reactions that take place within
various biological organisms provide a difficult problem for us to model.
These reactions involve the input of various types of environmental
stimulus, ranging from light of varying intensity and wavelength, tem-
perature, different chemicals of varying concentrations, etc., both from
the external environment of the organism and the more immediate
environment of the surrounding cells. In many cases the chemical reac-
tions that take place inside the cell are controlled by the genetic com-
ponent of the nucleus, by the synthesis of various enzymes, etc. The net
result of all this metabolic activity in the cell is the synthesis of certain
chemicals necessary for growth and the operation of the organism, the
storing of energy, heat, etc. So we may regard the activity of the cell as
a kind of biological machine with inputs and outputs, Itis notimmediately
apparent that the cell behaves like a Mealy machine: for example are
there a finite number of internal states and a finite number of inputs
and outputs? To answer this we will examine an argument which we
could call the threshold principle.

Most of the parameters involved in the description of the state of the
cell at a particular moment will be concerned with the concentrations
of various chemicals, temperature, etc. and these are measured on a
continuous scale. However in many situations minute changes in the
concentration of a chemical do not affect the behaviour of a cell and it
is only when the cell concentrations pass a threshold value on the
measurement scale that the cell enters a different phase of behaviour.
The same is true of environmental inputs: small changes in these may
have no influence but larger changes, exceeding certain threshold values,
will cause the cell to react in some way. The next step is to assume that
there are only a finite number of these threshold values for each para-
meter involved in the internal description of the cell and a finite number
are also assumed to exist for each input and output parameter. Let
Ay, ..., A, be the sets of input parameters and let A, be the set of

Examples and applications 67

threshold values of the parameter set A, Now we form thesetE =[1/-1 Ay
which will be the finite input set. Similarly if By, ..., B are the scfts of
output parameters then we form the sets B, (j=1,..., m)of associated
threshold values and put ® =[]/~ B, Finally let C,, ..., C; be the sets
of internal parameters and C. (k=1,...,1)the associated sets of thresh'-
old values. Let § =[IL.. C,, this will be the set of internal states; X is
the input set and © is the output set. The whole system can now be
represented by the Mealy machine (S, %, , F, G) w!\ere the next state
and output functions F and G are defined appropriately. One benefit
of this view is that we can consider groups of biological cells also z'as a
Mealy machine, we just have to extend our sets S, <, © and the mappings
F, G suitably. (See, e.g. Rosen [1972].)

Example 2.9 Neural networks

A model of the brain can be constructed using a simple model
of the brain cell or neuron, see figure 2.9. We will not concern ourselves
with the neurological and anatomical details of a typical brain cell here.
We concentrate, instead, on the basic function of such a cell.

dendrites

axon

nucleus

Figure 2.9. An example of a neuron.

Small electrical impulses arrive at the dendrites of the neuron, and
over a short period of time they are ‘summed up’ by the nucleus.'lf the
total exceeds a particular threshold value, the cell rea'cts by sending an
impulse down the axon, the end of which branches into a. number of
small filaments which are in electrical contact with the dendrites of ot‘her
neurons. In this way the neuron receives and propagat?s electn?al
impulses in the network of interconnected neurons which is the brain.
The details of this will be found in Arbib [1964].

We can represent a neuron by a diagram such as figure 2.}0, where
wy, ..., W, are the weights associated with the neuron’s d'endntes, some
will be positive real numbers, indicating excitatory dendrites and others
will be negative and mark the inhibitory dendrites. The threshold value



ISR,

68 Machines and semigroups

dendrites

wy

axon

Figure 2.10. A general neuron.

is r and y is the weight of the output axon, indicating the strength of
an output impulse.

Consider the simple example shown in figure 2.11. We interpret
this as a Mealy machine in the following way. The set of states
D, —M!
D, *l +1

Figure 2.11. A simple neuron.

Q={'on’, ‘off"}. The input and output sets are X ={(0, 0), (1, 0), (0, 1),
(1, 1)} and © = {0, 1} respectively. If the neuron is on and it receives an
input of 1 at D, and O at D, we see that the neuron then turns off at
the next point on the discrete time scale because the threshold has not

been reached. However there is an output of 1. The state and output
tables are:

on oft on off

0,0) off off
(1,0) off oft
(o’ l) oft oft
(1,1) on on

-ttt b
COoO0C

By constructing a model of the neural network, using simple mathe-
matical models of the neurons connected together in certain ways we
can investigate the way in which information, in the form of electrical
impulses, is conveyed around the nervous system and the brain. There
are, however, certain limitations to the use of this model as there are
several basic assumptions that have to be made in order that the mathe-
matics can be handled. These include the synchronization of the neurons
in a convenient manner. Despite these drawbacks the model, known as

Examples and applications 69

the neural network, has proved useful. It can be shown that such a neural
network is equivalent, in a natural way, to a Mealy machine. See Arbib
[1964], Minsky [1967]. .

Other systems which model cell behaviour, for example me?abohsm
repair systems, are also known to be equivalent to Mealy machines (see
Rosen [1972]).

Example 2.10 Metabolic pathways '

The following metabolic pathway illustrates the complex sem?s
of chemical reactions that make up the Krebs cycle in mammals, this is
the process by which carbohydrates are converted into ener.gy. Figure
2.12 illustrates the progress of one molecule of oxalacetic acid through
the cycle.

E
Oxalacetic acid -7#-0 Citric acid
1

/ Ej

Malic acid Cis Aconitic acid

E, (c, E,
\

Fumaric acid Isocitric acid
E, c ,) E,
Succinic acid Oxalosuccinic acid
E, <3 E,
¢
Ca
Succinyl Co. A ,¥_ a-Ketoglutaric acid
s

Figure 2.12. The Krebs or tricarboxylic cycle.

The letters E,,..., Eo represent enzymes that are assumed .to be
present in sufficient concentrations during the cycle to permit the
individual reactions to occur. The letters Cy, C, C» represent coenzymes.



G e

B A i ] g R s A0

70 Machines and semigroups

These are also necessary for some of the reactions to take place, they
combine with atoms from the substrates and are then involved in further
reactions in other metabolic pathways and are eventually released for
further use back in the cycle. If we make certain assumptions about the
rates at which the reactions proceed and combine reactions that do not
involve coenzymes we can simplify the diagram to figure 2.13. This new
diagram involves the substrates:

S - Oxalacetic acid, S84 — Isocitric acid,

S6 — a-Ketoglutaric acid, §, - Succinyl Co. A,
8o -~ Fumaric acid

5

/ \
Sy S,

N A

Sy —————-S,

C,
Figure 2.13. Reduced Krebs cycle.

Now an input of C, applied to a molecule of S, produces eventually a
molecule of S¢ plus a molecule involving C, and two hydrogen atoms
which are then ‘passed on’ in a separate series of reactions which
eventually release the molecule C; for further use in the cycle. It is then
reasonable to regard the coenzymes C,, C,, C; as inputs to a machine

with states S, S4, S, $7, So. The state table of the machine is then given
by:

S, A Se S, So

C, S, S Ss S, S
Cz S 1 ss s1 s'l s 1
G S Sa Se So S

Note that coenzyme C, does not play any role in the reactions involving
the states S, S¢, S», So and 80 we regard C, as acting as an identity on
these states. The semigroup of this state machine can now be calculated,

Exercises 7

however the size of this semigroup is rather large. Clearly it cannot
exceed 5° =3125 and in this case it is only practical to use a computer
for this task. The number of elements is in fact 183. A program (in
Pascal suitable for use on an Apple or ITT 2020 microcomputer) is in
the appendix. This program evaluates the semigroup of a complete state
machine with S states or less and 9 inputs or less. See Krohn, Langer
and Rhodes [1967].

State machines have been used in various investigations in psychology.
The work of Chomsky in psycholinguistics caused a considerable amount
of interest in the use of machines for modelling the learning of language
etc. For some time it appeared that the stimulus-response (S-R) theory
of learning was incapable of dealing with the acquisition of machine-like
behaviour, but a paper by P. Suppes [1969] claimed to indicate the ways
in which S-R techniques would enable subjects to behave like simple
machines. This paper resulted in some controversy (Arbib [1969], Nelson
[1975])) which was then re-examined by Kieras [1976] who pointed out
some ambiguities in Suppes’ original work.

Another aspect of psychology that has been influenced by machines
is the problem of systems that can answer questions, see Fiksel and
Bower [1976]. In this paper the authors consider a network with a type
of finite automaton at each node. This network models human memory
and the process of question-answering is then considered to be the
process of determining paths in the network bearing given sequences of
labels. The automata at the nodes are only in direct communication with
their immediate neighbours but this is enough for the system to determine
a shortest such path.

Other areas where automata have been used as models are in
economics. W. Roedding [1975] has examined the use of ‘indeterminate’
Mealy machines in the modelling of various economic processes.

It is likely that automata theory will feature in many modelling
processes in many different subjects. This seems justification for a
continued detailed study of the theory of automata and in our next
chapter we will take the first steps in the procedures for simplifying and
decomposing finite state machines.

2.9 Exercises
2.1 If (Q, S) is a transformation semigroup and # =(Q, S, F) is the
state machine of (Q, S) show that TS(#) = (Q, S). If A is a state
machine and (Q, S)=TS(#) show that # may be embedded
isomorphically inside the state machine of (Q, S).



72 Machines and semigroups

2.2 Prove theorems 2.3.3 and 2.3.5.

2.3 Prove that if 7 is an admissible partition on 4 =(Q, £, F) then
TS(#/ ) = (TS(H))/w. Prove that (a, 1):.# > #/7 induces the
homomorphism

(£, 8): TS(M) > TS(H/ 7).

2.4 Find an example ?f an i_ncomplete transformation semigroup &
and a proper admissible partition = such that /(=) is complete.

2.5 Prove the homomorphism theorem for transformation semigroups.

2.6 Let # and 4’ be given by the tables:

M g 0 9 M p P2
a q q2 Qo a
P2 p:
9o 91 qa b Po P: ::

Calculate S(#) and S(#') and verify theorem 2.6.3.

2.7 A partition 7 on the state set Q of the machine # =(Q, X, F) is
caIIe:d. elementary if = is admissible and if given any at;mi’ssible
partition #' with #'<a then #' is the identity partition. Let
( f,.l) H(Q, X, F)»(Q', %, F') be a homomorphism, show that there
exists a sequence of state machines and homomorphisms

(O,Z,F)-’(Ol,z,Fl)-',,.—)(O"I,E)E(O',Z,F,)

such that each epimorphism (Q,, £, F;)> (Qi.1, £, Fi41) is induced
by an elementary partition.

2.8 #=(Q, X, F)is called transitive if, for any q, q, € Q, there exists
a € 2* such that

9 =qF¢-

Let C be the group of all state machine isomorphisms (£, 1): 4 > 4.

Prove that if (f,1)e C and f# 1, then f(q) #q for each g€ Q.
Define a relation ~ on Q by

q~q'eq =f(q) forsome (f,1)eC.
Prove that ~ defines an admissible partition on 4.

Exercises &

2.9 Find the semigroup of the state machine A given by

M a b c

Construct a semigroup homomorphism between this semigroup

and a proper subsemigroup of it.

2.10 Let 4 =(Q, I, F). Prove that the set G={aeS(#)|Qa=Q}isa
group.

2.11 If 4 and ' are state machines with M =< AM' then there exists a
subsemigroup A< S(#') and a semigroup epimorphism f:A -
S(4).

2.12 Establish the following identities where M, #' and #M" are state
machines:

(X M) X M = X (MM

(MASY N M= AN M AM)
(when the restricted direct product is defined).
Investigate the situation for the cascade product.

2.13 A transformation semigroup (Q, S) is called irreducible if

@ lQ|>1
an (ii) the only admissible partitions are the trivial partitions,
ji.e. the identity partition consisting of singleton blocks and the
partition {Q}.

Prove that given any q € Q either |gS|=10rqS=0Q.
2.14 If # =(Q, T, F) is an incomplete state machine show that
(TS(H))° =TS(A®).
2.15 Let 4 =(Q, %, F) be a state machine and suppose that Pc Q.
Calculate TS(#p).
2.16 Prove theorem 2.6.4(ii).
2.17 Prove theorem 2.6.5.
2.18 If 4 and X are suitably defined state machines show that MANS
M XN and MoN s Mo N.
2.19 If M <A, and My < M2 show that 4 <, where 4, Ay, Mo are
state machines. Establish a similar result for transformation semi-

groups.



74 Machines and semigroups Exercises 75

2.20 Let (a, B): 4 -+ M, be a state machine homomorphism. If (a, B) 2.30 1f A, of,, B, B, are transformation semigroups show that

is an epimorphism, prove that 4, <4 and if (a,B) is a AvB<AVE
monomorphism prove that # < .#,. AvE=<(LvBY

2.21 Prove that if of and B are transformation semigroups such that
A=R

thenot =B, A<PB, A =B

2.22 Prove that for state machines M, ¥, A XN <M x N, U AN <M A
N, M oN= MoN, and MwN<MoN for suitable o, @.

223 Let #=(Q,%,F) be a state machine. Put A=
(Q,XU{1g}, F) where gF,=gqF,, qFi,=4q, q€Q. Prove

Ao (ByvRB)s (oo By)v(shoB)
o =B implies A vy <B v
231 Let #f = (Q, S), B = (P, T) be transformation semigroups with § #

@, T # @. Define the sum 4 + B =(Q UP, S x T) with the oper-
ation * given by

q(s,)=gs (q€Q)

that TS(#) < (TS(H)). p(s,)=pt (peP)
224 If M, N, P, R are state machines and # <& prove that Putl < In the case where § is empty we put
PwAN, and A+B=(QUP,T)
P=MoR>P < NoR and if T is empty define
P<RoMD>P<RowN. A+B=(QUP,S).

2.25 Show that if o is a transformation semigroup then
Aol=of=10g,

Prove that & + 3 is a transformation semigroup.
Showthat v B = +B.

2.32 Find algebraic descriptions for the transformation semigroups & X

2.26 Let # =(Q, X, F) and consider /4 =(Q,XUQ, F) where F,(q)= ® and of » B where of and B are incomplete.

F,(q), Fy(q)=q' for q,q9'c Q, o € 2. Show that TS(#) = TS(H).
2.27 Let M be a state machine. Prove that
TS(AMY =TM(A).

2.33 Let & be given by

|-—-o—->0

N
then % =< 3. Show that if the semigroup of ¥ is S = {6, a7 0m, 10}
and the semigroup of 3 is T ={a, B} then the function £:S - T
given by £(o) = E(ro)=£0)=a, E(1)= &(or) =8, is not a semi-
group homomorphism.

2.28 o, B are transformation semigroups, show that
A B<AoB, (AB) s B".
2.29 Let A =(Q, S), B = (P, T) be transformation semigroups such that
QNP =@, We define the join of of and B tobe L vB =(QUP,
S v T) where the action * is defined by:
g*s=qs (qeQ,ses)
g*xt=0 (qeQ,teT)
p*s=0 (peP,ses)
p*t=pt (peP,teT)
q*0=02 (qeQ)
p*0=020 (peP)

Prove that of v ® is a transformation semigroup and that the join
is an associative product.



ST TS

3

Decompositions

The.previous chapter established that finite state machines and transfor-
mation semigroups are natural subjects for study and our next task is
to ini?iate the algebraic theory of these objects. As with other algebraic
the(fnes one approach is to replace a general state machine (or transfor-
mation semigroup)by a collection of ‘algebraically simpler’ machines (or
transformation semigroups) connected up in suitable ways. We have
already remarked that one distinguishing feature of this algebraic theory
compared to others is that we are more interested in what the machines
do than what they look like. Consequently we will be using the concept
of a covering rather than the concept of an isomorphism. The extra
flexibility allowed by this approach will be of great use to us.

Our main aim is the development of decomposition theorems. To
take the case of the finite state machines first, we will construct coverings
of a given state machine in such a way that the covering machine is a
product, either direct or cascade, of ‘simpler’ machines. So we will expect
statements of the form

M S.lv'l(:)].ﬂ.zwz e w,.-lJV,.

where M, ¥y, ..., N, are state machines and the connecting mappings
@y, ..., w, are defined suitably. Recall that the cascade product is a
generalization of the restricted direct product so that this type of
decomposition will be the most general. However if we can replace some
of the cascade products by restricted direct products we will do so
because this will yield a much more efficient covering. (The semigroup
of the covering machine will be smaller.)

Similarly we will attempt to derive coverings of transformation semi-
groups of the form A <B,0B,e...o B, where o, B,,..., B, are

Decompositions 77

transformation semigroups. To be valuable the transformation semi-
groups ®,, . .. , B, should have some desirable properties lacking in .
There will be a possibility of transferring from decompositions of state
machines to decompositions of transformation semigroups and vice
versa. Sometimes this process can be carried out without losing much
in the way of efficiency, but generally there will be a slight loss.

There are two basic ways of obtaining decompositions. One way
examines properties of the state set and for these decompositions it is
usually easiest to deal with state machines and state machine decomposi-
tions. The other approach is based on properties of the input set and
as these properties are usually expressed in terms of the semigroup of
the machine, it is the theory of transformation semigroups that will be
the most useful here. In the next chapter we will consider a decomposition
theory that uses both approaches and this is best examined using transfor-
mation semigroups.

First, however, we must find a relationship between the two
approaches to decomposition theories.

3.1 Decompositions

Let 4 be a state machine. A cascade decomposition for A is a
covering

M S./V,wl.ﬂ'zwz ves w.,_,./V,.
where M, ..., N, are state machines. Naturally it is easy to construct
trivial’ examples of such coverings, but we will only be interested in
those cases where the machines N}, ..., N, are in some sense simpler
than ; usually this means that the state sets of Ny,..., N, are all
ssmaller’ than the state set of # or the semigroups of the #3,..., N,
are ‘simpler’ than the semigroup of 4.

A decomposition of the form

MEN o Nzo. . 0Ny,
where 4, Vi, . . . , N, are state machines is called a wreath decomposition
of M. Clearly M =NiinN2wz ... 051Ny implies ML SN1oNz0...°N,

by exercise 2.18.
Now let & be a transformation semigroup, a wreath decomposition

for & is a covering
A=BioBse...oB,
where B®,,...,®, are transformation semigroups. In many cases the
semigroups of 3., . . ., B, are smaller than the semigroup of .
To compare the two concepts we need the following results.



78 Decompositions

Theorem 3.1.1

(i) Let 4 and & be state machines with 4 =W, then TS(#H) =<
TS(M).

(ii) Let o and ® be transformation semigroups with of <3, then
SM(HA) = SM(B).
Theorem 3.1.2

(i) Let M =N\ Nows...wn1N,_; be a cascade covering of
state machines, then

TS(HM) <TS(NV) e TS(N3) e .. o TS(N,)

is a wreath decomposition of transformation semigroups,

(ii) Let =B, 0 B,0..,.0B, be a wreath decomposition of transfor-
mation semigroups, then

SM(f) < SM(B,) o SM(B,) o ..o SM(B,)
is a wreath decomposition of state machines.
Theorem 3.1.3

() Let M sN ANMA...AN, . bea covering of state machines,
then

TS(H) sTS(Ny)X. .. X TS(H,)
is a covering of transformation semigroups.

(i) Let £ =B, xB,%...xB, be a covering of transformation semi-
groups, then

SM(sf) < SM(B,) x SM(B,) x. . . x SM(R,,)
is a covering of state machines.

We will prove theorem 3.1.1; the other two results follow from it and
results in chapter 2 using induction.

Proof of theorem 3.1.1
(i) Let 4=(Q,%,F), ¥=(Q", 2, F)and ¢:Q'»Q a partial
surjective function and £:X-3' a function. Let s € S(#), then s =[a]

for some a € £*. Put 8 = £(a) and consider the element t, =[BY e S(N\).
We will establish that ¢, covers s, for if q'€ Q then

¢(q'): s =¢(q) - [a]=(é(q")F.
€ ¢(q'Fega))
=¢(q'[B])
=¢@q - t).
Therefore TS(#) < TS(N).

Orthogonal partitions 79

(ii) Now let & =(Q, S), B =(Q’, T) and consider
SM(«#)=(Q, S, F), SM(®)=(Q", T, F)
where
qF,=qs forqeQ,seS
and
q'F.=q'tforq'eQ',teT.
Define a function ¢ : S+ T by
f(s) =1l

where 1, is a suitably chosen element of T that covers s € S.
Then, for ¢'€ Q’, s€ S we have

¢(q')F1 = ¢(q')s = ¢(q' : rs) = ¢(qIF,€(1))
and thus SM(#() = SM(¥). 0

We start our decomposition with some useful results involving state
machines.

3.2 Orthogonal partitions
Let # =(Q, 3, F) be a state machine and suppose that =
{H,}:c: is a non-trivial admissible partition on Q. We call 1 orthogonal
if there exists a non-trivial admissible partition r on Q such that
zNr=1q . '
If 7 ={K}es then we have |[H;NK|<1foranyiel, jelJ. N
Given an admissible partition  on Q it is easy to construct a partl.tlon
r on O such that 7 N 7 = 10, for example if H, is a wr-block of maximal

K, K, Kn,

Hill an q.)oooooooooool@

‘.)

’:: \q.n ngcooooooooooo y

: : E oocoo\
Hm @yko)oooooo

Figure 3.1. A general construction for 7.



80 Decompositions

order and H, ={q,, ..., qia,} We construct K, by selecting q1; and one
element from each other »-block. The block K is constructed from ¢,
plus a new element from every other w-block, and so on. We eventually
obtain a partition r = {K, K, . . ., K,,} satisfying 77 N 7 = 1o with 7 non-
trivial. However r may not be admissible. Note that 7 contains n, distinct
blocks. See figure 3.1.

Example 3.1
Consider the cyclic state machine # = (Q, X, F) defined by

and let 7 = {{0}, {1}, {2}, {3, 4, 5}}, then = is an admissible partition. Let
7 ={{0,1,2,3},{4},{5}} then wN+' =15 but 7’ is not admissible.
However 7 ={{0, 3}, {1, 4}, {2, 5}} is an admissible partition, rN7r=14
and = is thus orthogonal (of course so is 7!).

The existence of an orthogonal admissible partition is very valuable.

Theorem 3.2.1

Let # =(Q, 2, F) be a state machine and suppose that = is an
orthogonal admissible partition on Q. If 7 is a non-trivial admissible
partition on Q such that # N7 =1, then

M=M[mAM[r.

Proof Let 7w ={H}ier, 7 ={K}};cs and put
L={(H,K)enx7|HNK, =D}

Define a partial function ¢ : = X 7 > Q with domain L by
o(H,K))=q&H NK, ={q}).

Then ¢ maps a pair consisting of a w-block and a r-block to their

common element, if it exists. The state machine #/m7 A #/ 7 is defined
to be

(wx7,X,F")
where
(H, K))F; = (((H)F,})w [(K))F.).)

for H, e, K;e1, o €X; where [(H))F,]. is the w-block containing the
states (H))F, ={qF,|q € H} etc.

Orthogonal partitions 81

Now for (H, K;)eLandoceX
(¢(H, K))F,=qF,  where HiNK,={q}
€ (H)F, N(K)F,
< [(H)F,). N[(K)F,].

gF, = ¢ ((H)F, ). N[(K)F.)):)
=¢((H, K))F3) if qF , # &
and generally
qF, < ¢((H, K))F ) o

Corollary 3.2.2
TS(AH) < TS(M/mw) < TS(H/T)
= (TS(4))/ () x (TS(M))/(7)
The concept of an orthogonal admissible partition on a transformation
semigroup can be defined in an analogous fashion and it is then a
straightforward matter to deduce that if  is orthogonal on of =(Q, §)
then

oA < df(m)x /().

Example 3.2
Returning to our previous example (3.1) we see that

MMM T
where 4/ is given by

{0} —2— (1) —Z— (2} —2— (3,4.5) )0

and #/r is given by
7N
{2,5) =— {1,4)
In the notation of transformation semigroups
TS(M) = €.
TS(J“/‘IT) = %(1.3)
and
TS(H/7)=1;



82 Decompositions

and so
Con=<%€unxZs.

Example 3.3

Let 4 =(Q, X, F) be a state machine with the property that
[(Q)F,|=1 for all o€ X. Such machines are called reset machines. The
transformation semigroup of 4 is covered by (@, &) which is closed.
Now let 7 ={H,},c; be any partition of Q, then = is admissible, for if
o€Z, iel, then |(H))F,|=1 and so (H))F, < H, for some jeI. Con-
sequently all partitions of Q are admissible. If |Q|>1 let ¢, g2€ Q and
consider the partition 7 = {{q,, 9.}, Q\{q:, q2}} which has two blocks. It
is admissible and orthogonal; choose any partition 7 such that # N 7 = 14.
Then

MsMmx M7

Now 4/ has two states and is a reset machine. The state machine 4/
is also a reset machine and has fewer states than .. We can therefore
apply the process again to the state machine 4/ by choosing a partition
with two blocks and continuing as before. Eventually this process will
cease since |Q| is finite. We will then have established that .4 =<
NiXNaX, .. XN, where each ) is a two-state reset machine. For the
transformation semigroup case we have

TS(HM)=<(Q, D)sTS(WVy) XTS(NV,) X. .. X TS(N,,).
Each TS(&;) can be covered by 3 andso

TS() s (0, B)<3x3x...x3=[]3

where k =|Q|-1 and l'l" 2 means the direct product of k copies of the
transformation semigroup 2. In fact better decompositions exist for this
type of state machine. (See example 3.2.)

The results in theorems 3.1.1, 3.1.2, 3.1.3 have the obvious extensions
to transformation monoids and so we have

———— k -
T™U#)=(Q, O)y=[]2
where k =|Q|-1.
3.3 General admissible partitions
The next step is to examine the situation where 7 is an admissible

partition which is not necessarily orthogonal. First let max() indicate
the maximum size of a #-block.

General admissible partitions 83

Theorem 3.3.1

Let# =(Q, I, F)be astate machine and = = {H,},c; anon-trivial
admissible partition on Q. There exists a state machine &/ =(Q', X', F')
such that

M=NoM/

for some @ : 7 X2 -2 and |Q'| = max(sr).

Proof Againlet r ={K}};c; be a partition of Q satisfying wN 1=
1. Construct a state machine ¥/ = (Q', X', F') by putting

Q=1
S=gxX
and defining

(K))F ) =[(H,NK)F,]),
for each €2, Hiem, K,er. Define w =1y and consider the state
machine

NoM/r=(rxmZ, F)
where

(K H)F, = (K)F (1,00 [(H))Fola)

forceX, K;erandH e m.PutL ={(K,, H)|K;er,Hie m, K;N H, # &}.
Define ¢ : X7 Q to be the surjective partial function with domain
L given by

¢(K, H)=qK,NH ={q).
Now consider (K, H))e L, o € £ and note that

(¢(Klv m))Fo = qFo
where K;NH, ={q}.

Now (K; N\ H))F, ={qF,}<[(H))F,]. and since {gF,}<[(K; N H,)F,].

we have

[(KI nI'Ii)Fa]f n [(I'Il)Fa]w = {qu}-
Thus (¢ (K, H)))F, < (K, H))F,) in general. 0

Corollary 3.3.2
TS(M) <TS(N) o (TS(H))/(7).

Example 3.4
In a previous example (3.2) we obtained the state machine

o"l"z"Da

which we will now call 4.




i |

£
t
b
i
A

v T T e T

84 Decompositions

This has an admissible partition
w={{0},{1,2,3}}
Putting 7 = {{0, 1}, {2}, {3}} we see that 4/~ is given by

{0) ——= {1,2,3 )0

and & is given by

a

Vam )
{o.1) 5 {2) (3})‘,

w.here. a =(a, {0}), B =(a, {1, 2, 3}). For the transformation semigroup
sntuahor_l TS(H/ )= € and TS(V) <(%1.2))"- Now €(1.3)=< (€1.2) ° € and
Bz S30 €, 50 €upsIe€eC. '

The result in 3.3.2 is an indication both of the possibilities of finding
u.seful decompositions using an admissible partition 7 and of the limita-
tlon.s of this approach, because of the difficulties of determining the
femlgroup of TS(W). The choice of the partition 7 will have a major
influence on the ease of determining the semigroup of TS(#). In some
of our later results we will, in effect, make a suitable choice of 7 so that
TSV has a particularly desirable form. It is then often easier to construct
the covering of 3.3.2 directly rather than to calculate TS(A") and this is
the approach that we will usually take.

Let #£=(Q, 3, F) be a state machine, an admissible partition 7= =
{I-I,}fG 1 is called maximal if = is non-trivial and if 7 is any admissible
partftion with 7 =<7 <{Q)} then either 7= or r={Q}. So a maximal
partition is an admissible partition such that no strictly larger non-trivial
admissible partitions exist.
thA state ma.ch.ine N=(Q', T, F') is called irreducible if |Q’|>1 and
ext; :;;:Z ;i';l;s‘ble partitions on Q' are trivial (i.e. 1¢- and {Q'}). (See

Theorem 3.3.3
- Let 4 = (Q, I, F) be a state machine. 7 is a maximal admissible
partition on Q if and only if 4/ is irreducible.

Proof See exercise 3.3.

.t;.l’heorem 3.3.1 can now be applied to produce the irreducible decompo -
sition.

General admissible partitions 85

Theorem 3.3.4

Let A = (Q, 3, F) be any state machine, |Q|=m =2, then
MEN 0 Naw;z ... 0a 1 Nn

where Ny, ..., N, are irreduci'ble state machines each with state sets of
order less than m.

Proof Choose a maximal admissible partition = of Q, since
|0l # 1, and apply theorem 3.3.1, then 4 < NwAl/w for suitable A and
. The state set of ¥ is by construction of order equal to the size of the
largest m-block, which is less than m. Similarly 4/ has state set equal
to the number of distinct 7r-blocks, which is also less than m. Furthermore
M/ is irreducible by 3.3.3. Now apply 3.3.1 to the state machine ¥,
having first found a maximal admissible partition #' for #. Then

NsNo'N
and so

MEN O N7l
Continuing in this way the finiteness of m forces a halt and clearly all
the state machines in the decomposition are irreducible. If |Q| =2 then
AL is already irreducible. 0

Corollary 3.3.5
Let o = (Q, S) be any transformation semigroup with |Q|=m=
2, then
d591°wz°...°wn
where B, =(Q,, S;) are transformation semigroups satisfying
@ \01' <m

(ii) B, have no non-trivial admissible partitions.

Proof Apply the transformation semigroup process to the
decomposition of 3.3.4 noting that irreducible state machines give rise
to transformation semigroups satisfying condition (ii). u}

This decomposition is not as useful as it may appear, principally
because we do not have a clear idea of what irreducible state machines
look like. This problem will be examined in section 3.7 and the exercises.
However the study of irreducible state machines may well be of some
importance since many seem to arise naturally in applications. The
example in chapter 2 of astate machine arising from a metabolic pathway



86 Decompositions

is irreducible (and it may be that biological examples are generally

irreducible for reasons of stability).

Example 3.5
Consider the state machine 4 = (Q, £, F) given by

The partition 7 ={{1, 2}, {3}} is admissible and maximal. Choose r =
{{2, 3}, {1}}, then # N7 =14 but 7 is not admissible. Applying 3.3.1 we

obtain
M=NoMlnr
where M/ is given by

—~ 8
1.2} 45—— {3Da
and & is given by

@_ 3)4—&“}
ned 7

where o = (a, {1,. 2), r=(B,{1,2)), p = (a, {3}), 5 = (B, {3}). Both ¥ and
A/ m are irreducible. Converting to transformation semigroups we have

TS(H)<TS(N) - Z,
and since )

TSW)sZ,
we obtain

TSM)<sZ,-2,.
(Compare this with example 4.8.)

3.4 Permutation-reset machines

An important class of state machines are the permutation-reset
state machines. Let # =(Q, £, F) be a state machine with |Q|>1 and
suppose that for each o€ X either (Q)F, =Q or [(Q)F,|=1, then we
call # a permutation-reset machine. (Each input either defines a permuta-

Permutation-reset machines 87

tion of Q or a reset.) We shall see shortly how these arise naturally, but
in the meantime we will examine a method of decomposing them.

First we call a state machine 4 = (G, £, F) a permutation machine if
(Q)F;=Q for all Ge $. Thus each input gives a permutation of the
state machine.

Theorem 3.4.1
Let 4 be a permutation—reset machine then

M =N 0P

_ where & is a reset machine and ® is a permutation machine.

Proof Let #=(Q,Z, F) and put
0 ={reZ|(Q)F, = Q}
and

E={reI|(QF,|=1}
Define _G to be the subgroup of S(#) generated by ® and put P =
(G, 3, F) where

[a)Fy=[a8] for8e®,ac®*

[alFf:=[a] forfeE, ac®*
Let ¥ =(Q, G XX, F*) where qF oo = qF.Fe(F.) " if g=[aleG, a€
@*, ¢ E, q € Q. Now F, is a permutation of Q and so (F,)"" is defined,
furthermore |(Q)F&he|={(Q)F.Fe(F.)"|=1 since (Q)F.=Q and
|(Q)F¢| =1, and thus ¥ is a reset machine. The state machine /" consists
of the state machine & with the identity map lo adjoined. We thus
adjoin a new symbol A to the set G xS and ¥ = (Q, (G xZ)U{A}, F**)
where

qF e =aF o
forqe Q,geG, £ Eand

gFX* =q
for q € Q. Now define

w:GxT>GxTU{A}
by

(A ifre®
wlg. )= [(g, o) ifoeE.
We may now form the cascade product N @P; the state mapping of

this machine will be denoted by F*. The covering map ¢: QxG-Q



|

88 Decompositions

is defined by

¢(q,8)=4qF.
where g =[a]e G, q€ Q.
We must now establish the covering properties for ¢. First ¢ is clearly
surjective as G # & and F, is a permutation of Q. Now let o € ® and
(9, 8)e @ xG. If g =[a] where a € 8%, then

(¢(q, [a])F, = (qF,)F, = qF oo = $(q, [ac))
since ao € ®*. Hence
¢4, [aDF3) = $((qF {aron [a)Fy)
= ¢((¢, [ac))).
If ce = and (g, g)e Q %X G with g =[a] for a € ®* then
(#(q, [a]D)F, = (qF.)F, = qF,.
Also
é((q, [aDF?) = $(qF E21.00, [a]F,)
= ¢(qFaron [a])
= ¢(qF.F,(F,)",[a)])
=gF,F,(F.)"'F,
=qF.F, =qF,.

Hence in all cases (¢(q, [a]))F, € & ((q, [a])F?). 0

T!lis result can be interpreted in the language of transformation
semigroups and it is then possible to generalize it slightly. First we have:

Corollary 3.4.2

TSMHM)<TSWN)Y -4
where

G =S(#).

Proof This follows from 3.4.1 using the fact that & < SM(%).
(See 3.4.4.) ]

Theorem 3.4.3

Let of =(Q, S) be a transformation monoid and suppose that
G is the maximal subgroup of S. Then

A=(Q S\G)y-4%.

Permutation-reset machines 89

Proof We use the same covering map, namely ¢:QxG->Q
defined in 3.4.1, so that ¢(q, g)=qg (€ Q,g€ G). Now let s€ S and
we have two cases. If s€ G define f,: G-+ (S\G)U1o by f.(g)=1q for
geG.lfseS\G deﬁnef, G-+ (S\G)U1gbyf.(g)= gsg 'forge G. We
note that gsg™'e€S\G if seS\G, for letting gsg '=heG gives

s=g'hgeG.
Next we form the element k, € G defined by
k,=s ifseG

k,=1 ifseS\G.
Now we show that the pair of elements (£, k.) will cover s with respect
to ¢. Choose any q € Q, g€ G; then

¢(q,8) s=qsgs
and
. _ ¢(q' gs) ifseG
¢((q’ g) (fn k')) = {¢(qgsg_l’ g) if SE S\G
=qgs inboth cases.
Thus 6(q, 8)- sS (4, 8)- (fw k) forallqeQ,geG,ses. O

If we now turn our attention to permutation machines we have the
following result.

Theorem 3.4.4
Let 4 =(Q, I, F) be a permutation machine, then M <=SM(%)
where G is a finite group.

Proof Let G be the group of all permutations on the set Q.
Consider the state machine SM(%¥) = (G, G, F') where
eiF,=g18 forg, g.€G.
Define a covering function ¢ :G -~ Q as follows, let go€ Q be a fixed
element of Q, put ¢(g)=qoFa where g= ={a]e G. Now ¢ is surjective.
Let p:Z- G be defined by p(0) = =[o)foroel.
Given
oe3, g€ G, ¢(g)F,=qoF.F, whereg=[a]
=qoFao
c ¢([ac))
=¢([a ]FEvl)
=o(gF ;(v))
as required. 0



o g

e e o o b oo e o

90 Decompositions

Since the group G may be rather larger than S(.#) we may find the
next result more useful.

Theorem 3.4.5
Let # be a permutation machine, then

TS(M)=2-9 where M =(Q,3, F)and G =S(H).

Proof Apply corollary 3.4.2; then TS(WV)=
Yol M =(Q, J) ang

Example 3.6
Consider the state machine # = (Q, X, F) defined by

where = = {o, 7}, @={0, 1, 2}. This is a permutation-reset machine. In
the notation of 3.4.1 # =(Z,,3, F) is given by

Cop”

fC[o’] — [a]Dr

where Z, = {[1], [¢], [#°]).
N =(Q, (Z3xZ)U{A}, F**) is a reset machine given by the table

0 1 2
A 0 1 2
(1), 0) @ 7] 7]
{13 & 0 {7/}
(o), o) (7] (7] /]
([01. ) 2 2 o
([02], o) 2 %] %]
(e, 7 2 1 @

Group machines 91

In transformation semigroups
TS(H) < TSN « TS(P)
s(2Zx2yz,
since TS(V)<2x2 and TS(P)<Zs.

3.5 Group machines

The last result brings us into the world of group machines. As
we have seen, given any finite group G we can construct a transformation
semigroup ¥ =(G, G) and a state machine SM(%) = (G, G, F') where
g1F, = g1g for g, g1 € G. This state machine is called the state machine
defined by G.

For the moment it is more natural to use the transformation group
terminology. Suppose that H is a subgroup of G, we define a partition
on G by using the set of distinct right cosets {Hg | g € G}. It is immediate
that this is an admissible partition since Hg - g1= Hggi € m for Hgern
and g; € G. Consequently we can construct the quotient transformation
semigroup %/ . This has state set equal to = or in another terminology
G/H (although we should not assume that H is a normal subgroup of
G: we are just regarding G/H as a set, the set of right cosets of H in
G, and not as a group). The semigroup of G/ consists of all the distinct
mappings of G/ H into G/H induced by elements of G. Define a relation
~on G by

g1~ 82¢>Hgg, = Hgg, forallHge G/H.

So
gi~g2>g€g 'Hgg, foraligeG
e g 'Hg" g
ge G

PutH® = MN,eo g 'HgthenH G is a subgroup of G and is clearly normal
in G.

Lemma 3.5.1
If H < G and ~ is defined on G by

g1~ g246>Hgg, = Hgg, forallHge G/H

then ~ is an equivalence relation and the partition of ~ equals the
partition consisting of the right cosets of H % =MN,ec8 'Hgin G.

Proof Clearly if g1, g2€ G and g1 ~g2 then g€ H g and so
H g, =HCg,. Now let Hg,=H Gg,, then g1€ HCg, 80 g€ g~ Hgga



92 Decompositions

for all g e G and thus gg, € Hgg,. Therefore gg, = hgg, for some he H
and Hgg: = Hhgg, = Hggy, giving g1~ ga. 0

.We can now write %/ as the transformation group (G/H, G/H°)
with the action of the group G/H® on the set G/H given by
Hg» H, = Hgg, for 8 21€G.

It is clear that this action is well-defined and faithful. We now proceed
to the central result of this section, namely:

Theorem 3.5.2
Let H be a subgroup of the finite group G, then
$=<%-(G/H,G/H®).

Proof Let us fix the coset representatives so that
G =Hg,UHg,U...UHg, (say).

Deﬁne. a function ¢ :H xG/H - G by ¢(h, Hg,) = hg, for h € H,
Hg,eG/H (;ytﬁl:m is clearly surjective. Given ge G we must find a pair
(fo So) € 1(13 XG/H®, that is a map f,: G/H-H and an element
s, € G/H®, which covers g.

First we put s, = H .
If Hg, € G/H then Hgg = Hg, for some 1<k =<n and !

. gg =h'g, for
sox'ne h’e H. Define f,(Hg;) = h’ where gg = h'g:. The choice of A is
unique because we have fixed the representatives 81y 8n CON-
sequently we can define the function f, : G/H - H as required.

Now for (h, Hg,)e H x G/H and g € G we get

¢(h, Hg,)g = hgg
and

&((h, Hg)(fp, 50)) = & (hf, (Hg,), Hg H °g)

=@ (hh', Hg:)
where gig = h'g, and Hg,g = Hg,,

=hh'g, = hgg.
Therefore ¢ is a covering. g

Notice thatif H ={h;,..., hm}and K ={g, ..., g,} then the collection
of subsets 7 ={h,K, hK, ..., hnK} is a partition, for if , K NhK = O
then x € K NhK > x = hg = hyg, for g, g, € K so Hg, N Hg, # & and
thus g, =g, and h, = h,

This partition = has the property that # N7 =14 for hK NHg, =
{h, - g} and there are n-m such distinct singletons. The order of

Group machines 93

G =|H|-|G/H|=m - n and so the partitions intersect in the identity.
Consequently we could also use theorem 3.3.1 and corollary 3.3.2 which
would eventually lead to the above result.

Corollary 3.5.3
It H is a normal subgroup of G then

G=H-Y/X.

Proof This follows because G/H is now a group and H = H,
therefore

(G/H,G/H®)=(G/H,G/H)=9%/¥. 0

Let G be a finite group, then G possesses a composition series
G=G,2Gn12...2G12Go={1} where G;_, is a normal subgroup
of G, and G;/G,_, is a simple group, fori =1,..., n. Using this fact and
applying corollary 3.5.3 repeatedly we obtain the following important
result:

Theorem 3.5.4

Let G be a finite group. There exist simple groups K3, ..., K,
such that

G=Hye...c X,
and

¥<9 fori=1,...,n

Proof Clearly 4<%9,_,° %,/9.-1 where %./%,-1 is simple, so
we put ¥, = 9./ 9., and note that the canonical epimorphism of groups
¢ :G, > G,/G,-, is a covering X, <4, Now 4,1 <%.-2°9,-1/%n-2
and as before if we put ¥, -1 = 9,1/ %a -2 it is clear that X1 =9,_.<9%,
and 9<%, _,° X, ° ¥,. Continuing in this way completes the process.

0
Recapping the results of these last two sections we have established:

Theorem 3.5.5
Let 4 be a permutation-reset machine, then
TSHM)s A osdro.. .o Hm
where A is of the form ﬂ" 3 and o, = ¥, with %, a simple group such
that %, < 9, where G =S(A).



94 Decompositions

Proof First we use corollary 3.4.2 to obtain

TS(H) =TSNy ¥
where G =S$(4). Now TS(¥) =< (Q, D) <[]*2 where k =|Q|-1 and
Q is the state set of # by example 3.3.

Now §=¥, ... ¥, where each K, is a simple group such that %, < ¢
fori=1,...,n. 0

From chapter 2, the statement %, < ¢ is the same as K, divides G.

3.6 Connected transformation semigroups
A connected transformation semigroup o = (Q, ) is a transfor-
mation semigroup such that given g, q, € Q there exists se § satisfying
q1=gs. If £ =(Q, G) is a transformation group then & is connected if
and only if G is a transitive permutation group acting on Q.
A state machine 4 is connected if its transformation semigroup TS(4)
is connected.
Connectedness is a useful property which we will now investigate,
A connected reset machine is closed and a connected permutation
machine can be covered by the group machine defined by the group of

the original machine rather than the group of all permutations of the
~ states.

Theorem 3.6.1
Let # = (Q, £, F) be a connected machine.
(i) If A is a reset machine then TS(#) = (O, D).
(ii) If 4 is a permutation machine then
M =SM(9)
where G = S(#) and
TSUH)< .

(iii) If o =(Q, G) is a connected transformation group then
A<4

Proof (i) is immediate.
(i) Consider the function ¢ : G » Q defined by
¢(8 ) = 40 F @
where qq is a fixed element of Q and [a]=geS(#). (We used this

function in the proof of 3.4.4 but with G equal to the group of all
permutations of Q.) Then ¢ is surjective because of the connectivity of

Connected transformation semigroups 95

AL The rest of the proof of 3.4.4 can be adapted to this situation and
we see that ¢ is thus a covering. q
(iii) This is similar to (ii).

We now examine connected transformation groups in more det.ail.
These are transitive permutation groups. Suppose that & = (Q, G)ols. a
connected transformation group and let 7 ={H};c; be a non-trivial
admissible partition on &. Consider a ar-block H,, then, given g € G, we
have

H,-g<H; forsomejel
Suppose that g€ H,N Hg then ge HiNH; 2> H, = H,. Therefore = =
{H}ier is a primitive block system of the permutation group (O,OQ).
Consequently G is an imprimitive permutation group as G is transitive
and 7 is non-trivial.

Let H,={qi,...,4q.} be a w-block and define K ={q € G|H.g = I:Il}.
Then K is a subgroup of G. Suppose that Kg;, . . ., Kg, is a set of distinct
right cosets of K in G such that

G=U)Kg and KgNKg=0 ifj#l.
i=1
Define

Li={q:181, 9182, - - - » 018s}
L,={q281, 9282, - - - » 428s}

L. ={q.81,982 . .-,9:8}

and put r={L,, L, ..., L,}. We note that r isa partit.ior.l of Q for if
L/NL;#J then we can find qg =qgm for suitable- ‘x, Jr l., m: Th.en
q= q,(g...g?')e HN H,(g,,.g,") and so Hy = H,fg,,.g, ) which .lmphes
that g.gr' €K and so Kgm =Kg, m=1land i=/. Furthermore if g€ Q
then there exists g€ G such that g = q,8. Now g = kg, for some keK
andje{l,...,s}, thusq=qkg. But g1k =q; forsomeie{l,...,r}and
80 q = q.g; € L. This establishes that 7 is a partition of O.‘

Now let H, € 7 and suppose that q € H,. Then there exists g € G such
that g =q,8 and as g =kg. for some mef{l,...,s} we see that g=
g1kgm € Higm. Therefore Hygm € H, and conversely H, < Higm. Hencif
H, = H,g. and we may write 7 as {Hg1, .. ., Hig.}. Now Higm N L, -(-i
{qngm} and so w N 7= 1o. We can now apply the procedux:e of 3.3..1 an
3.3.2 to this situation. First we calculate the transfon:matlon semigroup
of/(=). Each permutation g€ G induces a permutation of the m-block



i ot |

TR Py

96 Decompositions

which we will denote by §. These mappings form a permutation group
G on the set 7 and the mapping 0: G - G defined by 6(g) =g for ge G
is clearly a homomorphism. The kernel, N of 4, is the subgroup of all
permutations in G that fix all the #-blocks, that is ge N if and only if
Hig = H, for all i € I. It is fairly easy to see that

sf(m)=(mw, G/N).

Instead of now calculating the transformation semigroup corresponding
to the state machine & of 3.3.1 we will deduce the required result

directly. First define

Ku,={geK|qg=q forallie{1,...,r}).
Then Ky, is a normal subgroup of K. Consider the transformation group
(7, K/ Ky,) with the operation definedby L, - Ky, * k =L, where g,k =g,
andn,pe{l,...,r}and k € K. This operation is faithful for if LK.k =
L.Kuk'forallne{l,...,r}then

qek =quk' forallnef(l,..., r}
and so
k(k')'eKy, and Kuk=Kuk'
We now establish the following result:
(Q, G)=(7,K/Kp,) ° (m, G/N).
Let ¢ : 7 X - Q be defined by
¢ (Ln, ngm) = qn8m forL, e, ngm € .

Given ge G define the pair (f, Ng)e(K/Ku,)" X G/N by putting
[e(H18m) = Ku,k where g,.g = kg, for a unique ke K and ie{1,..., s}).
Then

¢ (Lafo(Higm), HigmNg) = ¢ (L.Kn,k, Higmg)
= ¢(Ly, H1gi)
where q, = q.k and g,.g = kg;
=i
=q.kgi
= GnBm8-
Furthermore ¢(L,, Hign) * g = qugmg and so ¢ is a covering map. We
restate this result in the following way.
Theorem 3.6.2

(Dilger [1976)) Let o =(Q, G) be a connected transformation
group and 7 a non-trivial admissible partition on Q. Then

o = (7, K/Kw,) * (m, G/N).

Connected transformation semigroups 97

Corollary 3.6.3
A<H| Ky, 9N

Proof Notice that both (r, K/Ky,) and (#, G/N) are connected
transformation groups and so we may apply theorem 3.6.1(iii). 0

Another useful fact is that both 4/~ <% and X/ Hy,<9by24.2.

Example 3.7
Consider the following state machine

This yields a transformation group which is connected and posfesses a
non-trivial admissible partition, namely = = {{1, 2}, {3, 4}}. We will apply
theorem 3.6.2. First we construct s#/(w), this is given by

1.2} —= {3.4}
y y

ich is isomorphic to Z.

Wh::\\: let H,r=p {1, 2} and consider K ={g e G|H:g = Hi}. The only
inputs that can preserve H, in this way are the identity and powers.of
+. Since x2 =1 we have K ={1, x}. Put G = Kg:UKgU...UKg,, with
gi=1.Clearly g;=y is another coset representative and so

L|={1' 1,1')’,1 ~g3,...,1-g,}={1,3,....}

L2={2' 1,2' y,2-g;,...,2-g,}={2,4,....}
and this exhausts Q = {1, 2, 3, 4} and so there are two cosets of K in G
and r={{1, 3}, {2, 4}}. Further K, = {1} and (, K/K#,) is given by

* L e{2.4)

1N
1.3}
again isomorphic to Z,. Thus (Q, G)=Zz° Z,.



i

98 Decompositions

We have not actually calculated G but it is easily seen to be isomorphic
to the Klein four-group V. Using a combination of theorems 3.6.1(ii)
and 3.5.5 we can obtain the same decomposition, namely

(Q.G)=@, V)<Y
and
‘VS Zz o zz

since {1} Z, < V is a composition series with V/Z,=2,. However this
approach does require a knowledge of the group G of the original
machine. This may be large and cumbersome to evaluate and there are
distinct advantages in using theorem 3.6.2. In Dilger [1976] an example
illustrating this point can be found. If either of the transformation groups

(r, K/Ky,) or (m, G/N) are imprimitive the theorem can be applied
further.

3.7 Automorphism decompositions

Let & =(Q, §) be a transformation semigroup and let AutsQ
denote the set of all automorphisms of sf. Thus v:Q- Q belongs to
AutsQ if and only if y is bijective and v(qs)=v(q) - s for all qe Q,
s € 8. The identity function 15:Q» Q always belongs to AutsQ, it may
be the only element. The pair o*=(Q, AutsQ) is a transformation
group under the action defined by

9y =7v(q) forqeQ, yeAutsQ,

where the set AutsQ is a group under the operation * defined by
(r*r)@) =7(y(q) forallge Q; v, y, eT.

Theorem 3.7.1

Let of = (Q, ) be a transformation semigroup and suppose that

I'=AutsQ. If T #{1} and 7 = {H,}.; is a set of distinct orbits of Q under
I' then 7 is an admissible partition.

Proof Let H, e , and suppose that ge H,. If s € S then gs €H;
for some je I Now let q'e H; then q' = y(q) for some yeT and q's=
¥(q)s = y(gs) which shows that q's € H;. Hence His © H; as required. O

Corollary 3.7.2
If o =(Q,S) is an irreducible transformation semigroup and
AutsQ # {1} then o* is a connected transformation group.

Automorphism decompositions 99

Proof The set of distinct orbits must consist of just one orbit,
that is AutsQ is transitive on Q. 8]

From exercise 3.5, AutsQ is a primitive permutation group on Q.

Theorem 3.7.3 . .
Let o = (A, S) be an irreducible transformation semigroup with

AutsQ # {1} then o <Z, where p is a prime number and Ql=p.

Proof We have established that of* =(Q, I') is a transitive per-
mutation group where I' = AutsQ. Let H, be a subgroup of I'and supposf:
that {1}# H, g I. Define the relation ~ on Q by ¢~¢" if and ?nl.y if
q' = h(q) for some h € H,. This equivalence relation defines an admissible
partition  on of since ¢~q' and s€ S implies that g's = h(q)s = h(qs)
and so gs ~q's. But o is irreducible and so = = 1o or w ={Q}. The first
conclusion leads to H;={1} and is excluded. Either I' has no proper
subgroups apart from {1} and is thus cyclic of prime order or o1 =
(Q,H,) is a transitive permutation group. Now let H, be a proper
non-trivial subgroup of H; and repeat the process. Again either H>={1}
or ¥ =(Q, H>) is a transitive permutation group. Eventually we re:ch
the position where there exists a transitive permutation gr.oup A7 =
(Q,Z,) where p is a prime number. We construct the covering # <7,

as follows. Let o€ Q be fixed and define ¢ :Z, > Q by

¢(g)=qog forgeZ,
This is surjective since Z, is transitive on Q. For s€ S we define the
element h,€Z, by qos =qoh, and then &(g)-s=(qog)s = g(qos) =
g(qohs) = g(hs(qo)) = B (gh,) = b (hg)=d(g * h,) as Z, is a§ellan-
Thus o <Z, with h, covering s. Finally |Q|=p and if g€ Q then
{g€Z,lqg =q}={1} and so Q=qZ, implies that |Q|=p. (Note thx‘:]t
|@]#1 as AutsQ #{1}.)

This last result is a special case of the following theorem (Krohn,
Langer & Rhodes [1967]).

Theorem 3.7.4 ' .
Let & =(Q, S) be a connected transformation semigroup and

suppose that I' = AutsQ. If I' # {1} then
A <T o s/(m)



