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where 7 is the set of distinct orbits of Q defined by I, and I is the
transformation group defined by I'.

Proof Let Q=K,U...UK, be the decomposition of Q into
the orbits defined by I', and let k; € K; be fixed orbit representatives.
Then Q =, kiT". The elements of " act as fixed point free permuta-
tions of Q, for if yeT, gy =q and we choose any g'€ Q then q'=gs
for some s € S and q'y = gsy = qys = gs = q' which makes y equal to 1.
The partition 7 ={k;I'},,.... is admissible. Putting K ={k,,..., k.},
I'={y1,..., 7.} and using the fact that the elements of I" are fixed point
free, we see that 7 ={Ky,,..., Kv,} is another partition satisfying the
relationship = N7 =1o. We can then apply 3.3.2 to obtain a covering
of A. However it is quicker to proceed directly.

Let ¢ :I'x 7w > Q be defined by

¢(v, kD) =ky' foryel, ke

This is a surjective function onto Q. Now choose any s € S, then s defines
an element [s] of the semigroup of of/(w). Let f, : w - I" be the function
defined by

fitkl)=5"

where k;s € K¥ for a unique 7 €T
Now choose s€ S, yeT', k,I"e 7 then

& (7, kD) fo [s])) = & (v * f.(k,T), k,TTs])
=¢(y>(#) ", kI) where ks = k7
=k(y*(H™H"
=kgy .

Also ¢(v,kNs=kiy 's=kisy '=kyy™' and this establishes the
required covering. 0

To extend this result to transformation semigroups which are not
connected we introduce the following concept due to Shibata [1972).
Let of =(Q, S) be a transformation semigroup and suppose that & »
Q' < Q satisfies the condition that given q', q1 € Q there exist s, s'e S
such that g1 =q's and q' =q}s’. We call Q' a connected subset of Q A
stage of Q is a maximal connected subset. Suppose that
Qo=Q,U...UQ,

is a disjoint union of stages of Q, we call this a stage description of Q.
Generally it is possible that QSZ Q, for some i€{l,..., n}, however
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in the situation where QS < Q, for each i €{1,. .., n} we may establish
the following result.

Theorem 3.7.5

Let o =(Q,S) be a transformation semigroup and Q=
Q,U...UQ, a stage description of Q. Suppose that QS < Q, for ea.ch
ie{l,...,n). Let I'=AutsQ and N=£yel‘|0;y=0, for each i=
1,...,n). Foreachi€{l,...,n}define G ={yel‘|0ﬂ=q,} and G, .
{ylo,| v € G}, that is the elements of G; are the automorp.hlsms of Qin
G, restricted to Q,. Each stage Q; generates a transformfmon semigroup
o, =(Q, S} where S; is a quotient semigroup of S, i=1,....n an.d
G[ - Allts‘01 fori=1,...,n Let Q= q”G, uU.. anlr‘G[ be an orbit
decomposition for Q; with respect to G (i=1,...,n). Put

=0 UG
This is an admissible partition on Q and

A=sNodl(m).

Proof G, < Auts,Q, is immediate. Let h € Auts,Q, then h;: Qi >
Q.. Define 1:Q» Q by

hi(q) ifqeQ
q otherwise.

@)=

It is clear that /eT" and in fact /€ G, and h, = l|g,. Thus h; € G,. Now let
q,G.€ m and s € S, then qys € Q; and 50 ;s = qu for some gf €G; ?nd
ke{l,...,n}). Then q,Gis = 45G: = qu8G: = quG:. Hence m is admiss-
ible. We now establish the covering £ =¥ o f/(m). Let ¢ :N X7~ Q
be defined by

é(n, q,G)= q:;"—l
where n €N, q,G; € m. For s € S define [s] to be the element (_)f S(st/ (w?)
induced by s and define f,: 7> N by f.(q,G) =1 where 7:Q->Q is
defined by

_ (qg' ifqeQandqs=qg forgieGytell,...,n}
"= [q otherwise.

Now for ne N, q,G € m, s€S we have

&(n, ,G))s = qun"'s = QIIS"—‘
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and

&((n, 4G ) fs £3))]
=¢(n+#,q,G) whereqys =qug and gii = qg; "' forqe Q,
=qu(n * ﬁ)-l
== q::(ﬁ)-l"-l
=qysgi " (@) 'n”
=qun”" asrequired. 0

Further results are possible in this direction but we will now turn our
attention to a final method of decomposing transformation semigroups
and state machines.

3.8 Admissible subset system decompositions
There is a natural generalization of the concept of an admissible
partition of a state machine.

Let 4 =(Q, I, F) be a state machine and suppose that = ={H,},c; is
a collection of subsets of Q such that Q ={J,.,H; andif ieI and r e
there is j € I with (H))F, c H;.

We call = an admissible subset system for Q. This definition is very
similar to the definition of an admissible partition, but we no longer
require the collection {H;};c; to be mutually disjoint. (An admissible
subset system for a transformation semigroup is defined analogously, so
that if of = (Q, ) and 7 ={H};; then Q =, H, and given i€ I, s S
there exists j e I satisfying H,s ¢ H,.) Notice that if ie I and o € X then
there may be more than one element j € I such that (H,)F, < H, so the
uniqueness property associated with admissible partitions no longer
applies in this situation. We can however construct a decomposition of
A using an admissible subset system.

For each i eI and o € 2 choose an element

ju,o)el
such that
(H)F, = Hy.0)-
Now construct a machine #* = (Q*, £, F*) where
Q*={(g, H)|qeH,iel}
and
(9, H)F g =(qF, Hyy.00).
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Define a partition #* on #* by
n*={(H, H)\|iel}.
This is an admissible partition on #* since
(H, H)F? < (Hjy.o» Hii.0)
foroel, iel

We are now in a position to prove our last decomposition result. As
before we use max(w) to indicate the size of a maximal -block.

Theorem 3.8.1 .
Let M = (0, Z, F) be a state machine and = = {H}ic1 an admiss-
ible subset system on Q. There is a state machine ¥ =(Q', 2', F') such

that
M<NoM*/m* and |Q'|=max(m).

Proof First we note that theorem 3.3.1 can be applied to the
state machine #* and so #* = NwM*/m* for some state machine N.
Next note that 4 <.#* under the covering ¢:Q*-+Q defined by
¢(q. H)=q for each (g, H)e Q*. Then (¢(q, H))F,<=qF. and
&((q, H)F*) = ¢((qFs Hyu.0)) = F, for o €%, (q, H)) € Q*. Thus A E
M= NoM* [ m*.

Corollary 3.8.2
TS(H) s TSWV) o TS(HU™* /%)

Example 3.8
Consider the state machine 4 given by

X

| ——2

X

y
4
Oy,
Let Hl ={1, 2, 3}, H2={2, 3, 4}, Hg ={1, 3, 4} and = {H], H‘z, Hg}
Then
(H)F. = {2, 3}, (H2)F, = {3}, (H3)F, ={2,3},
(H)F, ={1,3,4}, (Ho)F, ={1,4}, (H3)F,={1,3, 4}.
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Therefore n is an admissible subset system. Let us define
i,x)=2,j2,x)=3,(3,x)=1,
i1, ¥)=3,j2,y)=3,j3,y)=3,

then an #* may be defined.

Notice however that the semigroup of .#* is not equal to the semigroup
of A, *for Fa=F,2 yet (1,H,)F¥=Q2,H)Ff=3,H,) and
Q, Hl)Fyx.’ =@3,H))F52=(3,H)Ff =(3,H,;) and so F},»F%.
However, in general S(#) is a quotient of S(#*) since FX = F} > F, =F,
fora, BeX*. ?

The last result can now be applied to obtain a decomposition of an
arbitrary state machine.

Let #4=(Q,%,F) be a state machine with |Q|=n. Put 7=
{H.G.Q(O).HH | =n -1} where 2(Q) denotes the set of all subsets of Q.
'1.'hls is a finite collection of proper subsets of Q and it is clearly admissible
since [(H)F,| = n—1for any o € X and for any H € 7 and so (H)F, c H'
for some H'e . Then M < NwoM*[m* where ¥ has n —1 states by 3.8.1.
?Xow either |(Q)F,|=n or |(Q)F,|<n for each o ¢ T and so either the
m|:ut c:ei. permutes the elements of Q and is thus a permutation in
M*/7* or (Q)F, < H for some H € m which implies that o acts as a

:‘es:t for #*/n*. Thus #*/%* is a permutation-reset machine. This
eads to:

Theorem 3.8.3
Let A be a state machine, then

M SQ“«MQ;&); s Wn1Pp

where each P, is a permutation-reset machine of smaller state size
than /.

o Proof We simply apply the above process, first putting P, =
A*/7n* and then applying it again to A and continue in this way. 0

Theorem 3.8.4
Let 4 be a state machine, then
M= 910)192(02 e (0,._19,.

where each @, is either
(i) asimple grouplike machine, or
(ii) a two-state reset machine.

Proof We combine 3.8.3 with 3.5.6. g
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Corollary 3.8.5

Let o/ =(Q,S) be a transformation semigroup, then £ =<
B0 B,o...o B, where each B, is either

(i) of the form ¥, for some simple group G;, or

(ii) a finite direct product of 2.

Proof Apply 3.8.4 to SM(#) to get
SM(d) = 9:,«.)19.'2«:2 e w,.-,&'..
of = TS(SM(H)) < TS(@1) e TSE2) 0. . . e TS(X,)

and if 2, is a two-state reset machine then TS(Z;) = 3 andif , is asimple
grouplike machine defined by the simple group G then TS(Z)<%. O

This theorem is a special case of the Krohn-Rhodes theorem. We do
not, as yet, know much about the simple groups that arise in the
decomposition, in fact they divide the semigroup of the original machine,
but the proof of this is a little involved. Furthermore the construction
of the decomposition outlined in the above is very inefficient, much
simpler and more practical decompositions are available. We will study
these in chapter 4.

3.9 Complexity

If we start with an arbitrary transformation semigroup & =
(Q, S) we can cover & with a wreath product involving transformation
groups and transformation semigroups of reset machines. These latter
transformation semigroups can be covered by direct products of the
transformation semigroup 2' by 3.5.6. We introduce a class of trans-
formation semigroups that is a generalization of the class of reset
transformation semigroups. A transformation semigroup A=(Q,S)
is aperiodic if

dA=sToFo,. o2
that is if of can be covered by a finite wreath product of the transforma-
tion semigroup 2".

Now the proofs of 3.8.4 and 3.8.5 allow us to deduce that any

transformation semigroup can be covered by a wreath product involving
two types of transformation semigroups, namely

transformation groups of the form ¢
and
aperiodic transformation semigroups.
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Suppose that
. d=(0,s)anddsdl°gl°d2°gz°...°dk°gk°dk+|

where G,, ..., Gy are groups and &y, . .., ;. are aperiodic transfor-
mation semigroups. Such a decomposition can be found using 3.8.5 but
it may not be the only such decomposition involving groups and aperiodic
transformation semigroups. The smallest value of k arising from such a
decomposition is an indication of how complicated # is.

We define the complexity of s, C(f) to be the smallest integer k such
that

d5d1°gl°...°dg°gk°dk+|

is a decomposition with the &, aperiodic and the G; groups.

A natural convention would be to define the complexity of & to be
zero if o is aperiodic.

The groups G,,..., G, arising in the decomposition are free from
any restrictions, they need not be simple nor divisors of S.

Notice that 1' is aperiodic and for any transformation semigroup &
we have o =1"c of = of o 1". Thus the complexity of a transformation
group % does not exceed 1 since Y10 %o1".

Example 3.9

From examples 3.2 and 3.4 we see that the cyclic transformation
semigroup €33, <[(2 o €) » €]x Z,. Since the transformation semigroup
€ <2 we have €33, <, XZ; and so the complexity C(€33,) =1.

From example 3.5 this transformation semigroup is covered by Z, - Z,,
and Z, <32 ¢ Z, by 3.4.2 so we have complexity of at most 1.

Finally example 3.6 yields the covering by

(Zx2yoZy,<(ZTx2)e2,s
again of complexity of at most 1,

One basic problem with calculating the complexity of a transformation
semigroup is that, while it is usually easy enough to find upper bounds
by describing a suitable decomposition, it is often far from easy to
establish that no shorter such decompositions exist. Our first result in
this direction will be to show that if G is any non-trivial group then
C9=1.

To achieve this we will assume that C(%) =0, that is ¥ is aperiodic.
We first need the following result.

Theorem 3.9.1

Let o = (Q, S) be aperiodic and complete, there exists an integer
n=0such that s"*'=s" forall se S.
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Proof We first establish that if o =3 then s>=s for all s€S.
Suppose that 3 = (R, U) and ¢ : R - Q is the covering partial function.
Let s € S, then there exists u € U such that

o(r)sco(ru) forallreR.

Let q € Q, there exists r € R such that g = ¢(r), then gs : d(r)s=¢ .(m)
since o is complete. Now qs2 =¢(r) - ss = ¢(ru)s = d(ru”) = ¢(ru) since
u*=uforallueU.

Thus qs> = gs and since q is arbitrary s?=s5. Now let us assume that
if £=<(2)" thatis if # <2 o...o2 where there are k elements in the
product, then

s¥*1=5* forallseS.

Suppose that of <(2)**', we will show that PRkt lad forks‘eS. kLet
A=®B o3 where B=(P, T)=(2)". We know that for re T, r**"=¢". If
& : P X R - Q is the covering partial function and for s € S we have (f,, u,)
covering s with f,: R - T, then &(p, r)s = ((p, r)(fw us)). Choose any
q € Q, there exist pe P, re R with q =& (p, r). Let s €S, then
qsk+2 = ¢(P, r)sk+2

=P, N fo ts)) - s**

= &(pfu(r), ru)s**!

= ¢ (pfu() - fulru), rusu,)s®

= ¢(pf,(Nf.(ru,), ru,)s*

1

= ¢ (pf.(N(fu(ru )<, ru,)
= ¢ (pf (Nfilru)), ruy)

= ¢ (pf.(r), ru,)s*
=¢(p,Ns*"

= qsk+l .

k+2 k+1
Hence s**>=s""".

The result now follows by induction. |

Corollary 3.9.2
Let G be a group. If G # {1} then

C(9)=1.

Proof We have C(9)<1. Let C(%) =0, then ¥ is aperiodic and
so there exists n =0 such that g"*'=g" for all g€ G. Then g= 1, 6
contradiction.
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Theorem 3.9.3
Let o =(Q, S), B = (P, T) be transformation semigroups.
(i) If of =B then C(of) =< C(R).
(ii) C(oA o B)=<C(sf)+C(R).
(iii) C(o x B) < max{C(s), C(B)}.
(iv) If m is an admissible partition on & then C(sf/(7r)) = C(o).
(v) If 7 and 7 are orthogonal partitions on &f with # N7 =19
then C(sf/{m)) = C(«) or C(s£/(7)) = C(A).

Proof (i) Let C(B)=n, then Bsof,0G,0...09, 0, with
the G; groups and the of; aperiodic transformation semigroups. Clearly
dﬁQS.al,o@lo...o@,.o +1 and so C(A)=n.

(ii) Let C(sf)=n, C(B)=m, then

A<di090...08,0o4,,,

B<sA)oGio.. oG cdimi
wl:ere Gi,...,G. Gi,...,G., are groups and ofy,...,Hnu

1+ oo s A msy are aperiodic. ’
) Now d°gsd1°gl°...°g"°dn+|°d,1 °g,1 °o--°g:n°d:n+l and
since o, ° &} is aperiodic we have C(f o B)<sn +m.
(iii) Let max{C(s), C(B)}=n, and for the sake of ar
;] 'y m t
C(H)=nC(B)=m=n. Bument et
Now
d5d1°gl°...°g"° n+l
B<so)obio...co€G, 0ol

and
AXBs (A 0Gro...0G o, )X(A oG 0...0G ool i)
s xd)e[(Gro...0oG, 0 Hnsy)
X(G1o...09,, 0]
< (X A1) o (G X9 o[(Hz0...0 G, 0 Hpsy)
X(Hs0...0Gm ol )]
(st X dy)o (G X G) e (Ao xA3)o. ..o (GnXF)
°(dm+lxd:n+l)°gm+l° mi2°. 0.0 G 05,4y
and so C(A X B)<n.

(iv) Since s#/{w) = o we have C(sf/{(mr))=< C(sf) by (i).

(v) A <st/(m)x4/(7) and s0 C(f) < max(C(s#/{wr)), C(s4/(7}))). But
C(/(m)) s C(A) and C(#/(7))=<C(f) and so C()=C(sf/(m)) or
C(s#/(r)). 0
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Example 3.10

We are now in a position to establish that all the examples in
example 3.9 have complexity equal to 1. Thus C(%33)=C(Z3)=1 by
3.9.3(v) and 3.9.2. From example 3.5 we see that a’=1andsoby3.9.1
this transformation semigroup cannot be aperiodic. Finally in example
3.6, o* = 1 and again this cannot be aperiodic.

Our next aim is to show that complexity is really a semigroup concept
rather than a transformation semigroup or state machine concept. We
will establish that if f =(Q, S) then C(#)=C(¥).

First we need:

Theorem 3.9.4
Let o =(Q, S) be a transformation semigroup where S is not

a monoid. Then
A=(Q,D)yx(S,S)x¢E.

Proof Let € =({a, b}, {o}) where ao = a, bo = a.
Define ¢ : Q xS x{a, b}-» Q by

d(q,s,a)=qs ifs#e, the adjoined identity in S

¢(g. e b)=gq.
For s'eS let us consider the triple (l1q,s', o). Then for s'eS,
#(q,s,a) s'=gss' and

(g, 5 a) (1o, 5", 0)) = (g, 55, a0) = qss'
furthermore

&g, e, b) s'=as’'
and

é((q, &, b) - (1o, 5", ) =0(a,s",a)= qs'.

Thus (1, §', o) covers s'. 0

Theorem 3.9.5
Let f =(Q, S) be a transformation semigroup which is not a
transformation monoid but such that S is a monoid. Then

A =(0Q, D) x(S, S)xEx¢E.

Proof We first construct a semigroup S* as follows.
Let e € S be the identity in S. Choose an element f which does not
belong to S and form $* =S U{f}. This is a semigroup when we extend
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the multiplication in S to $* along with the identities f- s =5 =5 - f for
all seS*. Furthermore (§*,S) is a transformation semigroup. Now
define ¢ : S % {a, b} -+ S* by

¢(s,a)=s forseS$
dle, b)=f.
Then ¢ is a surjective partial function. We will show that, given s'e §
the pair (s', o) covers s'. Now
&(s,a) - s’ =s5' = ({5, a)(s', o))
and
dle,b) s'=fs'=5"=¢(s',a) = d((e, b)(s', 7).
Thus (5§*, )< (S, S)x €.
We next show that of <(Q, &) x(S*, §)% € by defining ¢ : Q X §* x
{a,b}> Q by
$(q,s,a)=gs
¢(q' f' b)= q.
This is surjective and if s’ € § we will cover it with (1o, s', o) so that
(g, s, a)s' =qss' = $((q, 5, a)10, 5', 7))

and
$(q.£,b)s'=qs"=d((q, 5", a)) = b((q, f, b)(10, 5', 0)).

Finally o <(Q, @) x(S,S)x€x%. a
Theorem 3.9.6
Let o =(Q, ) be a complete transformation semigroup, then
C(o)=C(¥).

Proof If o is a transformation monoid then by exercise 3.7 we
have of =(Q, J) X ¥. Generally o < (Q, D) x ¥ X € x € from 3.9.4 and
3.9.5. Now suppose that C(¥) =n and ¥ < s, 0 G, 0...0 %, o of, .1, then

A=(Q, D)y x(AyoGio...coG, 054, I)XEXE

s((Q, Dyxsdy)ebo...09, 0 (A1 XEXE)
and since (Q, &) x of, and o,,., X € x € are aperiodic we have C(«f) < n.
We now show that ¥ < ]']* o, the direct product of k copies of &, where
k=|Ql.Let @Q={qi,...,q}. Define ¢:Qx...xQ S by

*(@n,...,qu))=s ifqs=quje{l,..., k}

¢((ql' coey ‘h))=€
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and

&((qu,...,qu)) =D otherwise.
so that

(@15, ..., q8) =5,

dUqr,...» aQ))=e

and all other values of &((qn,..., qi)) are ut:deﬁned, wl:ere
Q- --,qu€Q. Let s'e S and consider (s',...,s)€S". Then for s'e S

we have ¢((4m ceny qik» ¢ 3' = z
or

&g, ..., qu) s'=ss'sd(qns’, ..., qus") = ss'
or ,
(@, ..., ) s’ =es'= (@51 - - Qs'))=s

and the covering is established.
Then by 3.9.3(iii) C(¥) = C(sf) and so

C(#) = C(«A). 0

Finally we show that if & is incomplete then C(sf) = C(s£°). First we
need the following result:

Theorem 3.9.7
If £ <% and B is complete then #°<2'x B.

Proof Let £=(Q,S), ®=(P,T), 2= ({a, b}, {1}.), -94‘ =
(QU{r}, ). Suppose that ¢ : P> Q is the covering partial function giving
A =B Let ¢:{a, b}x P-» QU{r} be defined by

¥(a, p)=&(p)
¢(b,p)=r, peP.
If s € S let t be such that t covers s with respect to ¢. Now for se S,

¥(a, p)s = d(p)s = &(pt) = ¥(a, pt) = ¥((a, p)1,1)
&(b, p)s =rs = r= (b, pt) = ¥((b, P)a, 1))-

Hence ¢ is the required covering.

Theorem 3.9.8 .
If of =(Q, S) is any transformation semigroup

C(st°) =C().
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Proof If o is complete, of° =gof. If o is not complete then
A <o and so C(f) < C(s£°). Suppose that C(sf) = n, then

AshioGo,. .06, 05, .,

and we may assume that all of the &/; and %, are complete.
Hence by 3.9.7

A =YX (Ao Gye...0G, o A,.y)
sS(2xHy)oG ... 09, 0,
and since 2'x &, is aperiodic we have
C(A)Ysn=C(A). 0

It can be shown that transformation semigroups of an arbitrary com-
plexity exist. The proof of this fact is far from easy, it uses a considerable
amount of the theory of semigroups and we do not have the space
available for such a discussion. However, the interested reader may
study the appropriate literature for the details (Eilenberg [1976]). We
will close with the following unproved statement.

Let n=0 be an integer, then C((2,52)°(3,83)¢...o(n,S))=n~-1,
where S, is the symmetric group on k symbols.

Now (k, Sy)=k' o %, by 3.4.3, k is aperiodic and S, is a group
and so C((2, S2)°(3,83)e...°(n, S,))=n—1. It can be shown that
C(2,5)°(3,55)°...(n,S)=n~-1.

Other important results in the theory of complexity also involve
sophisticated techniques in semigroup theory and we shall have to leave
the subject here.

The implications of complexity theory in the applications of state
machines centre around the use of the complexity of a machine as a
measure of how complicated the machine is. There are other possible
measures, one of which involves finding the shortest chain of admissible
partitions in the machine. We say that 4 = (Q, Z, F) has an admissible
series of length n if there exists a stquence

lo=1l’o<1l’|<1rz<. oLy ={Q}
of admissible partitions on Q such that no admissible partition 7 exists
satisfying m, <t <m for0=<i<n.

The dimension, D(A#), is then defined to be the smallest number that
is the length of an admissible series of 4. Clearly D(4)=1 if and only
if A/ is irreducible. The dimension is a measure of the functional stability
of the machine and is particularly valuable in some biological examples
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where functional stability is an evolutionary more important factor than
minimal complexity. For example the machine of the Krebs cycle
(example 2.10) is irreducible, it has complexity 2.

3.10 Exercises
3.1 Prove theorems 3.1.2 and 3.1.3.

3.2 Let Q be a finite set with [Q]=n > 1. Prove that
(O,G)Sﬁi=ixix...x§ (k times)

where k, as a function of n, satisfies the formula

k()=1

kn)=1+k{{(n+1)/2]}, n>2.
Here [(n +1)/2) means the largest integer less than or equal to
(n +1)/2. Another way of expressing this is k(n) =[loga(n—-1)]+1.

3.3 Prove Theorem 3.3.3. Prove the state machine analogue of 3.5.2
and 3.5.3.

3.4 Let (Q, G) be a connected transformation group, let g € Q and put
H ={g e G|qg = q}. Prove that (Q, G)=(G/H, G/H®).

3.5 Prove that a connected transformation group is primitive if and only
if it is irreducible.

3.6 Show that the set of all endomorphisms of an irreducible transforma-
tion semigroup f = (Q, S) equals G U{g} or G, where G is a group,
according as &/ has a sink state g or not.

3.7 Let o = (Q, S) be a transformation monoid. Show & < (Q, D)yx¥.
3.8 1f o is complete and B = then B s2'x .



4

The holonomy decomposition

The aim of this chapter is the description of a method for decomposing
an arbitrary transformation semigroup into a wreath product of ‘simpler’
transformation semigroups, namely aperiodic ones 2ad transformation
groups. The origin of this theory is the theorem due to Krohn and
Rhodes which gave an algorithmic procedure for such a decomposition.
There are now various proofs of this result extant, some are set in the
theory of transformation semigroups and others are concerned with the
theory of state machines. In the light of the close connections between
the two theories forged in chapter 2 we can expect a similar correspon-
dence between the two respective decomposition theorems. The proof
of the decomposition theorem for state machines has the advantage that
it can be motivated the more easily, but at the expense of some elegance.
Recently Eilenberg has produced a new, and much more efficient,
decomposition*and it is this theory that we will now study. It is set in
the world of transformation semigroups.

Before we embark on the details let us pause for a moment and
consider how we could approach the problem of finding a suitable
decomposition. Let 4 =(Q, £, F) be a state machine and let |Q|=n.
Consider the collection m of all subsets of Q of order n —1. Then  is
an admissible subset system, and we may construct a well-defined
quotient machine 4/w. This state machine is a permutation-reset
machine and 4 may be covered by a cascade product of /= and a
smatller state machine. We then repeat the procedure until we have .4
covered by a cascade product of permutation-reset machines. These can
then be covered by cascade products of reset machines and group
machines. This yields a Krohn-Rhodes type decomposition but the proof
of the fact that the groups of the group machines are covered by the
semigroup of .# remains to be done, and is not easy.
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There are other drawbacks with this approach. The admissible subset
system 1 is very wasteful. One better choice for 7 would be the collection
of all the maximal images of the machine 4. This is the direction that
we take here, although we will develop the theory with reference to
transformation semigroups rather than state machines. There are certain
technical and notational advantages in this approach, but it would be
possible to adapt much of the following theory to the state machine case.

We will prove the holonomy decomposition theorem which involves
some quite difficult arguments. Once we have this result, however, we
will be in a position to decompose a transformation semigroup much
more efficiently than the traditional methods would allow.

The theory begins with a close study of admissible subset systems,
their possible quotients and their coverings.

4.1 Relational coverings

It of =(Q, S) is a transformation semigroup and = ={H},c; is
an admissible subset system then a quotient transformation semigroup
/() may be defined in various ways. They are all based on the pair
(1, S). We define an operation ®: m X S - #, which is an action of S on
m by: H,®s = H; where H; is chosen so that Hsc H,, for i,jel,s€S.
(Since His may belong to more than one element of 7 we have to make
a specific choice of one particular element of . This means that the
operation ® is not always uniquely specified, there is a collection of
such operations.) To make the triple («, S, ®) into a transformation
semigroup we must now ensure that § acts faithfully on 7 under ®.
This is done in the usual way by defining the relation ~ on § by:
s~ 51 H,®s = H,®s, for all H, € w. Then (, §/~) becomes a transfor-
mation semigroup under the operation induced by ®. We will denote
this transformation semigroup by /(=) when the operation ® is under-
stood. (We will also use the symbol ® for the induced operation in

o/(m).)

Example 4.1
Let of = (Q, S) be the transformation monoid generated by the
state machine:

a b c
0 a a c
1 b b b
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where Q={a, b, c}, $ ={A, 0, 1, 10}. The monoid § has the table:

s A 0 1 10
A A 0 1 10
0 0 0 1 10
1 1 10 1 10
10 10 10 1 10

If = ={{a, b}, {b,.c}, {a, c}} we may check that = is an admissible subset
syste.m for of. Write H, ={a, b}, H, ={b, c}, Hy={a, c}. There are several
quotient transformation monoids that may be defined; we consider two
possibilities:

® H H, H ® H H, H
A H, H, H, A H H.
H.
0 H, H, H, 0 I-I; H: I-I:
11 H; Hz Hz 1 Hl Hl Hl
0 H) Hg H; 10 H3 HJ Hl

The monoids S/~ are {{A], (0], [1]} and S respectively. Thus /() may
be d.eﬁned in several different ways. Similar things happen with transfor-
mation semigroups.

What is the connection between & and the various quotients <f/(w)?
I-‘Iouce that we may define a function a: 7 » P(Q) by a(H,) = H, where
i € I. This defines a relation from the state set of any sf/(w) onto the
state set of of. We cannot expect, in general, that s¢/{sr) covers & in
the traditional sense. But if we examine the properties of the relation
a we see that a(H))s c a(H,®[s]) for all s € S, i € I. This is very similar
to the requirement that [s] covers s with respect to a, but now « is a
relation and not necessarily a function. This leads us to the following
concept.

Let o =(Q, S), B = (P, T) be transformation semigroups. A relation
a: P~Q is called a relational covering of of by B if

(i) a is surjective
(ii) given any se S thereexistsare T
such that

a(p)sca(p-t) forallpeP. (»)

We then write of <, B, or just f <P if a specific reference to the

relation a is unnecessary. In the inequality (*) the element ¢ is said to
cover s.
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If we recall that « is a completely additive relation the first condition
yields U, a(p) = Q. Each image a(p), p € P, is a subset of Q and the
collection of the distinct such images covers Q in the set-theoretical
gense. Condition (ii) tells us, further, that the collection {a(p)|pe P},
of images under a, forms an admissible subset system. To see the
connection between relational coverings, admissible subset systems and
related quotient transformation semigroups we introduce a new concept.

Let o <a,® be a relational covering, where A=(Q,S)and B = (P, T).
Define T, to be the set of elements of T that cover some element of S
with respect to a, 50 T, ={te T|3s €S such that a(p)s < a(pt) for all
p e P). We say that the relation a is close if:

a(p)=a(p)>a(pt)=a(p't) forallte T,,wherep,p'eP.
It should be noted that although close coverings abound in the theory,
by no means are all relational coverings close.

Theorem 4.1.1

Let o =(Q,S), B =(P, T) be transformation semigroups. If
o <2, B is a relational covering then {a(p)|p € P} is an admissible subset
system. If = is an admissible subset system and &f/(w) is a chosen
quotient defined by 7 then A<asdf(n). If f<,B is a close relational
covering and 7 ={a(p),p€ P} then there exists a quotient /() such
that o/(r) = ®. If = is a partition then Alm)=B.

Proof The first two statements are immediate. Suppose now
that o <, ® is close. Let a(p)e w and s€S. There exists a te T such
that a(p)s < a(pt) for all p € P. We define an operation ® of S on w by
putting a(p)®s = a(pr) for each a(p)e m, s€S. This operation is well-
defined, for if a(p)=a(p"),p, p'€ P, then a(pt) =a(p't) for all te To.
‘Hence a(p)®s =a(pt)=a(p')@s. We now turn the pair (, S) into a
transformation semigroup s#/(#) by finding a quotient of S that acts
faithfully on . Then a:P>wis a mapping such that of/(m)=®. Ifw
is a partition then ® is well-defined anyway.

Example 4.2
Let & and 3 be the transformation semigroups defined by the

state machines

a b ¢ d e f

0 a c b e
1 c b a
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and

-0
> | >
wy |
ooio
>0 1| 0
Op | m

The relation a(A)=a(B)={a,b,c}, a(C)=a(E)={b, ¢, f}, a(D)=
{c, d}, defines a relational covering & 9,8 which is not close. If = is
the admissible subset system defined by a then = is
{a, b, c}, {b, e, f}, {c, d}}. If we denote {a, b,c} by X, {b, e, f} by Y and
{c,d} by Z we can then find the possible quotient transformation
semigroups &Z/(7). There are two of these defined by

and 0

°
X | X
< | =
X< | N
x| %
<N [~
X~ N

In neither case does of/{7r) =B hold, and so theorem 4.1.1 is not true
for all relational coverings.

4.2 The skeleton and height functions

If o£=(Q,S) is a transformation semigroup and seS then
Qs = {qs|q € Q} will be called the image under s. The collection of all
these images constitutes a very important subset of the power set #(Q).
In many ways the properties of this set of images reflect the structure
of . A natural ordering exists on this set of images, but first we extend
the set slightly. Define

1) = (U {0s) ui@ru( U tah) Ui,
seS qeQ

Thus I(sf) consists of the set of all the images under the elements of S,

together with the set Q and & and the singleton subsets of Q. If 1€ S

then it is not necessary to adjoin the set Q in this way. Similarly each

reset map in § will give rise to the appropriate singleton in Qs, so that

if 1o €S and o is closed then () =, s {Qs}U{2}.

Now let A, Bel(sf), we write A=<B if and only if either Ac B or
A ¢ Bs for some s € S. (The existence of the identity 1 in S will ensure
that the first condition follows from the second.) This ordering on the
set 1(sf) satisfies the following properties:
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42.1() A=A

4.2.1(Gi) AsBandBsC>AsC.
We further define A <B to mean A=<B but B A. Then (I(£), =) is
seen to be a pre-ordered set. We call (I(sf), <) the skeleton of . Notice,
however, that distinct transformation semigroups may have identical
skeletons, so that although the skeleton gives us much information about
o it cannot tell us everything about it.

In the usual way we construct an equivalence relation on I(«f) by

defining

A=PBifandonlyif AsBand B<A.

We immediately obtain the following information.

Proposition 4.2.1

If A, B €l(sf) then
(i) AsB=>|A|s|B|
i)y A=B=>|A|=|B|

Proof Both follow from the simple observation that |Bs|=|B|
since |B| is finite. 0

Example 4.3 . -
Returning to the transformation semigroup s defined in

example 4.1 we will calculate 1(«). V.Ve ge.t () =
{Q,{a, c}, {a}, (b}, {c}, D). The ordering on I(sf) will be displayed in
diagrammatic form, with A<B being replaced by an arrow A - B. (We
usually omit & from the diagram.)

Q

t

fac)

{a}eet{b}—fc}
Then {a}={b}, but {b} <{c} and {a}<{c}.

Example 4.4
Let |Q|=n (n a positive integer) and let S be the set of all

functions from Q to Q. Then o =(Q, S)isa transformation semigroup.
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Now I(#)=P(Q) and if A, B Q then AsB&|A|=<|B|, f
,Be , furth
P |A|=<|B|, furthermore
In this example we notice that A= B implies the existence of an
elemen't s € S such that B = As. An element s'€ S also exists satisfying
A = Bs' and such that for any a€ A, be B, ass'=a, bs's = b. This last
property is in fact a feature of any transformation semigroup.

Proposition 4.2.2

Let of =(Q, S) be a transformation semigroup. A, B € 1(sf) with
A = B. There exist elements s, § € S U{1} such that

B=As, A=Bs,
andforallac A, be B,

as§=a, bSs=b.

Proof Since A <B and B < A there exist elements s, te S U{1 o}
such that B € As, A < Bt. As|A| =|B| we have B = As and A = Bt. Then
B =Bts, A= Ast. Therefore ts and st are permutations on B and A
respectively. If st is an ‘identity’ on A, that is, if ast=a for all ae A
then for each beB there exists an a;€ A such that b =a,s. Thet;
I.ns =a,sts = a,s = b, and thus s is an identity on B and we may choose

=1 If st is not an identity on A then (st)" is an identity on A for
some n>1. Then we choose §=¢(sf)""' and note that B§=
Bt(st)" ™' = A(s1)" = A. Also, for a€ A, asi=a(st)" =a, and for be B
b3s = bt(st)"'s =a,st(st)"'s (where b =a,s € As) =a,s = b, Ei

This result enables us to move easily between two equivalent images
A and B. If any input § acts as a permutation on the image set A then
s'Ss will act as a permutation on the image set B. Since we are going
to- be interested in the permutations on these image sets later, this fact
wnl.l prove useful. It will sometimes be convenient and suggestive to
write s as (B/A) and § as (A/B). Then as§ =a(B/A)-(A/B)=a and
bis=b(A/B)-(B/A)=bforac A, beB.

In the example 4.4 the skeleton has a particularly nice form, it is
arranged naturally in-‘layers’ with sets of equal cardinality arranged in
the same layer. It is tempting to expect that we can do the same with a
more general transformation semigroup, with, perhaps the equivalent
sets arranged in the same layer. This is in fact the case but we can do
much more; we will define a general height function that maps the
skeleton in an order-preserving fashion into the set of integers. The
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main requirements of the height function, apart from respecting the
order on I(s¢), are that the function maps all singletons to zero and that
there are ‘no gaps in the image of it’. Formally we define a height
function for £ =(Q, S) to be any tunction h:I(sf) > Z satisfying:
(i) h({q)=0forallqge Q, h(@D)=~-1.

(ii) A=B>h(A)=h(B).

(iii) A <B and |B|>1=>h(A)<h(B).

(iv) I 0= i=<h(Q)then A € I(sf) such that h(A)=i.
The last condition is just there to prevent the function from being ‘too
wasteful’. We cannot expect A <B=>h(A)<h(B) in all circumstances
since we are also requiring the height of a singleton to be zero and this
may conflict with the ordering on 1(£). We have already seen example
(4.3) where {a} <{c} for a, c € Q. This difficulty vanishes if the restriction
|B|>1 is imposed.

There may be various functions that satisfy these conditions for a
given transformation semigroup. One always exists and is constructed
in the following way. Given the skeleton (1(s), <) of the transformation
semigroup o, let A e I(sf) with |A|>1. Suppose that A<A<. .. <
A, = Aisthe longestchainin I(sf) satisfying|A,|> 1. Wedefine h (A)=n._
For A e I(f) satisfying |A| =1 we put h(s#)=0 and h(@)=-1.1In this
way we may now associate an integer with every element of I(s¢), and
so define a function h:1(sf) > Z.

To show that h satisfies the four conditions is fairly straightforward.
For example let A, B el(s#) with A= B. If |A|=|B|=1 then h(A)=
h(B)=0.Let|A|>1,|B|> 1. Suppose that 1(A) = n, h(B) = m then there
exist chains

A<A3<. .. <A, =A, B,<B;<...<B.=B

each of maximal length subject to the requirement |A|#1, 1Byl # 1.
Then A<B and B A, yielding A,_1<B and B,,.1<A.lf m>n we
obtain the longer chain By <...<Bpn-1<A of length m for A which is
false. Similarly n > m is incorrect and so m = n. The height function just
defined is called the minimal height function for the transformation
semigroup. The height of s is defined to be h(Q) where h is this minimal
height function (we sometimes write the height of o as h(sf) also).
Given the minimal height function various other height functions may
then be defined. For example let Ay G=1,..., m,) be the distinct
m.equivalence classes of I(sf) of minimal height /= 1. Put I(A,)=
T4 my+j. This yields a height function I:1 (sf)»Z when we define
I{q))=0 for all g Q and I(@)=0.1tis a maximal height function in
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the sense that /(Q) is a maximum, but is not unique with respect to this
property in general, since it depends on the order in which the
equivalence classes of height i are enumerated.

Now we consider an arbitrary transformation semigroup o =(Q, S)
together with a height function s:1(sf)=+ Z. Suppose that B =(P, T) is
a transformation semigroup such that &f <.®. The subsets a(p), pe P
may not be images in ¢ but we will be particularly interested in the
occasions when they are. We say that the relational covering of <, ® is
of rank i (with respect to h) if:

() a(p)el(f)forallpe P,
(ii) h(a(p))=i for all pe P and h(a(p)) =i for at least one
peP where 0=i<h(Q).

We will consider an example shortly, but before we do note that a
relational covering of rank 0 is merely a covering since the image a(p)
is a singleton for all p € P, and thus a is a mapping. (The fact that the
only elements of the skeleton that have height zero are singletons follows
from condition (iii) of the height function.)

Example 4.5

Let of =(Q, S) be an arbitrary transformation semigroup with
height function 4, and suppose that #(Q)=n. Consider the ‘proper
maximal images’ in I(sf). Formally define

MQ)={Acl(A)|A#*Qand Ac Cc Q withCel(«)
SeitherC=Aor C=0Q}.

We show that M(Q) forms an admissible subset system for f. First note
that if q € Q then either {g} e M(Q) or q € A for some A e M(Q) and so
the subsets in M(Q) cover Q. Further let AeM(Q) and seS. Since
A = Qs, for some s, € § we have As = Qs;s € I(s¢) and either As e M(Q)
or Asc A, for some A, e M(Q). Therefore M(Q) is an admissible subset
system for &f. Now consider the way in which the elements of § act on
the subsetsin M(Q). If s is a permutation of Q then s is also a permutation
on the set M(Q). First let A eM(Q) then Asel(s«f) and let Cel(«)
with Ass Cc Q. If s # 15 then s™ = 1o for some m > 1 and we see that
A=Ass"'cCs" ' Qs™ ' = Q. Therefore Cs™ '=A or Cs" ' =Q,
thatis C = Cs™ = As or C = Q, Thus As € M(Q). If s is not a permutation
of Q then Qs < Q and Qs < A for some A € M(Q). Now let B e M(Q),
then Bs = Qs < A 50 s has the effect of sending each element of M(Q)
to the element A. We now define a transformation semigroup using the
elements of M(Q) as the states. Let s € S, then either Qs =Q or Qsc B
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for some B € M(Q). Suppose that for each s satisfying Qs # Q we se.lect
a B, e M(Q) such that Qs < B,, now define for B' e M(Q) the operation:

B's if{Qs=Q
B'®s={B, ifQs#Q,QscB,andB, is the chosen element
of M(Q) associated with s.

The pair (M(Q), S) gives rise to a transformation semigroup (M(Q), S/ -:)
under the operation ® in the same way as section 4.1, Therefore this
transformation semigroup may be denoted by s¢/(w) where m = M(Q).
If we define a relation a: w~+Q by
a(B)=B forBew

we obtain a relational covering & <. sf/(w) of rank n —1. Because of
the special choice of the quotient of/(n) we may cover #/(m) .with a
particularly useful transformation semigroup. Notice that the semigroup
S/~ of s¢/(w) is generated by a quotient of the maximal sul?_group G
of S and some reset elements. Then S/~ < Sg{(G/~)U (U B)) where
each B is the reset map B: B’ B for all B'€ . The inclusion may be
strict in some cases. The group G/~ is called the holonomy group of Q
and it is to this that we now turn our attention.

4.3 The holonomy groups
Let A el(sf) with |A|> 1. First we define the maximal image
space (or paving) of A to be the set
M(A)={Bel(¢)|B< A, B#Aand Bc C< A with
C eI(#)Deither C=A or C=B}.

The elements B of M(A) are called the maximal images (or bricks) of
A. The collection M(A) forms a covering of the set A, for if ae A then
{a) e I(s¢) and either {a}e M(A) or {a}< B for some BeM(A).

Put G(A)={se S|As = A}, the set of all elements of S that act as
permutations on the set A. Naturally G(A) may be empty. We have:

Proposition 4.3.1
For Acl(sf) with |A|>1, each element of G(A) acts as a

permutation on the set M(A).

Proof Let s€ G(A) and B e M(A). Then Bs < A and Bs € l(sf).
Suppose that Bsc C< A. There exists some integer_ n =1 ..E‘nmh
that s” acts as the identity on A, Bither Bs=Bor B=Bss" <Cs" 'S
As"'=A. Therefore B=Cs"" or A=Cs""" and so Bs=C or
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A=C. Hence BseM(A). Clearly s" '€ G(A) and the inverse of s
on M(A)is s"'. 0

By considering only the distinct permutations of M(A) given by the
elements of G(A) we may define a transformation group (M(A), H(A)),
providing of course that G(A) # . (Thus H(A) is a quotient of G(A).)
If G(A)=0 then we consider the generalized transformation group
(M(A), @). This can only occur if § does not contain the identity 1o.
In this case we will also write H(A) =J.

The generalized transformation group #(A) = (M(A), H(A)) is called
the holonomy transformation group of A. The group H(A) is the holonomy
group of A (if H(A) # ).

We may, by referring back to example 4.5 notice that the transforma-
tion semigroup /(') chosen there may be covered by the closure of
the holonomy transformation group of Q and thus o <0, #(Q) is of
rank n —1 where n is the height of of with respect to the given height
function. Notice also that the covering « is close.

Our next aim is to improve the relational covering constructed in
example 4.5. Before we do this, however, we will dispose of three useful
technical results concerned with maximal image spaces and holonomy

groups.

Proposition 4.3.2
Let o =(Q, ) be a transformation semigroup, h:1(#)~»Z a
height function and #(Q) = n = 1. Then we have:
(i) If h(A)=n for some A €1(sf) then A =Q.
(ii) If A, B e (o) with A g B and |B|>1 then h(A) <h(B).
(iii) If A, B e1(sf) with A= B and s, § € S satisfying the hy-
pothesis of 4.2.2, then M(B) = M(A)s and M(A) =M(B)s.

Proof (i) A< Q andso h(A)=h(Q). Suppose that A g Q, then
Q = A implies that Q c As for some s € S, 30 |Q] s|As| <|A| =<|Q| which
yields a contradiction. Hence A <Q and so h(A)<h(Q). Therefore
h(A)=n>A=Q.

(ii) This is proved in a similar way to (i).

(iii) Let A=B5 and B=As with asi=a for all acA, bis=b
for all b e B. Consider K e M(A), then Ksel(sf). Let Ksc Cc B for
some Cel(sf), then K=Ks§cC§cB§=A and Csel(sf) which
implies C§=K or C5=A and thus C=Ks or C=B. Therefore
Ks e M(B). Now let L e M(B), then L§s =L and L§g A. Let us choose
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any Del(A) with L§cDc A, then L=Ls§scDscAs=B and so
Ds=L or Ds =B, which gives D=L§ or D= A. Therefore M(B) =
M(A): s. The other result is proved similarly. 0

Proposition 4.3.3

If A= B then ¥(A)=¥(B).

Proof ¥(A)=(M(A), H(A)), #(B) =(M(B), H(B)). There is a
mapping ¢:M(A)-» M(B) defined by ¢(K)=Ks where K € M(A) and
s€ S is such that B =As. Then A = BY for a suitable §e§ and so ¢
is invertible with inverse ¢:M(B)-»>M(A) defined by ¢(L)=L§ for
LeM(B). Now we choose a ge G(A) which satisfies Ag=A and so
B(5gs) = Ags = As = B which allows us to define a mapping £: G(A)-»
G(B) by £(g)=35gs for all ge G(A). The mapping n:G(B)->G(A)
defined by n(g')=sg's for all g'e G(B) is the inverse of £ Finally we
notice that for g, g; € G(A),

B(3gs)($g15)=B
and for be B,

bé(g)€(g1) = bigssgs = bigg:s = bé(gg1)

and therefore ¢ is an isomorphism of groups. The factor groups H(A)
and H(B) must also be isomorphic since A =B, ]

Now we may return to the central problem of improving the relational
covering of example 4.4. So we let o/ =(Q, S) be a transformation
semigroup and h:1(f)->Z a height function. Suppose that = is an
admissible subset system with the property that each subset A € 7 also
belongs to the skeleton 1(sf) and the maximum height of an element of
= is {. Such an admissible subset system is said to have rank i. We may
pow produce an admissible subset system =’ of rank i—1 with »'<#
(assuming that i = 1).

First let ={Aen|h(A)<i} and ¥={Aenw|h(A)=i}. Then we
define 7' =2U(UyoM(Y)) where, as before, M(Y) is the maximal
image space of Y. Clearly #' =< and the rank of #' equals i —1; we
have to establish the fact that #’ is an admissible subset system, so we
let Ben' and seS. If Be X then Bew and so Bs< A for some Ae .
This leads to two cases:

Case (i): A € &, in which case Bs is contained in a subset of #'.

Case (ii): Bsc A with Ae Y. Since Bs<B and h(B)<i then
h(Bs) <i and so there exists C € M(A) such that Bs < C. Therefore Bs
is contained in an element of #'.
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If BeM(Y) for some Ye®% then Bsc< Ys. We have three further

cases to consider:

Case (jii): Ys< A for some A e & and then Bsc A.

Case (iv): Ysg A for some Ae®, then Ys< C for some Ce
M(A) and so Bs c C with Ce #'.

Case (v): Yse®. Now YssY and h(Ys)= h(Y)=i, hence
Ys= Y. By 4.3.2(jii) M(Ys) = M(Y)s and so Bs € M( Y')and thus Bs e »'.
This result is stated as:

Theorem 4.3.4

Let of =(Q, S) be a transformation semigroup and h:I(f)~» 2
a height function. Let # be an admissible subset system of rank i. There
exists an admissible subset system =’ of rank i —1 with 7' < .

In this way we may start with an admissible subset system of & of
rank equal to the height of s and successively reduce the rank of the
covering. First let 7" be the trivial admissible subset system {Q} where
n=h(Q) then (#") is the admissible subset system of example 4.4,
Putting »" "' = (=", 7" 2=(x""'Y,... we obtain a sequence 7" >
7" !>#""2> | of admissible subset systems. We call this the derived
sequence of . The rank of 7" equals the height n of s, the rank of
7"~ equals n -1, and in general 7/ has rank j. We will use the derived
sequence as a means of defining a relational covering of & using transfor-
mation groups. Notice that if we can associate a suitable relational
covering of & with the admissible subset system =’ then there may be
a natural candidate for a relational covering associated with #'~*.

Suppose that n/ = 2U % where the elements of & are of height less
than j and the height of the elements of ¥ is j. The definition of ='~!
is £UUyoM(Y). The sets M(Y) are the underlying sets of the
holonomy transformation groups #(Y). We have seen that when j=n
the closure of the holonomy transformation group ¥(Q) yields a rela-
tional covering of of of rank n—1. (Here n is the height of Q.) Can we
build on this to produce an inductive method of generating relational
coverings of smaller rank?

Let 1=<j=<n where n = h(Q). The set of elements of the skeleton of
height j may be partitioned by the equivalence relation m. Let
Al,..., A beasetof representatives of the distinct equivalence classes.
We form the holonomy transformation groups #(A!), ..., #(A!) and
then take their join #(A{)v...v 7((A£,). This is also denoted by ¥ (of).
The state set of this transformation semigroup must be defined with
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care, for we need the individual state sets of ¥(AL) to be disjoint if we
are going to form the join. To ensure this we will consider the state set
of J(A%) to be {k}xM(AL). So a typical element of the state set of
%) () is (k, BL) where 1<k sr, B} e M(AL).

We now state our main inductive result.

Theorem 4.3.5

Let o <1, ® be a relational covering of rank j such that the
image of a; is n'. There exists a relational covering & <a,,_, ¥, ()°B
such that

(i) therankof a;—;is j—1,

(ii) the image of a;_, is w

Proof Let £ =(Q,S)and B=(P, T).Iif seS there exists 1, T
such that

ai(p)-scaip-t) forallpeP.

To define a,_,:(U;’_,({k}XM(Aﬂ)))XPA»O consider an element
((k, BY), p)e (U7, (K} x M(AL)))x P and put

a;(p) if h(e(p)) <j
a;-1((k, BL), P)=¢ Bk-(a;(p)/A}) if a;(p)= Al
172 otherwise.

From this definition we note that o;_,((k, Bl), p) is an element of the
skeleton of & of height less than j. Furthermore B} -(al,( p)/ Av) €
M(a,(p)). Since the image of a, is ', suppose that Ze ='™". Ifl Zemw
we have h(Z) <j and Z = a;(p) for some p € P and so a;_,((k, Bi), p) =
a;(p) = Z for any (k, Bk) e U}, ((k} x M(AL)). Writing 7’ as ZU ¥ as
in4.3.4 wehave n' ' = 2U Uy o M(Y)).If ZeM(Y) forsome Ye &
thenYen'and Y = a;(p)forsomepe P.Now Y = A, forsome 1 sk <7,
and Y=A,-(Y/A,). Then Z=B-(Y/A,) for some BeM(A,) and
Z = a;_,((k, B), p). Hence the image of &;_, equals ='~". .

The proof of the fact that «;-, is a relational covering now occupies
our attention for a few paragraphs. The crucial part is the definition of
the element of the action semigroup of ¥, (of)e®B that will cover a
given element of S. .

Let s € S and suppose that 1, € T covers s with respect to the relational
covering a;. Thus « (p):s s ay(p-1,) for all p e P. Now the action semi-
group :f x, (d)oa, :onsists of the set of all ordered pairs (f, t) where
teT and f:P-(V]_, H(AL). Having chosen our element s S we
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define a function f,: P-» (V. “(A]g)) in the following way. Let pe P,
three possibilities arise:

Case (i): a;(p - t,) € &, whence f,(p) is chosen arbitrarily.

Case (ii): a;(p-t,)e¥ and a;(p)-s S a;(p-1,) then a;(p-1,)= A} for
some 1<k <r,. Now

a;(p)- s+ (Ak/ay(p- L) g a(p- &) (Al/ay(p- 1,)) = Ak
and 50 a;(p)-s- (Ak/a,(p-1,)) < B’ for some B'e M(A}). We put f,(p) =
(k, B), the constant map.
Case (iii): a;(p* t,)€ ¥ and a;(p): s =a;(p- t,), then ay(p)=a;(p- t,)

since a;(p) s s a;(p) and yet a;(p) is of height j at most.
Now let a;(p) = A% for some 1=k <7, then

Al (a(p)/ AV s+ (Al/ay(p 1)) = ay(p) s (Al/ay(p- 1))

=a;(p-1,)) (AL/ay(p-1,)) = Ak.

The element (a;(p)/AL)-s:(AL/a;(p-1,)) defines an element h of the
holonomy group H(A}) and so we put

fi(p)=h.

This defines the function f:P->V/_, H(AL). What remains is the
task of showing that (f, ) covers s with respect to a;_;. Let
(4, BY), pYe (U7, ({k} x M(AL))) x P, we will prove that

a;-1((, B, p)+ s € a1 (4 B, P)- (fr 1)) (*)

In case (i), where a;(p-1,) € &, we have

a;1((1, BY), p) s=a;(p)-scap-t,) ifa(p)ed,
and
a;1((4 BY),p) s a(p) s S ay(p-1,)
in all other cases.
Since a,(p-t,)€ &, f,(p) is arbitrary and

a;-1(((, BY), p) (fo t.)) = aj-1((}, BY)-fo P 1.))
=¢11(P":)-
Therefore the inequality (=) holds in this case.
In case (i) afp:f,)e¥ and a)p):-sga)p-t). As before
a;-1((1, BY), p) sga;(p):s. Now f,(p)=(k, B') where B'eM(A}) and
ai(p):s (A}/ay(p-t,))€ B’, and s0

a1+ (4 BY, p)* (fo 1)) = aj-a((k, BY), p* )
=B'-(a/(p-1,)/AL).
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Now
a,(p)+s = ay(p)-s- (Ak/ay(p-1.))" (ai(p 1)/ AL)
S B (ay(p-1,)/ A
and so (*) holds again.
In case (iii), a;(p* t,) € ¥ and a,(p)-s = a;(p* ). If
a;(p)= Al
then
a;-(((4, B, p)+ (fu 1))
= a;-1((l, BY- (a;(p)/ A 5+ (Al ay(p- 1)), P 1)
=B+ (ay(p)/ A} s-(AY/ ay(p- 1)) - (/(p- 1,)/ A
=Bl (a(p)/A)-s
=a;,((}, BY), p)s
and so (*) holds. Finally if a,(p)= A’ then
a;-((l, BY), p) =&
and so
a;-1((1, BY), p)+s € a1(((, BY, p)- (f 1))
as required. 0

Theorem 4.3.6
Let & be a transformation semigroup and h:I(f)-»>Z a height
function then

AsKHy (A)o X3 (f)o. . .o H ()
where n = h().

Proof We have already established in example 4.5 the relational
covering_f <, _,%(Q) and recalling that ¥(Q)= =¥, () we have
A, . ‘%" (4). The above theorem leads to the relational coverings,

A <, _, H a1 () X, (H)
A D,y Hn2(8)e Hn1(s8)° X ()

oA, Xy (A)o. . .o Ko (A),
where ay is of rank 0 and is thus a covering (i.c. a partial function). O

It is sometimes useful to have alternative holonomy decomposition
theorems, especially those involving products rather than joins of the
holonomy transformation groups.
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As before let Af,..., A{, be a set of representatives of the distinct
equivalence classes of the elements of the skeleton of height j. Define

%= 11 %A,

the direct product of the individual holonomy transformation groups.
Notice that ¥; (sf) is a transformation group. (We need only adjoin
an identity to those generalized holonomy transformation groups
H(AL) = (M(AL), H(AL)) where H(AL) =, so that the direct product
may be defined in a suitable way.)

Theorem 4.3.7

Let of <5, B be a relational covering of rank j such that the
image of B, is '. There exists a relational covering &/ <, K[ () B
such that

(i) the rank of B;_,isj—1,

(i) the image of B;_, is 7' "

Proof As before let #=(Q,S),B=(P,T) we define
Bi-1 (13-, M(AL)) X P~Q by

Bi(p) if h(B{(P)) <j

Bk (B/(p)/AY) if B(p)= AL
where (Bi, ..., B!)ell}.,M(AL), peP.

With respect to this relation we will establish the covering condition

ﬂl—l((Blh seey Blr,)’ P)‘ s SBI-I(((B,I, ceny Blr,)o P)'(&o ':))
where s € S, 1, € T is such that B,(p)-s < B;(p-t,) and g, : P> [1}/.., H(AL)
is chosen suitably. The definition of g, is taken in three cases; let p€ P.

Case (i): B;(p-1,) is of height less than j, in which case g,(p) may be
defined arbitrarily.

Case (ii): B/(p‘1,) is of height j and Bi(p)-sg B)(p‘4). Now
Bi(p-t,)= Al for some ke{l,...,r} and so B;(p)-s-(Ak/Bi(p 1)) s
Bi(p-1,)-(AL/B)(p-1))=Ak and thus B,(p)-s-(Al/B(p-1.))c B’ for
some B'e M(A}). Define g.(p) to be the transformation that sends the
k-th coordinate of an element (BY, ..., B!) of [I;., M(A}) to B’ and is
arbitrarily defined on the other coordinates, thus

(BII"'"Blk"'"Bll).gl(p)=(*"'"B"""*)'

Case (jii): B,(p-1,) =B/(p) s = A} for some k €{1,..., r;}. As before
(proof of 4.3.5) the element

(B(p)/ AV -s-(AL/B(p-1.))

Bi-1((BY, ..., B), p) ={
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defines an element A of the holonomy group H(AL). The definition of

g:(p) is then taken to be any element of the semigroup of %/ (s4) that

acts like h on the k-th coordinate, thus
(B’,,...,BL...,Bi,)-(g,(p))=(*,...,Bi-h,...,*).

We now show that (g,, #,) covers s, and to do this let

i ‘
(@4, Bh.... B, pe( ]I Miab) xP.

In case (i) B;(p- ;) is of height j and Bi-1(BY, ..., BL), p)-scB(p)s<
Bi(p+1,) since B;is a relational covering and ¢, covers s. Now

Bi-1(((B, ..., BL),p) (@ 1)) = Bi-1(((BY, ..., Bl) & Pts))

e ﬂl(p' 1)

and so

Bi-1((B, ..., B!).p)'s c BB, ..., B!),p)- (g 1))
in this case.

Incase (i) B,(p- t,) = Ak forsome ke {1, ..., 7} and B;(p)-sg Bi(p- 1,)-

Then

Bi-1((Bh, ..., B!),p)- (g~ 1)) = B-1(((* ..., B ..., ®h P t,))

where

B'eM(AL) and B/(p)-s-(A/B(p-L))SB"
Thus

B1((Bl ..., BY), )+ (8n 1) = B'(B(p- 1)/ AL).
Now

Bi-1((BY, ..., BY), p) s B(p)s
=B,(p)- s (Al/a;(p-t.))- (By(p: 1)/ AL
c B'(B/(p* 1.)/AY)
=B1((Bhs .- -» B!),p)*(8» 1))
Finally for case (iii), 8(p- )= B;(p)-s = Al and
Bi-1((BY, ..., B.),p) (8 1))
=B_1(((*,...,Bk-hy ..., %) p 1)
=B -h-(By(p-1.)/AD)
= B4 (8,(p)/ AL s-(Al/B/(p-1.)) (By(p-t,)/ AL)
= BL(Bi(p)/ Al)-s
=B,-1((B%, ..., B}),p))'s.
Therefore, in all cases we have (g,, #,) covering s. Hence B, is a relational
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covering and the rest of the theorem follows in a similar way to theorem
435 )

Theorem 4.3.8
Let o be a transformation semigroup and h:1(f) > Z a height
function, then

A=K (A)oH; (A)o. ..o ¥, () where n = h(sf).

Theorem 4.3.9
Let & be a transformation semigroup and h:I(sf)»Z a height

function. Suppose that #(sf) = n and ="' is the first non-trivial element
of the derived sequence of f. Then

() o= (st)o.. .o, 1 (Af)ost/(m""")
(ii) A =<H;(A)o...oHn_y(A)ostf(m""")
where o/(w" ") is a suitably chosen quotient transformation semigroup.

Proof In the discussion of example 4.5 we defined a quotient
transformation semigroup &/(w). In the context of this section = is
denoted by 7" ' and so the result follows from the fact that of/(=""")
yields a relational covering of of of rank n—1. 0

Theorems 4.3.5 and 4.3.7 are known as the holonomy reduction
theorems and theorems 4.3.6 and 4.3.8 as the holonomy decomposition
theorems.

It is possible to use theorem 4.3.6 to deduce another decomposition
theorem. First let ¥ (of) = H(A}) +...+ H(A!), where A, ..., A} are
representatives of the skeletal elements of height j with respect to some
height function on the transformation semigroup /. We have that
¥; ()< X (o) and so we may establish:

Theorem 4.3.10

Let o be a transformation semigroup and h:I(s¢)—+>Z a height
function. Then

A=Ky (d)o ¥ (A)o. . .oy ()
where n is the height of .

We will examine some examples later, but for the moment there are
some remarks that are worth making. First of all this decomposition is
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a considerable improvement on the original decomposition theorem for
transformation semigroups obtained by Krohn and Rhodes [1965]. Th.e
increase in efficiency is easily demonstrated by examining some of their
examples. Notice that the groups involved in the holonomy transf.orma-
tion semigroups are immediately seen to be divisors of the sen.ngroup
S. However, Eilenberg noted that it was still possible to obtain .e\fen
better decompositions than those given by the holonomy decomposition
theorem and it is this aspect of the theory that we turn to next. Altlrwgh
the proof of the holonomy decomposition theorem given here is the
same as Eilenberg’s we have stressed the admissible subset systenfs and
the derived sequence. The reason for this will become apparent in ?he
next section where we introduce an ‘improved’ holonomy decomposition
theorem, which in many cases gives a more efficient decomposition than
the standard holonomy decomposition theorem.

4.4 An ‘improved’ holonomy decomposition and enmples
We begin with an example to motivate the discussion.

Example 4.6 . .
1f we recall example 4.1 we note that the transformation monoid

s has the following skeleton:

fa.buc)

foc)

fefo—fa}eeis]

There is a unique height function, h(Q)=2, h({la,ch=1, h({ah) =
h({b)) = h({c) =0, h(@) = —1. The first derived admissible subset system
' consists of the two sets {a, c}, {6}. Then /(=) is given by
0.A LA
foc}—s— 18]

0

st

and so of/(n)=3. Also ¥} (of) =%} (sf)=(x", {A}) and ¥; (sfy=2"
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The derived system #°= {{a}, {5}, {c}}.
x: () = X1 (o) = (M({a, c}), {AD)
=2,
Then the holonomy decomposition theorem yields
A<,

Notice, however, that 7' is an orthogonal admissible partition, since

wN7=1 where 7={{a, b}, {c}} and  is an admissible partition. Then
by theorem 3.2.1

A =<A/(r)xAf(n')=of/(t)x 2",

We may check that of/(r) = € and thus of =€ x2', which is better than
s <23'o% for two reasons. Firstly € <3 and secondly direct products
are much more efficient than wreath products. (Actually if we examine
the proof of theorem 4.3.5 it becomes clear that the wreath product in
this example may be replaced by the direct product since the definition
of f given by the theorem yields an identity in this example.)

The behaviour of this example gives us a method of approaching the
problem of improving the holonomy decomposition theorem. If o =
(@, S) is an arbitrary transformation semigroup and h:I(sf)+Z is a
given height function we may define the derived sequence #" > #""'>
.».>{1} of admissible subset systems. Suppose that #” is the largest
orthogonal admissible partition in the sequence that is non-trivial.
Naturally such a #* may not exist and if this is the case the following
theory will not lead to an improved decomposition. However in many
cases there is such a #°. Now let r be an orthogonal admissible partition
such that 7N #°={1}. From theorem 3.2.1 we deduce that &f <
A/(r)x of/(7") and from theorems 4.1.1 and 4.3.5

ANmP) S Hpr () Hpoa(A)o. . .o Ko (A)

where p is the rank of #° and n = h(sf). Therefore

A SANT)XH por () (Hpra(HA)o. . .0 K0 (A)).

We can now apply the holonomy decomposition theorem to the transfor-
mation semigroup ¢/(r) and continue the process. So we choose a height
function for #¢/(r), look at its derived sequence and see if a largest
non-trivial orthogonal admissible partition lies in this sequence. If one
exists we repeat the above process, using theorems 3.2.1 and 4.3.5 to
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obtain an ‘improved’ decomposition of s#/(r). This procedure i.s .repeated
as many times as is necessary to obtain a complete decomposition cff .d.
That this decomposition of o is better than the holonomy decomposition
may be established, but the details are rather coml.alex. .

Suppose that o = (Q, S) is a transformation semigroup }vnh h: ()~
Z a height function. Let 7" >#""'>...>{1} be the d?n.ved sequence
and suppose that #° (0<p<n) is an orthogonal admlsslble. part:tlfm.
Let w° N7 ={1} and write /() =®B. There is a natural ?pnmorphlsm
(f, g): 4B defined as follows. Let T = S/~ be the semigroup of -93,
then each te T corresponds to a set of elements fron.r S. The function
g will send an element s€ S to the equivalence class it belongs to, and
this is an element of T Similarly f will send an element of Q to the
r-class it belongs to and the result is a homomorphism of d onto 98.. In
many cases the homomorphism (/, g) allows us to transf?r mfon.natnon
about the transformation semigroup & to the transformation semigroup
& although it is not always a straightforward procedure. For. ea.mmple
the skeleton I(3) can be constructed using I(«f) and ( f,.g). Similarly a
derived sequence may be induced on & from o, but it is .no longer. s0
well behaved and this complicates matters, Similarly a he.lght function
on & may be used in some cases to define a height function on AR but
many difficulties arise in this theory. Some of these questions are
examined in the exercises at the end of this chapter. We can now look

at some examples.

Example 4.7 '
Let & = (Q, S) be the transformation semigroup defined by the

following graph:
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The skeleton is

0,1,..., 5 {p. q}

{0,3) = (1,4} = (2,5)

A IVANRRN

(0} = (3) = (1) ={4) = (2} = (5} r} = {q}
(with & omitted).
If we choose the minimal height function then A(Q) =3 and

w*={{0,1,...,5L{p q}t, 7' ={{0, 3}, {1, 4}, {2, 5}, {p}, {q}}-
The holonomy decomposition is

A <X({0,3)ex({0.1,...,5Hv ¥*({p, q)) #(Q).

Now
x(Q)=({{0,1,...,5},{p.q}}, D) =2
x(0,1,...,5N=«{{0,3},{1,4}, {2, 5}, {s, s%, s’ =2,
*({p,aP={{p}. (M. s D=2,
0, 31) = ({0}, 3, {s*, s D=2,

and so

A<sZ,o(Z,vIs)e2.
Now notice, however, that = is a partition and if = ={{0, p}, {3, q}, {1},
{2}, {4}, {S}} then  is an admissible partition and rN#?={1}. Hence
we may deduce that

oA <o/(r)x t){m’y = oAf(r)x 2.

Now we consider the skeleton of s#/(r). For convenience we will put

Ky ={0, p}, K2={3, q}, K; ={1}, K. = {2}, K5 = {4}, K¢ = {S} and the state
table for f/(r) is:

Kl K! Kz K|
Kz Ks Kl Kz

K, K, 2 7))
K, K; 7/ 172]
K K 2 7))
K K, 2 7]
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The skeleton is:

{KKy) = (K5 Ks) = (Ka,Ko)

[\ S\

(K} (K} (K} (Kg) (Ka) (Ke)

The first derived admissible subset system is:

Pl = {{Klv K2}v {KS' KS}' {K4' K6}}'
since there is only one height function available and that yields
h(sd/(7)) =2. Now p! is an orthogonal partition since the partition £ =
{{K1, K4, Ks}, {K2, K3, K¢}} is admissible and ¢Np’ ={1}. Therefore

A/ (r)s () (TNNHE X (/TN (")

and

AN/ o= Ha (AN =" s, 575D
= ig.

Also, (#/{))/(£) is

u st u
@l-xcnxs) ———a— {K), Ky, K} ’

st

and so (£/(r))/(€) S Za. o

Hence d/(f)512x13 and .94512X13X2.

Decomposing &/ with respect to another height function does not
really alter things much although the basic holonomy decomposition
will not be the same. For example, let hy :1(sf)»Z be defined by
hl(o) =f' ,"_l({(‘)_v 1'_' LR 5}) = 3v hl({p’ q}) = 2, hl({ov 3}) = 1 etc. giVing
us o =Z,0Z,°Z3°2 for the basic decomposition, but our improved
decomposition is o sZ,xZ;x2 since we have not changed 7 when
changing the height function. Theorem 3.4.3 enables us to replace each
transformation group of the form (M(A), H(A)) by the wreath product
(M(A), @) (H(A), H(A)) and so we have o <(3 oZy)x (3 °Zy)x2.
Now apply the identity (Ao BYX (€oD) = (4 X €)e(B X 9) to obtain

A<[@ xF)o(@2xT2)}x32
=[(2 x3)e(Z2xZ3))% (2-1)
< x3 x3)e(ZyxZ3x1)
=@ xF x2)eZs.
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This decomposition is in the form of a wreath product of+% where ¢
is aperiodic and % is a transformation group. Thus C(#f) < 1.

Example 4.8
Consider the transformatjon semigroup o = (Q, S) where Q =
{1,2,3}, § ={a, B, a?, B Ba, B*a} and with generating graph:

The skeleton is:

———

1,2,3}
\{1,3

A

}
{2} {1}

and so the height is 2. Then =’ ={{2, 3}, {1, 3}} which is not a partition
and so the basic holonomy decomposition theorem must be used.

. () = X(Q) = ({{2, 3}, {1, 3}}, {a, a}})) =125,

#({2,3D) = {2}, (3}, {8, B”) = 2, = ¥} ().
Thus ¢ Siz°iz.

{2,

w
——

3

Example 4.9

Let of =(Q, S) where Q={0,1,2,3}, S={a, b, c, d} given by
the table:

0 1 2 3
a 0 2 0 2
b 2 0 2 0
c 1 3 1 3
d 3 1 3 1
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The skeleton is:
{0,1,2,3)

{0,2} 1,3}

(o) {2} (1} {3}
and so h(Q) = 2. Then =’ ={{0, 2}, {1, 3}} which is a partition but is. r.lot
orthogonal. Therefore we apply the basic holonomy decomposition
theorem.
¥,(£) = #(Q) = ({{0, 2}, {1, 3}, D) =2
(o0, 2)) = ({0}, 2}}, @) = 2= ({1, 3}) and so ¥} (f)=2v2and
A=(2v2)e2.

Example 4.10 ' .
We now consider the cyclic transformation semigroup €,.,).

This may be defined by the diagram:

s
r+l—-=r+2

{(0,1...,r,...,7+p -1}

{l....\,r....,r+p— 1}
(2....\.r,...,r+p—- 1}
\.l
/{r,...,'hp_l)

{0} {n {2} ... {r} {r+p-1}

The height of the transformation semigroup is r+1 if p> 1, and is 7 if
p = 1. The derived sequence when p>1 is easily calculated from the
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skeleton and the one of particular interest is 7' ={{0}, {1},..., {r- 1}
{r,...,r+p—1}}. This is an orthogonal partition. To see this s’uppose:
that 7>p and r=gqp + ¢ where 0<t<p, and put
r={0,p,.. olg+)ph{l,p+1,...,(@+1)p+1},...,
{t-1L,p+e-1,..,r+p=-1},{t, p+1, R4 %
{t+1,p+e+1,... ,qp+e+1},..
{_p—l, 2p-1,...,(g+1)p~-1)).
Then 7' N7 ={1} and 7 is admissible. Then
(e(ur) =4d/(r)x d/(‘"l)-
Clearly of/(r) =2, and of/(n') =%, and so Cons2,x%6q.,.

Br=pputz={0,r} {L,r+1}, ..., ¢r-1,2
y T}y » s ceoyir—1, -1 1 -
and 7 is admissible. In this case r=1}} then #' N7 ={1}

Con=Z,x%€q.,
as before.

Finally let r<p and choose r={{r} {r+
={{r}, 1}...,{p-1
{Lo+1}...{r—1,r+p-1)}. } p=1h 0.}
1
As before = N7 ={1} and 7 is admissible, hence o < Z,x€n.,.
In all cases the partition r is defined by the relation .

9~q'>q'=q(modp), q,q'cQ.
Then for any r = 1, the basic holonomy theorem yields
@(1_,) = i'-l" €.
(The € arises if we replace the holonomy group #,(%,,,) by the quotient

of the first element of the derived s
. equence — we use th i
Finally we obtain €,, < Z,x (3" ). e theorem 4.3.9(i).)

Contrast this result with the basic h 5
s s olonomy coveri 5
which is clearly very inferior. y covering €(,,<Z,°2’,

Example 4.11
This transformation semigroup arises from th
- is tr e study of the
tricarboxylic acid (or Krebs) cycle in biochemistry. Let Q ={0, 1, 2, 3, 4}

and let of = . .
able: (Q, S) be the transformation semigroup generated by the

0 1 2 3 4
a 1 1 2 3 4
5 0 2 3 3 o
< 0 1 2 4 4
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The transformation semigroup is irreducible and so we must apply
the basic holonomy decomposition. The skeleton is:

e

{1,2,3,4) {0,1,2,4)

\,)

1,2,3) ={0,2,3) = {1,2,4) = (0,2, 4)

1,3} = (2,3) ={2,4)={0,3} = {0,4) = (1,4} = {0,2) = (1,2}

where the singletons and & are omitted and also some of the lines
indicating the < relation are left out for clarity. The minimal height
function h yields h(Q) = 4. The derived sequence is
»*={{1,2,3,4},10,1,2,4},{0,2,3}}
r?={{1,2,3},{1,2,4},{0,2,3}{1,2,4}{0,2,4}}
' ={{1, 3}, {2, 3}, {1, 2}, {0, 3}, {2, 4}, {1, 4}, {0, 4}, {0, 2}}.
Now #/(=*)=3, and the holonomy groups are given by:
¥ () =%x({1,2,3,4)v %0, 1,2,4})=2'v2,
%5 (f) = X0, 2, 3) =3, ¥: (of) = ¥({0, 3)) =2,

and so
As iz"ig“(i. v T)"S.
Does this decomposition have a biochemical interpretation?

4.5 The Krohn-Rhodes decomposition

The first major result in the algebraic decomposition theory of
transformation semigroups was due to Krohn and Rhodes and appeared
in 1965. Since then many versions of this result have appeared. Some
are set in the context of state machines, some in the context of Mealy
machines and of course some occur in treatments of the theory of
transformation semigroups. We will state the most relevant form of the

theorem here.

Theorem 4.5.1 (Krohh—Rhodes decomposition theorem)
Let of = (Q, S) be a transformation semigroup. Then of may be
covered by a finite wreath product of transformation semigroups of the

following two types:



142 The holonomy decomposition

(i) aperiodic transformation semigroups,
(ii) transformation groups (G, G) where G is a finite simple
group and G|S.

Proof Choose a maximal height function h:1(sf)» Z for of. We
first suppose that § # . Now ¥, () = #(A) for some A e I(«f). By the
basic holonomy theorem (4.3.7)

A=Ky (A)o I3 (A)o. ..o X, (o)

where n = h(Q). Applying theorem 3.4.3 to each component ¥; ()
yields

X (A)s (P, Q) o X,

where ¥/ ()= (P, H,), P, is the maximal image space of the element
of height i in the skeleton and H; is the holonom! group of this element.
We now apply example 3.3 to get (P, D) <[l 2" where |P,|=<2* and
theorem 3.5.4 to get ¥; < ¥;°...° %, where each G; is a finite simple
group,j =1,..., mand G;| H, Finally note that H,| S by the construction
of the holonomy groups.

In the case where S =@ then o =(Q, @) =<[1* 2 by example 3.3. 0

The corresponding theorem for state machines says that any state
machine may be covered by direct and cascade products involving
two-state reset machines and simple grouplike state machines whose
groups are covered by the semigroup of the original machine. Proofs of
theorems of this type were developed by Zeiger and then Ginzburg (see
Ginzburg [1968).) Their approach was briefly sketched in the opening
paragraphs of this chapter, but it has the serious disadvantage of leading
to a very inefficient and lengthy decomposition process. For example,
their original method would require the use of a computer to obtain a
decomposition of the example 4.11.

The development of the holonomy decomposition theorem was
achieved by Eilenberg [1976]. His original definition of a height function
contained a small inadequacy (condition (iii)). This failing was indicated
to me by T. Keville [1978). The approach we take here, using the derived
sequence, is not very far removed from Eilenberg’s own treatment. The
advantage of our method occurs in the ‘improvement’ of the holonomy
decomposition in section 4.4.

The applications of this theory are likely to prove important in all
those areas where automata theory can be used to model discrete
systems. We have already noted how an important metabolic pathway
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can be compared with some simple cyclic groups and aperiodic t.ransf.or-
mation semigroups. There are many other examples, in the b.nolog.xcal
and psychological sciences, and also in computer science and engm?ermg.

All the results of this chapter may be applied to ‘pure’ semigroup
theory also. Recall that if § is any semigroup then (S', S)isa transf?rma-
tion semigroup, and so the decomposition theory may be appl.led t.o
(S, S). However, it is often possible to obtain better results: in th.ls
situation, by using the internal structure and techniquesf avan!able in
semigroup theory. In particular, the skeleton is essentmlly. ]ust.the
collection of principal left ideals of S with the appropriate relation. Since
there are many other algebraic structures in a semigroup, we may as
well make use of them. Of particular note is the depth decomposltlo.n
theorem for semigroups due to Tilson. (See Eilenberg [1976].) This
often leads to a shorter decomposition of a semigroup compared to the
basic holonomy decomposition applied to the semigroup.

4.6 Exercises . . .
4.1 Prove that the minimal height function defined in section 4.2 satisfies

all the requirements of the definition of a height function.

4.2 Calculate the skeleton and the height function for the transformation
semigroup (Q, S) represented by:

1 2 3
a 1 1 1
b 1 2 3

where Q ={1,2, 3}, S={a, b}.

4.3 Construct the skeleton and the derived sequence for the transforma-
tion semigroup 3 v ', Show that #r' is orthogonal and hence estab-
lish that 2’ v2' =2'x2"

4.4 Decompose example 4.4 and hence show that this u:anfformation
semigroup may be covered by a wreath produf:t of aperiodic transfor-
mation semigroups and symmetric permutation groups.

4.5 Let s =(Q, S) be a state machine. Show that I(s#) =(s¢) =I(sf)
and I(s£°)={BU{z}|Bel(#)}. lf A€ 1(sf) show that the holonomgt
transformation group of A regarded as an image of sf" equals ??(d )
and the holonomy transformation group of o regarded as an image



