144 The holonomy decomposition

of o equals ¥(sf). If Acl(¥°) and h(A)>1 then H(«#) =H(B)
where A=BU{z}and Bel(«). If h(A)=1 then H(A) =H(B) +1.

4.6 Let 7 be an admissible partition on the transformation semigroup

A =(Q,S) and (f, g): o »s4/(r) the natural epi i
that I(s#/(7)) = f(1(sf)) (as sets). natural epimorphism. Show

4.7 Let h:I(sf) - Z be a height function with 4(Q) =n,and n" > #""' >
...>1 the derived sequence. Suppose that #' is an orthogonal
partition for some 1<i<n and let #' N7 =1 with 7 an admissible
partition. Let (f, g): & -» #/(r) be the natural epimorphism. Show

that f(m)=f(x'"")=...=f(1) is a sequence of admissible subset
systems in &/(7).

4.8 With the notation of 4.7 define a function k:I(s#/{r)})>Z by k(B) =
inf {h(A)|Ael(sf), f(A)=B, Bel(#/{r))}. Prove thaty kEBi =
inf{j| B e f(=")}.

S

Recognizers

We have seen how Mealy machines can be used to model the connections
between inputs and outputs of complex systems, and how to decompose
the underlying state machines that are central to this procedure. There
is another area in which state machines play a major role. In the
development of computer systems it is important to distinguish between
certain sequences of inputs. The computer must be able to recognize
those instructions that are compatible with its system and these instruc-
tions will take the form of input words from an input alphabet.

This chapter is concerned with the mathematical theory of recognizers;
these are state machines that are able to discriminate between two
disjoint sets of input words. The foundations for this theory, initially
developed by S. C. Kleene in 1956, had an important influence on the
construction of compilers for computers. It is also of independent
mathematical interest and is closely related to the study of languages
and psycholinguistics.

S.1 Automata or recognizers

Let A4 =(Q, 3, F) be a state machine (as usual Q and I are
finite and F is a partial function, F:0x3-Q). Let i Q be a fixed
state called the initial state and suppose that T< Q is a set of states
called the set of terminal states.

The collection M= (K, i, T) is called an automaton or a recognizer.
We will use the second term since automaton is often used as a generic
noun to describe all types of machine. The recognizer is able to distin-
guish between certain types of word from the monoid £*. For example,
let « €E*, then iF, € Q or iF, = @ and we say that I recognizes a if
and only if iF, € T. The set 3* is partitioned into two disjoint subsets,
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the set of words recognized by I and the set of words not recognized
by . The set of words of X* recognized by M is called the behaviour
of M and is denoted by |M]. Thus |M| ={a € =*|iF, € T}.

One major aim is the characterization of the subsets of =* that can
arise as the behaviour of a recognizer. We shall see that some subsets
of Z* can never be the behaviour of a recognizer. Another fact that will
soon become apparent is that different recognizers can have the same
behaviour.

We need some straightforward notation for describing subsets of =*,
Let AcX* Bc3* with A= J, B# J, we define

A-B={aeX*|a=ab;acA, beB},
A'={aeX*|la=a;"... a,;a€A 1sisn n>0),
A*=A"U{A).

Examples 5.1

These examples will be described by using directed graphs to
describe the recognizer with the initial state indicated by a bold arrow,
unlabelled, and pointing towards the state. The terminal states are shown
with a bold arrow, unlabelled, pointing away from the state. Let £ = {0, 1}
in all of these examples

0 —o—
Here Q = T ={q}. The initial state is also q. Any word from X* will be
recognized by this machine and so lﬁRI =3*

’@1 9

RV

0 1

Then the behaviour, |I?), is {0}. (Notice that 01 is not recognized since
@Fn=0.)

0

» a 0 9
(iii) \ /
qs

0,1
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This recognizer has behaviour {0}* (which can be written as {0}* - {0} or
{0} - {0}* or {O}*\{AD).

0
—PQ——P
(iv)
1
92
<.
This has behaviour {0}*.
0
_’ qy _.._o——-—(q? —>
) \ |
e e R
U »

The behaviour of this machine is {0*}U{1}".

0 0
o —»—C—

The behaviour is {0}* - {1} {O}*, that is all words in * containing
precisely one occurrence of 1.

0 ﬂo

—’ ‘h—’—"h—’—qa

(vii)

This has behaviour {0} - {1} - {O}*U{1}U{1} - {0} which is the set' of all
words of I* containing precisely one occurrence of 1, that is the
behaviour is equal to {0}* - {1} - {0}* as in (vi).
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0,1
(viii)

92

()
0,1

This recognizer has behaviour {A}.

(ix) ——-bb 1~
0.1

The behaviour of this recognizer is &J.
We will meet other examples as we proceed further.

. The concept of the completion of a state machine has been studied
in chapter 2. We can immediately deduce the following result:

Theorem 5.1.1

Let # =(Q, I, F) be a state machine, i € Q and T < Q. Consider
the completion #° of #, and let M° = (K", i, T), then

2| = |},

Proof We assume first that 4 is not complete and let 4° =
(QU{x}, X, F') where xg Q, xF,, = x, qF, = x if qF, = & and qF., = gF,
if gF, # &. We now assume that || ¢ . Let « € |I?), then iF, e T. Sino;
iF, # @ we may deduce that iF, =iF,e T and so a €|I°|. Now let
a €|}, then iF, € T. If iF,, # iF, then iF} = x for some 8 € X* such
It;;tl : I';,g'y, y€Z*. But then iF, =xF, =xg T and so ag[IN°|. Hence

If|IR| = & then iF. ¢ Tforanya e 3*andsoiF, g Tforanya €3*. 0

The recognizer IN° will be called the completion of IN. It is clear from
theorem 5.1.1 that we will lose very little if we concentrate our studies
on complete recognizers.

Let 3 be a finite set, a subset A of £* will be called recognizable if
there exists a recognizer I such that A is the behaviour of I, that is
if A = | for some recognizer M. We say that M recognizes A.

.C§.|ven a recognizable subset A it is usually possible to find many
distinct recognizers that recognize A and one of our tasks in the next
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section is to construct a standard complete recognizer that recognizes
A and is also the ‘most efficient’ recognizer with this property. We will
now explain the term ‘most efficient’.

Intuitively a recognizer I recognizing the set A< 3* would be con-
sidered efficient if there were no ‘wasted states’. For example, suppose
that M= (K, i, T) where 4 =(Q, Z, F) and consider the set of states

R ={iF,|a €eZ*}.

R then consists of all those states of Q that can be reached from the
initial state i. These are the only states that can influence the behaviour
|| = A and consequently if R g Q there will be some states in Q that
will never feature in our discussions about A. If I has the property that
R =Q we will call M accessible. Given a recognizer M= (M, i, T) we
can remove the states in the set Q\R, and obtain an accessible recognizer -
which clearly has the same behaviour as M. This is called the accessible
part, M°, of M. Thus

M* =M i, T)
where #° = (R, Z, F*), R ={iF,|a € Z*}, and qF =gF, for q€R, a €
$*. Note that [TR°| = IR]. It is clear that if I is complete then IN° is also
complete.

Another way in which states may be redundant is if there are states
in the recognizer that never lead to a terminal state. Thus if g€ Q and
qF.£ T for all a € £* then g can never lie on a successful ‘route’ from
the initial state i to a final state in T. Consider the set S, of all states
that can lead to a terminal state, so that

S={q|qF.eT forsome acX*}.
If S = Q we call M coaccessible. The coaccessible part of a recognizer
WM = (M, i, T) is defined to be M® = (4", i, T) where
M*=(S,%,F),
$={q|gF.e T for some a €X*}
and
qF% =qF.forqeS, aeX*.

Clearly [T*|=|D%]. A recognizer M= (A, i, T) is called mim if it is
both accessible and coaccessible.

Example 5.2
Let 2 = {0, 1}, O = {ql’ q2, q3, e 45}-
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This defines a complete recognizer I = (A, q1, {¢}). Then M* is given by

O(‘) | ()1

-—P q, ————e (] 3

\%4——_ Q 0,1
v

(R*)* is given by

and this is a trim recognizer which satisfies |(I?*)®| = |2, but is no longer
complete.

We could equally well have constructed (I°%)* aﬁd this would have
produced the same machine.

Our final task for this section is the introduction of some useful
notation.

Lei M =(Q, Z, F) be a complete state machine and suppose that qeQ,
a €X¥%; define q * a = qF,, and then for Ac3*, § < Q we have:

q*A={g*alacA)
S*a={q*alqe5}
S*A={g*alqeS acA}
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qsa'={peQlg=p*a}

q*A'={peQlq=p *a for some a € A}

S*a'={peQlp*acs})

S+ A '={peQ|p*acs for some a € A}.
If AcS* and Bc =¥, ac A and b € B then define

a-b'={acS*|ab=a}

a' b={ac2* aa=b}

a' B={ael*|aacB}

a- B '={aeZ*|ab=a for some b € B}

A-b'={aeZ*|abe A}

A~ b={aeZ* aa =b for some a € A}

A-B'={aeZ*|abe A for some b € B}

A~'. B ={aeX*|aa cB for some a € A}.

With.l{=(0,2,F)andp,quweputq"°p={aei."‘|p=q * a}, that
is the set of words that ‘send q to p’.
If R, S < Q then we let

q'°R={aeZ*|g*acR}
§'cR={aecZ2*|q*aeR for some g€ S}.

Some elementary results can now be stated, their proof will be left as
exercises. Some useful identities are to be found in exercise 5.8.

Proposition 5.1.2

Let 4 = (Q, 3, F) be a state machine, A, B, C< S*and Sc Q.
(i) S*A)*B=S+(A-B)

(i) §*A)*+B'=§*(B-A)”"

Proposition 5.1.3
Let 4 =(Q,, F)and M=(H,i, T)and A= |M| then
A=i"'eT.
If g=i*a,aeZ* then
q 'eT=a"'A

Proof Recallthati ‘e T={aeX*|i*aeT}
={a eI*|iF.e T}
=A.
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Now let g =i * a, then
q'eT={Bei*|q+BeT}
={BeX*|(i*a)*BeT}
={BeZ*|iF, €T}
={Be3*|aBec A}
=a"'A. o

Proposition 5.1.4
Let 4 =(Q, X, F) and M = (#, i, T), then M is accessible if and
only if Q=i *(Z*) and M is coaccessible if and only if Q=T » (2*)7".

Proof This follows from the definitions since
R={iF,|aeX*}={i*alacI*}=i*(Z*)
and
S ={q|qF. € T for some a € *}
={qlq* a €T for some a €2*}
=T=»E*"\ 0

5.2 Minimal recognizers
Let I be a finite set and A = 2*. If A is recognizable then there
exists a recognizer
M=(M,iT) where# =(Q,2,F) and A=|M|.
We shall now construct a recognizer with behaviour equal to A directly.
Let us consider all subsets of £* of the form
a'-A={BeX*|aBeAl,
where a € 2*. Put Q4 to be the set of all such subsets, noting that this
may include the empty set, &.
Thus Qa={a"'- AlaeX*}and clearly Ac Qsince A=A""- A.The
state function F*: Q4 X2 - Q, is defined by
(@' AF2 =(a0)"' A
OF =0
Put iy = A and define Ty ={a"' - A € Qala € A}. (Note that a'-Ae
Tae>Aeca™' - A.) This defines a state machine
HMa=(Qa %, FA)
and a recognizer
M= (Ma,ia, Ta)

}foraez.
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once we have established that F* : Q4 X £ -+ Q, is a well-defined mapping
and Q, is a finite set.

Note that if A= then Qa={D), ia= and Tx =D (that is there
are no final states).

Theorem 5.2.1
If Ac3* is recognizable then M4 is a recognizer with the
property that || = A.

Proof Leta™ - A,y -AeQawitha™' A=y Az Q. If
o el then
(@' AFs =(a0)'- A
=o' (a"'A) by exercise 5.8.
=g (v A)
=(yo)' A
=(y™' AF2
and so F* is a well-defined function.
Next we show that Q, is finite. Let @' - A € Q4 and put q = ia where
M= (A, i, T) is a recognizer that recognizes A. Now
a'-A={BeZ*|afecA)
={Be3*|iafeT)
={Be2*|qBeT}
= q"l oT.
Since Q is finite there can only be a finite number of sets of this form
and so Q, is finite.

If acA thena~'Ae T, and so AF2 € T, which means that a € [TR,].
Now let x € [T, then AF2 € T which gives x " - A € Ta. Suppose that
x'-A=a"' A where acA, then aA=aeA and so Aea™ ‘A=

-1
x A
Therefore xA € A and so x € A, proving that [IR4| < A. Consequently
|ﬂRA| =A. D

Note that M, is complete and accessible, but will not be coaccessible
ifPe OA.

Examples 5.3
Let £={0, 1}
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(i) A={0} - {1}*U{1}*, 0'A={1}*=1""A, (0 'A=0, etc. and
Qa={A, 07'A, O} with state function:

A

0,1

O

p——=—10"'4
o,

Ta={A, 0"' A} and so the complete recognizer M, is:

—>4—>

0,1

$—a——0" A —P

0,1 1

(i) A={0}*-{1}-{0}*, 17'A ={0}*, Qa={A,{0}*, B}, Ta={17"A).

1]
—)
1
0
U S— Q—}
01 _ (the completion of

example 5.1(vi))

The recognizer IM 4 has the following minimality property.

Theorem 5.2.2

Let AcZ* be recognizable and suppose that M= (4, i, T),
where # =(Q, Z, F), is a complete accessible recognizer with behaviour
A. There exists a function f: Q-+ Q4 such that:

() fli)=1ia,
i) FNTA)=T,
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(iii) (f(q))F% =f(qF,)forallqeQ, o€},
(iv) f is surjective.

Proof Define f: Q- Q4 by
f@)=q 'oT={aeZ*|q*acT}
We must first show that f(q)e€ Qa. Since Q is accessible there exists
B €2* such that g = iFg =i+ 8. Then
B~ A={yeX*|ByeA}
={yeZ*|i+(BY)eT}
={yeS*|(i*B)*ye T}
={yeX*|q*veT}
=q'eT.
Thus f is a function. Then
() f)=i"eT={aeZ*|i*acT}=A=is
(ii) Let f(q)€ T, then ¢"'oT=a"'A for some a€ A and so A€
q 'o T, thatis g * Ae T and so g T. Hence f (T cT. NowforteT
we have f(f)="" T and since Aet™" o T we see that t'o T e Ta. Thus
f(T)c Taandso f (Ta)=T.
(i) (fQ)Fs =(q"'TIFs
=(B'AF2 ifq=i*pB
=(Bo)'A
={yeX*|Boye A}
={yeX*|iBoyeT}
={ye2*|qoveT}
=(qo) ' T=f(gF,) forqeQ,o€X.
(iv) Let s~'A € Q4 where s€S*, then put p=ise Q and note that
pleT=s"'Aandsos 'A=f(p).
Therefore f is surjective. 0

We can now regard the recognizer I, as being the minimal complete
recognizer of the recognizable subset A, where the term ‘minimal’ refers
to the properties described in theorem 5.2.2, in particular (iv) implies
that |Qa|s|Q|. If we try to construct the recognizer M, in the case
where A is not recognizable we will find that the set of states Q. isno
longer finite and so M4 will not then be a recognizer according to our
definition. This is examined in the next theorem.
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Theorem 5.2.3

Let Ac X*, then A is recognizable if and only if the collection
{B'A|B €Z*} is finite.

Proof If A is recognizable then the proof of 5.2.1 establishes
that Q. is finite and so {8 A |8 € 2*} is finite. Clearly if {8 "'A |8 € £*}
is finite then we may construct the recognizer I, which will then
establish the fact that A is recognizable. 0

5.3 Recognizable sets
The examples of recognizable sets that we have aiready seen
will now be augmented by developing general techniques for constructing
more recognizable sets from given recognizable sets.
Notice first that the following are examples of recognizable sets where
2 is a given finite set and o € 2.

{o}, {A}L, O, =*.

Now suppose that A, B are recognizable subsets of £*, We will show
that AUB, A - B, A*,3"\A, AN B, A* are also recognizable. The basic
technique is the same in all cases, namely that we construct a recognizer
with the desired property using recognizers of A and B. The machines
so formed may not be minimal in the sense of 5.2.2. but that is irrelevant
here.

Theorem 5.3.1

Let A, Bc3*. If A and B are recognizable then A U B is dlso
recognizable.

Proof Let M= (M, i, T), M =(4',i", T') be recognizers with
#M=(Q 2, F), M =(Q', X, F') and such that | = A, || = B. Consider
Mv M =(QxQ' 2, F) where (q,q")F, =(qF,, q'F.) for c€2, qeQ,
q'€Q'.

Let Mv I = (M v H', (i, '), (Tx Q)U(Q x T")). We show that | v
M|=AUB. Let ye|MvI|, then (i, iF,e(TxQVU(QXT') so
(iF,, i'F,)e(TxQ)YU(QxT') and either iF, e T or i'F\, e T, that is
either ye Aor ye B, andso ye AUB.

Now let y € AUB, then either qF, € T or ¢'F, e T". If qF, € T then
(9. 9)F,=qF,q'F,)eTxQ' and if q'F,eT' then (q,q)F, =
(9F,, q'F,)e Q X T' and in either case ye [ v . 8]

Recognizable sets 157

Theorem 5.3.2 '
Let A, Bc3*. If A and B are recognizable sets then A - B is
also recognizable.

Proof Let M=(H,i, T), D =(M',i', T') be recognizers with
M =(Q,3, F), #'=(Q', %, F') and such that [T} = A4, || = B.
Consider 4 A M' =(QxP(Q"), Z, F*) where
(af» PF,) ifqF,e T
(@ P)F, = {(qF,, PF.U{i") ifqF,eT
for g€ Q, Pe P(Q"), o € X (here PF, ={pF, |p € P}).
Now put T®={(q, P)|qe Q, Pe P(Q"), PNT'# @} and examine the
recognizer,
MAD = (M A M, (i, D), TY).
LetacA- B, thena=a-b for some ac A, be B and iF, € T. Now
(i, DIFS =(i, D)Fa
= (iF,, i"F}
=(iF,, P) where i'F,eP, Pe #(Q")
eTA
Hence A-Bc|RAM|. .
Now let B&|Tt A D], then (i, D)F5 € T, so that (iFs, P)e T" for
some PeP(Q). Clearly P# & and so there exists y, 8 € 2* such that
B=v:8 and iF,eT. We call vy an initial segment of 8 and note tllx:t
yeA.LetC={yeS*|B=v 8forsomescZ*and ye A}=5 - (E‘.") ,
then we have seen that C is not empty. Each initial segment v in C
defines an ‘end segment’ 5 such that 8=y - 8. Let R={i'F |6€2* and
B=1v- &8 for some yeC}, then R NT' # D otherwise B would not be
recognized. Let ¢'e RNT' be such that q' =i'Fj, and suppose that
B =o' 80 with o€ C. Then v0€A and 8,€B, hence e A B as
required. 0

Theorem 5.3.3 '
Let AcS*. If A is recognizable then so is A*.

Proof Let M=(M,i,T) where #=(Q,Z,F) and M| = A.
Define 4* = (P(Q), T, F*) where
PF, it PF,NT=0
PF,U{i} otherwise
for Pe P(Q), o .

PF} ={
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Let T*={Pe P(Q)|PNT # B} and putM* = (4*, {i}, T*). f a € A*
then a =a; ... a, for some n e ¥ and a;€A, 1si<pn Now
{i}F2 ={i\F3,. ..
=({iFq,}U{iDF2, ..,
= ({iF a,a5, iF 0, YU{iVFE,. .,

={iFm ti:...a,.o reny iFn,,, i}e T*

since iF,, € T. Therefore A* < [TR*|. The inequali * i
. = . ity [0
as an exercise, 9 4 <4 will e ]elfjt

Theorem 5.3.4
Let A c 2* be arecognizable set, then *\A is also recognizable.

Proof 1t M= (M, i, T) where # =(Q, 3, F) i h th
then M = (4, i, Q\T) is such that || = " A. P such that 0 G

Theorem 5.3.5
If A and B are recognizable subsets of £* then so is A NB.

Proof See exercises. ]

So far we have established that there are a considerable number of
reoognizable sets but we have yet to meet a subset of S* that is not
re.cog.mzable. We will, shortly, develop techniques for testing the recog-
nizability of certain subsets of £*, but in the meantime we will brie:
examine a subset which is not recognizable. ’

Example 5.4
Let 2={0,1} and put A={0"1"|neN}. Su
L X . Suppose that M=
:.l{, i, T) is such that A = |TR}. If 4 =(Q, £, F), as usual, then iFg»;~ € T
.or each n € N, Let q, = iFo~ and suppose that qn = qm Where m e ¥, then
zF.,.-;n = q,..F;- =iFo1~€T and so 0™1" € A. Therefore 0™1" =0"1"
which implies m = n. Consequently the set of states 41,92, ...,4u,...

|§ infinite and M cannot then be a recognizer. Hence we have a contradic-
tion to A being recognizable.

Theorem 5.3.6
. Let:, T be finite non-empty sets and f:3*->T™ a function
satisfying the condition f}(Ap) = As where Ar and Agz are the empty

The syntactic monoid 159

words in ™ and I* respectively. If A<3* is recognizable then so

is f(A).
Proof This is left as an exercise. a

$.4 The syntactic monoid
Suppose that # = (Q, I, F) is a state machine and consider the

relation ~ 4 defined on Z* by

a~uf O&F, = Fp
where a, B € =*. We can immediately deduce the following proposition
(cf. section 2.2).

Proposition 5.4.1
If 4 =(Q,3, F) is a state machine then ~4 is a congruence

on T*,
Proof Clearly a ~4B&>xay ~4xBy forallx,ye I+, 0

If M=(H, i, T) is a recognizer with 4 =(Q, %, F) we note that if
a ~ B then for x, y € Z* either xay and xBy both belong to 1] or xay
and xBy both do not belong to [T}, thus

a ~u B [xay €| DY <> xBy € | T, for all x, y € Z*).

It is now possible to define a relation on 3* based on any given subset
Acl*; we put

a =, B[xaye Ac>xBy € A for all x, y € 2*].
Then we have seen that a ~4 8> a =g 8. Can we obtain a closer
connection between these two relations? In general 4 may have too
many equivalent functions for the relations to be identical. We can,
however, replace 4 by a more efficient machine, namely the minimal

complete recognizer of [T?].

Theorem 5.4.2
Let A c * be a recognizable subset of £* with minimal complete

recognizer M4 = (M, ia, Ta). Then for a, B € 3* we have

a~qBSa =, B.

Proof Since A = || we already have a ~ 4, B> a =aB. Let
a =, B, thenxaye Ae>xByc Aforallx,y e3*. Henceye (xa)' A

e e e S
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ye(xB)™' - A forall ye =*. Thus (xa)™' - A=(x8)""- A and so
(x'-A)Fy =(x"'- A)Fs forall xeZ*

which means that F4 = F2 and so
a~aq. B 0

For a given recognizable set A cX* the congruence =, is called the
Moyhill congruence of A. If this congruence is factored out of the monoid
I* we obtain the syntactic monoid of A, this is given by $*/=,=
3%/~ u.=M(H4), the monoid of the minimal complete state machine
AMa. See chapter 2.

Since the congruence =, can be defined with respect to any subset
A c2*itis of interest to see what happens when A is not recognizable.
This is explored in the next result.

Theorem 5.4.3
Let A c 2*. The following statements are equivalent:
(i) A is recognizable,
(ii) =*/=4 is finite.
(iii) A is the union of congruence classes of a congruence on
T* of finite index.

Proof (i)=» (ii). A is recognizable implies that a minimal com-

plete recognizer N 4 exists and M(A4L,) is finite so that £* /= 4 is also finite.

(ii)=> (iii). If £*/=, is finite then the congruence =, on =* is of finite

index. Let [«] denote the congruence class containing o where a € 3*.
Now put

B=U{[a)liaF2 € Ta}
=U{{a)ja™’-A=a""- A for some a € A}.
Clearly each a € A since isF2 € T, and so B< A. Now let a € A, then
iaF2 € Ta and so [a]< B. Hence B = A.

(iii)=> (i). Suppose that ~ is a congruence of finite index on £* and
let A=U{[a]]i=1,..., n} where a; € =* and [a,] is the ~-congruence
class containing o,

Let 4 =(Q, 2, F) where Q=3*/~, F: Q@ xX - Q is defined by

[a)F, =[ac] for[alel*/~,ocX.
Puti=[A]land T ={[a)|a € A}. M= (4, i, T) is a recognizer since Q is
finite. Let a € A, then

iF,=[A])- Fa=[Aa]l=[a]eT,
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hence A < |T. It b € | then iF, € T so[A)F, =[b]e T and b € A. Hence
|| = A and A is thus recognizable. 0

The criterion (ii) can often be used to establish that a particular set
is not recognizable since it means that the Myhill congruence is then of
infinite index.

Example 5.5
Let £ ={0, 1} and put

A={0"10"{neAN).

Consider the Myhill congruence =4 defined by A. The infinite sequence
of elements 0, 0%,...,0™, ... must all belong to different congruence
classes for if 0° =4 07 then

x0°ye Ae>x0°% e A forall x,yel*
and in particular, if we assume that p>gq, thenput x = A, y = 10° we get
0°790%10° e A0°10° € A,
that is
0°70°10° € A,
which is false. Thus p = g and s0 =, is not of finite index and A cannot
be recognizable.

Example 5.6
Consider the recognizer of example 5.3(ii) where 2= {0, 1} and
A ={0}* - {1} - {0}*. The state machine is isomorphic to

oG l/)°

J

0,1

We will calculate the monoid of this machine, it is generated by {A, 1, 1%}
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with the table

1 1?2
A A 1 12
1 1 12 12
11 11 lz 12

This monoid is the syntactic monoid of A. Notice that 1 is not = 4-related
to 12 since

AlAeAbut Al’Ag A,

similarly 0 is not = ,-related to 1 since AOA g A. There are three distinct
=4-classes and A =[1].

5.5 Rational decompositions of recognizable sets

In this section we examine one of two methods of decomposing
a recognizable set. This first method is the classical approach of Kleene
and gives a constructive characterization of a recognizable set.

It will be recalled that any singleton word from 3* is recognizable,
as indeed is the empty set of words. Furthermore if A and B are
recognizable subsets of * then so are AUB, A'B and A*. Con-
sequently we can start with a finite collection of singleton sets of words,
apply the operations of union, ‘dot’ product and the star operation to
them a finite number of times and obtain more recognizable subsets.
The question Kleene answered was whether any recognizable subsets
exist that cannot be produced in this way.

Let =* be the free monoid on the non-empty set £ and consider the
set P(Z*) consisting of all sets of words in 3*. We can define three
operations on P (X*), namely

AUB
A-B
A*,
They are called the rational operations on P(X*) where A, Be P(3¥).
Now let % c P(Z*), we say that ¥ is closed under the rational operations
ifgiven A, Be ¥ then AUBe¥X, A-BeX and A*c ¥,
We now define a subset Rat(Z)c P(E*) as follows. Rat(Z) is the

smallest subset of (=*) that contains the singleton subsets and &, and
is closed under the rational operations.

Rational decompositions of recognizable sets 163

Suppose that a set A€ P(Z*) is either & or {x} (where x€Z*) ?r is
formed from sets of this type by a finite number of rational operations,
then clearly A € Rat(E). We will call such sets regular sets of words. The
collection of all regular words is written Reg(Z) and clearly

Reg(Z) = Rat(2). .
Notice, however, that the set Reg(Z) is itself closed under the rational
operations, it contains the singleton subsets and the empty set, oon'-i
sequently it equals Rat(Z) which was supposed to be the smallest suc!
set. Thus

Reg(2) =Rat(Z) N _—

i i i izable subsets o y

and Rat(Z) is contained in the set of all recognizal .
5.3.1, 5.3.2, 5.3.3 noting that &, {A}, {x} (x € 2*) are all reeogmzable:.
(The first two can be found in examples 5.1 and the last one is
exercise 5.1.)

Proposition 5.5.1
Letpg and I" be non-empty finite sets and suppose that f:2-T

is a mapping. Define f*:X*-»>T* by
fHor...0x)=flo1)...flg,), O1...0,€X
ffN=A )

If A is a regular set of =* then f*(A) is a regular set of I'*.

is a si n f*(A) is also a singleton, similarly
if Ais g,’o;{et:ff‘:‘(::;i:“gf tS(::;::):e {;it)B and C are regular sets in
=*, f*(B) and f*(C) are regular sets in I'". Then
F(BUC)=f*B)UF(C) isregularin r*,
f*B-C)=f*B)- f*(C) isregularin r*,
F(B*)=(f*B))* isregularinI™.
An inductive proof based on the number of regular ?per:tions in thDe
decomposition of A will establish that f*(A) is regular in 2*.

The proof of the fact that recognizable sets are regularis l.)est examint':d
with the help of some more abstract terminology, otherwise the details

can become rather daunting. . .
Let S be any finite non-empty set and suppose that R is a relation

on S. We will write
aRa' tomean (a,a’)e®R or a is related to a’ under R.
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Now suppose thata =s; ... s, € S* we call @ an R-word if
SR8y foralli=1,...,n-1.
The empty word A will also be called an &®-word. Given two &-words
a=s,...5, and a’=s5)...s, we can form further ®#-words, namely
a-a'=5y...85 Si...8n if saPs1.
Given two sets X, Y of R-words then we define the sets
XUY

X-Y={x-y|lxeX, yeY and x - y is an R-word}
X*={xy-x3...xu|x;€ X and x, - x,... x,, is an R-word}.

These are all sets of ®-words in $*.

Given sy, s, € § we define R(s,, s,) to be the set of all R-words in S*
of the form s ... s,

Theorem 5.5.2

Let S be a non-empty finite set, # a binary relation on § and
§1, S« € S, then the set R(sy, s,) is a regular set of words of S*.

Proof We proceed by induction on the size of the finite set S.
Let |S] = k. Consider the case k = 1. Suppose that § = {s}, then we have
two possibilities, either s®s or s is not related to s under . In the
former case the set R(s,s)={A,s, 55,5 5°5,...}={s}*, in the latter
case R(s, s) ={A}. In both cases R(s, s) is regular.

Not let k > 1 and assume that the result is true for all finite sets S of
order less than m. Consider a set S of order m and put §' = S\{s,}. Let
a be an R-word belonging to R(s,, s,). Then a =5, - a’ - 5, for some
R-word a'€ §*. We can write a in the following form. Either

a=s7'B1-s1* Ba...ST B Sa
or
d=S'1"‘31‘3'1"'32---3'1'"3"3'1"" * Sn

where the ®-words B,, ..., 8, do not contain the symbol s,, and are
not the empty word. It is clear that 8,,..., 8, are R'-words in (S')* if
we consider the restriction R’ of the relation R to the set §'.

Now let B] =Y11 .0 Y1y where Yits oo Y14 € S’ then Bl € Q'(Yu, 11.,)
which is a regular set in (S)*. If B8,€S’ then B, €{B,} which is also
regular in ($")*. Similarly for 8,, ..., 8. Hence

ac{s)* - A {si}* - Axl L s} A - {sa)
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or
acl{s) Ay (s} As. s A - s} - {sa)

where the A,, ..., A, are all regular sets. If

B= [ U R 7')] U [VEJS {7}]

v vEeS
then B is also a regular set in (§')*, A, < B and so either
ae{s;)*-B-{s}* - B...{s:1}* B {sa}
or
ae{s))* B-{s}* B...{s1}* - B {s:1}* - {sa}.
It is also clear that if
are{s))* B {s)}* - B...{1}* - B - {sa}

or

are{s)* - B-{s:i)* - B...{s:)}* - B+ {s1}* - {sa}
then

ay € R(s1, $a)
and hence

R(s1, 5.)=[s1}* - B - {s1}* - B...{s:}* - B - {sa}]
Ul{s))* B -{s:}*-B1...
.o .{s;}"' ‘B~ {sl}l.I : {S,.}]

which is a regular set in $*; and this completes the inductive proof. O

Theorem 5.5.3
If A is a recognizable set of £* then A is regular.

Proof Let M= (M, i, T), #=(Q,%,F) be such that A =|TA.
Put S = QxS and consider the set of words S*. Define the relation #
on S by

(q, 0)R(q', 0')>q'=qF, forgq, q€Q,0,0'cl.
Now let @ € A then a € 3* and iF, € T. If @ = 1 . . . 7, then the sequence
of states i, iF gy, iFg,0 - - - + iF o, ..., defines an R-word in $* namely:

(i,01)  (iFoy, 02) .. . (iF oy ... 00y Tn)
which belongs to R((i, o), (iF s, ...cn-p .)) which is a regular set of §*.
Let

A'=U{R((,0). (4,00, 0'€2,q€ Q,qF > € T},
then a€A’. Conversely let gecA’, then BeR((i, o), (4 o)) for
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some o,0'ceX, qeQ, and where g¢F,eT. If B=
(i, o)Xq1, @1) . . . (Qn, 7n)(q, o') then o0, ... 0,0 € A. Define a function
f:S*>Z*by

flq,01)...(Gn0n))=01...0n

f(A)=A,

then f(A') = A. Furthermore A’ is regular by construction and theorem
5.5.2, and by using proposition 5.5.1 we see that A is also regular. [

We will now reformulate theorem 5.5.3 along with our results from
section 5.3 to obtain:

Theorem 5.5.4
(Kleene) Let X be a finite non-empty set. The class of recogniz-
able sets of =* equals the class Reg(Z) of all regular sets of =*.

This result then tells us that the only recognizable sets are those sets
constructed from the singletons and & using the rational operations.

5.6 Prefix decompositions of recognizable sets

The other decomposition of recognizable sets is based on an
analysis of the type of sets that are recognized by recognizers with single
final states.

Let M= (#, i, T) be a recognizer such that T is a singleton; we call
N a direct recognizer.

A recognizable set A < X* is called unitary if the minimal complete
‘recognizer N, is direct.

Theorem 5.6.1

Let A< X* be a recognizable set. Then A is unitary if and only
ifA#QPanda™'-A=B""-Aforalla, BeA.

Proof Let M, =(Ma, ia, Ta) be the minimal complete recog-
nizer for A and suppose that T, ={14}. Let a, B € A, then

I'AF.A =iAF: ={la
and so

al-A=8"". A
Clearly A & as M, is accessible. Now let a'-A=8""-A for all
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a,BEA, then
Ta={y' AcQalyeAl={a" A}
and so T, is a singleton. 0
Theorem 5.6.2

Let Ac3* be recognizable with A# J, then A =l Jju1 A
where the A, are unitary and A,NA, =@ if j # k.

Proof Let Mo =(Ma,ia, Ta) be the minimal complete recog-
nizer and suppose that Ta={f,..., %}

Now each #;€ T4 is of the form a; ' - A for some a;€ A. Let A, =
{BeA|B' - A=aj' - A}for j=1,...,r. Then A, is the behaviour of
the recognizer M, = (Ma, ia, {¢}) and so A, is recognizable; furthermore
if Be A, then

iaF : =4
and so

B'-A=a;'-A
and this holds for all 8 € A, and thus A, is unitary. Since a€ A if and
only if iaF2 =1 for some je{l,...,r} we have aelJj-1 A, and thus
A=y A, If ye A|N A, with j# k then

iApc =4 and iAF¢ =
which is clearly false. Thus A,N A, = 3. 0

We call the sets A, (j =1, ..., ) the unitary components of A.

Example 5.7 . .
Let £ ={0, 1} and A = {0} - {10}* U{01}", then A is recognizable
and the minimal complete recognizer is given by

t 1

—_ A—L 0 4 —~— (01) A
1

N

Let A, ={0} - {10}*, A, ={01)", then A= A,UA; where A, and A, are
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both unitary sets. Now put B, = {0}, B, ={010} - {10}*, B, = {01}*; these
are all unitary sets and A = B,U B, U B,. Thus we see that the unitary
decomposition may not be unique.

Let AcZ* and suppose thata™' - A={A}forallac A. Wecall A a
prefix. A prefix A then has the property that if a € A the word a cannot
be the start of another word from A, that is ax¢ A for all x € £* except
x = A. This concept is of considerable interest in coding theory. Here
words are encoded by various methods so that transmission of messages
across noisy channels can be achieved with as little distortion of the
message as possible.

Example 5.8

Let I'={a, b, c, d, e}, = = {0, 1}. We will encode a message, that
is a word in T, into a word in =* by specifying a function f:I'-»X*.
Let f(a)=1, f(b)=01, f(c)=001, f(d)=0001, f(e)=00001, then the
message

cbedea
is encoded to
001010010001000011.

Now consider another coding function f :I'-»>Z* given by f(a)=1,
f(b) =10, f'(c) =100, f(d) = 1000, f'(¢) = 10000; then the message
cbedea

is encoded to
100101001000100001.

The receiver will attempt to decode this as it is received and after
three symbols all it can decide is that the first decoded symbol is not a
or b. In our earlier example, after the first three symbols, the receiver
knows that the first decoded symbol is c. We describe the function f as
defining a code that can be immediately decoded. The function f’ defines
a code that cannot be immediately decoded. The algebraic difference
between the two functions is characterized by the fact that

f)={0"1|{0=n=4}
is a prefix whereas
f(N)={10"|0=n=4}

is not a prefix.
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It is immediate from theorem 5.6.1 that a prefix is unitary. Further-
more if A is recognizable and a prefix we can characterize the type of
recognizer that recognizes A.

Theorem 5.6.3
Let A < 3* be a recognizable set. Then A is a prefix if and only
if the minimal complete recognizer M, is direct and T, * 2= 2.

Proof 1f A is a prefix then a'A={A} for all @€ A and so
T,={a"  AlacA}={{A}}). Furthermore for c€X, (a™'" A)F2 =
(ag)™'- A and if Be(ac)™" + A then aof € A which implies that o8 €
a'-A={A}. Thus (a0) ' - A=0.

Conversely if A is recognizable and I, has the stated properties let
a€A, then ihxF2=a"'-AeTs and s0 a™' - A=t4 where Ta={11}.
Suppose that Bea ™' - A with B # A, then af € A. Let g = oy where
yel*, then acyeA and so ye(ao)™t- A=1t,F2 = which is a
contradiction. Hence ™' - A ={A} and A is a prefix. 0

We have seen that a set A is a prefix if there are no words of the
form a = By where both a and 8 belong to A. It is easy to construct
the prefix part of any subset of £* by removing all such words.

Let A cX* be recognizable, define the prefix part of A to be A, =
A\A - T*. It is immediate that a recognizable subset A will be a prefix
if and only if A = A,. (Exercise 5.9 is concerned with the task of verifying
that Ap is recognizable.)

We have seen that for a given recognizable subset A the prefix part
Ay has some special properties. What can be said of the remainder of
A? We first examine an example.

Example 5.9
Let £={0, 1} and A ={0}*{1} - {0}*, then

Ap=A\A - 3* = A\{0"10™|m >0} ={0}* - {1}.

Notice that A is a unitary set and any element a € A can be written in
the form B + y where Be Ap and y€ {0}*. Thus

A=Ap-{0}*.

We will now investigate the properties of {0}*. Notice firstly that {o}*
is a monoid, and secondly y~* - {0}* = {0}* for all y € {0}*, that is {0}* is
a unitary subset (it is clearly recognizable). We call {O}* a unitary monoid.
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Our basic aim is the decomposition of a recognizable set into subsets
of the form A - M where A is a prefix and M is a unitary monoid.
Let B X*; we call B a unitary monoid if
(i) B is a unitary subset of £* (B is thus recognizable);
(ii) B is a submonoid of =*.
Since B is a submonoid of £* we see that Ac B and thus y ™' - B=B
for all ye B.

Theorem 5.6.4

Given any unitary subset A of £* the set

Ay=A""-A={yeZ*|aye A for some a € A}
is a unitary monoid and A=A, - A,,.

Proof Since A is unitary the minimal complete recognizer M, =
(M, ia, Ta) is direct. Let T4 ={r,} and consider the recognizer M, =
(Ma, ta, Ta). Now
BelMileStFE =1,
&iFls=ts foranyacA
SapecA foranyac A
&Bea”'- A foranyacA
&SBeA™ A,

Thus A™" - A is recognizable and unitary. Furthermore, if 8, 8'e A~ - A
then clearly t,Fss- =ts and so B8'c A -Aand A™' -Aisa unitary
monoid. Now let @ ¢ A, then i1 F2 = t,. The sequence of states defined
by a may contain ¢4 several times. If we put @ =y3 when ye A and
BeA™" - A such that the path from i, to ¢4 labelled by y contains only
one occurrence of 4, namely the last one, then y€ Ap = A\AZ". Thus
A € Ap * Ay and the reverse inclusion is obvious. 0

Theorem 5.6.5
Let A be a recognizable subset of £*. Then
A = B|C| UBzCzU s UB,C,
where B,C, are unitary subsets, B, are prefixes and C; are unitary monoids

fori=1,2,...,r

Proof Using theorem 5.6.2 we have A=A, UA,U...UA,
where each A, is a unitary subset. Now let B;=(A)p=A\AX", C =
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(A)m=(A)'-Afori=1,...,r then A,=B,C, and B, is a prefix and
C, is a unitary monoid. 0

This decomposition is called the unitary-prefix decomposition. We
finish our discussion with some examples.

Example 5.10 .

Let £={0, 1} and A ={0}* - {{10}U{0}}* - {O}*. This ig l|'ecogmz-
able by construction. Let B= {1oyu{on* - {0}*. Now 0—1 A=A,
1"'.A=0B, 01)'-A=1""-A=0B, (10)'-A=B, (11)" - A.= q,
(100)~* - A=B, (101)™" - A =0B. The minimal complete recognizer is
given by:

0B

0
—’A

* 1

with 14 ={A, B). The unitary decomposition is A= {oy*u {0}"’{10}.B.
Now {0}* = {A} - {0}* where {A} is a prefix and {O}* is a unitary monoid.
Also {0}*{10} is a prefix and B is a unitary monoid.

Example 5.11 .
Let £={0,1} and A=({01}" {10hU{10}" " {“0}):1 Then
0. A={1}-{01}*- {10}, 17'-A={0}-{10}* {110}, (01)_l ‘A=
{o1)* - {10}, (10)™*- A={10}*- {110}, (011" - A={0}, {101} : lA=
171 AU{10}, (010)™- A=07" A, (0110)" - A={A}=(10110)"" - A
etc.
The minimal complete recognizer is:

- 2 - 4 a2 A~p
>4 0! A 1 on 4 - l(011).,4-———()

1”1 A——— (107} A——l——-—:—(lm)'l A
0
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From the diagram we note that A =Ap isaprefixandso A=A - {A} is
the unitary decomposition.

Example 5.12

Let £={0, 1} and suppose that A is the set of words of I*
containing an equal number of Os and 1s. Let A, be the set of words
of A containing an odd number of 0s and A, the set of words of A
containing an even number of 0s. Then A=A,UA,. Let us try to
construct the minimal complete recognizer for A.

Let

B; ={a € X* such that a has j more 1s than Os}

C;={a €Z* such that « has j more 0s than 1s}
Then 07'-A=B,(01)"'-A=A,(00" A=B,,...

1" A=C, (107" - A=A, A=G,,...
The ‘machine’ will have a graph of the following form:

/‘\/'\o

¢
(/\3

\./ \./ :

and it is clear that the set of states will have to be infinite. In fact it ¢an
easily be shown that A is not recognizable. However it is possible to
devise a decomposition for A that is similar, in some respects, to the
unitary-prefix decomposition. Notice that A, is a monoid and satisfies
the condition a™' - A;=8""- A,=A, for any a, B € A,. However A,
is not a unitary monoid since it is not recognizable. Similarly A, =
{01, 10} - A and {01, 10} is a prefix. Thus
A={01,10}- A,U{A}- A,

where {01, 10} and {A} are prefixes and A, is a monoid satisfying the
conditiona™' - A,=8""': A, for all a, BeA,.

5.7 The pumping lemma and the size of a recognizable set
We examine a useful technique for testing the recognizability
of subsets of =*. This then leads us to a method for deciding if a
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recognizable subset is finite. Following this we investigate the size of an
infinite recognizable set.

Lemma 5.7.1

(Pumping lemma) Let A < £* be recognizable and suppo.se that
n =|Qal, the number of states in the minimal complete recognizer of
A.If a € A and the length of a is greater than or equal to n then

a=Bys
such that
@) v#A,
@) {8} {v}*-{8}cA.

Proof Suppose that a € A, then a™'A € Ta. The sequence of
states ia=qo,q1,..., 4 =a '+ A defined by the word « is of length
n+1. There must therefore be repetitions so that q,=q. with j#k.
Consider the word y e Z* obtained by passing along the path defined
by a between g; and qi. Then clearly a word B €X* and a word §€=*
exist such that

- . A
iaFp =, 4F% =q, qF% =o' - A=isFa.
Then a = Bv5, v # A and any word of the form By™5 is recognized. O

Example 5.13 .
Consider the recognizer in example 5.10. Here n=4 and if
« =00010100 we see that 8 =000, y=1010, §=0 gives a suitat,ale
decomposition a = By5. Others exist, for example 8'=0, ¥'=00, §'=
10100. Notice that {8} - {y}* - {8} = {8} - {¥'}* - {§'}-

We see then that the existence in the recognizable set of a wzrd of
length at least n will guarantee that the set is infinite. If AcZ2* is a
finite recognizable set and n = |Qal then no words of length n can exist
in A,

If AcS* let us define A™ to be the set of all words of A that are
of length n forn=0,1,.... Then

A= A",
a=0
For a finite set A we will have A =A"*"=., =@ for some value
of n. For an infinite set each A™ is finite, in fact

|A®| k" where k =|Z}.
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Our next task is to find some information about the size of the sets
A™ when A is a recognizable subset of Z*.

First let # =(Q,%, F) be a complete finite state machine and let
|@| = m. The machine 4 can be described by a set of m X m matrices
that effectively define the action of F.

First we let @ ={qu, . . . , gm} and then for each o € £ define the matrix

1 ifqF=
£e=0D where fi={y omerwie

fori,je{l,...,m}.

Each row of the matrix #,, will consist of one 1 and (m—1) 0s. Each
state q; will be represented by a 1Xm row vector ¢ of the form
(0...010...0) with a 1 in the j-th position. So that q,;F, = q, will be
replaced by the matrix equation 4 * /o = &x.

Given a =0y ...0,€X* we define o = £, ... /0. and notice that

GFa=q® e fa= o
Finally we put #, =1, the m X m identity matrix. HM=(4i T)isa
recognizer, let i = q; and define

€ ={‘l|ql€ T}’
then for each a € |IN] we have ¢, - /, € € and clearly

| ={a e 2*| 61 Za€ &)

Let $#=Y_ 5 /o Which is again an m xm matrix (it belongs to the
set of all m X m matrices over the integers); we call ¥ the matrix of /.
For any subset R c Q we define

€(R)=1{s/|q;€ R}
and consider

EGR)= Y =c;r.

«eB(R)
(c;r is the transpose of ¢, and thus €(R) is a column vector.)

Theorem 5.7.2

Let M = (K, i, T) be a recognizer with matrix . Let R be a set
of states of 4/ and k =0, then the number of words of £* of length
which send the initial state i to a state in R is given by

o - (F) - E(R).
Proof Let ¢ be the set of words of I* of length k. Then

yk =2u§}‘.‘ /c and ¢; (y)k =£.‘:; e /. =(Ay1y.00s a|,,.) where m is
the number of states in 4 and a; is the number of words of length k
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that send state i to state g;. The number of words of length k that send
state i to a state in R is then given by

aubi+...+aymb, where by=1if q,eR
and b;=0if q2R.
This is just (@31, ..., @1m) * E(R). a

Corollary 5.7.3
The number of words in || of length k is given by

o (P -E(T).
The total number of words in [T7| is given by
a (F+F+F+. . +F+ ) E(T =0 - U-F)" ET).

In the case of an infinite set | M| the matrix I — F will be singular and
so great care must be taken with this notation.

Example 5.14
Let £ ={0, 1} and consider the state machine 4 given by

?

-"ql

I QLN
::)

0,1

Let i =q;, T ={q1, 42). Then if M= (4, i, T), | T = {0}*.

010 0 01
Fo=10 1 0}, A={0 0 1
0 01 0 01

, F=

1
‘l=(1’ 0’ o)' @(T)= (l)
0

and the number of words of || of length 2 is given by

01 3\ /1
o F-&(T)=(1,0,0)-{0 1 3)-(1)=1.

0 0 4/ \0



