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The use of matrix theory leads to considerable insights into the behaviour
of recognizable sets. However the interested reader is referred to the
literature for further details (e.g. Cohn [1975]).

5.8 Exercises
5.1 Let x € 2*, Prove that {x} is recognizable.

52 LetM=(M, i, T),M=(Q,2,Flandq o T=4q;' e TD>q=q for
all q, g1 € Q. Prove that if A =|M| then M= ,.
5.3 Let M=(H, i, T), M =(Q, I, F). Define a relation E on Q by
qEq1&>q e T=qi'*T forq q:€Q.
Consider #/E = (Q/E, £, F) where F is defined by
[q)F, =[qF.] for[qle Q/E, oeX.
Show that #/E is well-defined and if
M/E = (M/E, (i), {[t)/te T))
then
|/ E| = |,
5.4 With IR and 4 as defined in 5.3 and n =0 consider the relation
E, on Q given by
E. 1 {qae TS qia e T for all a € T* with |a| <n).
Prove that E =( \px=o Ea.
5.5 Complete the proof of theorem 5.3.3.
5.6 Prove theoreri 5.3.5.
5.7 Prove theorem $5.3.6.
5.8 If A, B, C cX* prove that
(A-B)'-C=B'A™'-0C)
(A™'-B)-CsA™'-(B-O).
5.9 If A< X* is recognizable then sois Ap = A\AZ".

5.10 If » is an admissible partition on 4 what does
M/ 7 =M/, [i], (TD

recognize?

6

Sequential machines and functions

Mealy machines were briefly introduced in chapter 2 to provide a
motivational basis for the discussion of products of state machines and
transformation semigroups. In this chapter, Mealy machines and their
associated functions will be examined in their own right and some of
the results from earlier chapters will be applied to them.

6.1 Mealy machines again
Recall that a Mealy machine, as defined in section 2.5, is a
quintuple M= (Q, 2, O, F, G) where Q, £ and © are finite sets, and
F:QxZ->Q,
G:QxI-+0
are functions.

Thus 4 =(Q, E, F) is a complete state machine. It is now reasonable
to extend our concept slightly by including the possibilities that either
F:QxZ- QorG:Q xX -0 are partial functions rather than functions.
Thus 4 =(Q, £, F) may not be complete.

A Mealy machine is now understood to be a quintuple M=
(Q, 3, ©, F, G) where Q, =, © are finite sets (£ and @ being non-empty)
and F:Qx2- Q, G: Q%X - O partial functions. If F and G are both
functions we say that Al is a complete Mealy machine.

Itis now inappropriate to describe Mealy machines by directed graphs,
we will have to use tables.

Example 6.1
Let

Q={q1,92 93} z={0,1} 0 ={a, b}.
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We define F: Q%2> Q and G: QX X~ O by the table

M T N
F 0 4 g qs
1 q2 qs %]

G 0 a a a
1 )} b 1)}

Thus
N Fo=q,, q,F,isundefined,
41Go=a, G, is undefined etc.

(Some authors use a dash - instead of the symbol @& in such tables.)
If M =(Q, 2, ©, F, G) satisfies the property that

qF, = P &qG,= D

we can use the directed graph method of describing 4. Such Mealy
machines are called normal.

M is called state complete if F is a function and output complete if G
is a function.

Example 6.2
O = {qh q2, ql}v = {Ov 1}’ 1<) ={a’ b}-

°-“"o 0,¢a)
‘h———Q

1,45

1,$b)

&

0,¢a)

represents the normal Mealy machine:

4 9 92 )
F 0 L] q2 9
1 q2 q9s 7]

G 0 a a a
1 b b ()]
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The output of a Mealy machine clearly depends on the set of states
that are traversed in the process of the operation of the machine. We
have seen that for complete machines, if 0102...0x €2 and g€ Q then
the output word of ©* obtained when 107 . . . 0k is the input word and
q is the initial state is given by

0,6,...6:
where

6= qG‘-’l

8, =qF,,G,,

0 =aF,, .0 ,Gor
The state q defines a function f, : £* -» ©* described by
floor...00)=6102...0,, fOroioa...on€ p A
It is clear that f, satisfies the following properties
folo)=qG,
fo(x0) = (fo(x)qF.G,) = fo(x)for.(0), foroel,xe 3,

and these are enough to define f,.
We will also ask that £, satisfies the property f,(A) = A.

Proposition 6.1.1
If #4=(Q,3,8,F,G)is a complete Mealy machine and g€ Q

then for x, ye 2*
falxy) = fo(x)far, (y).

Proof We proceed by induction on the lengthof y. If y=0 € p)
then
folxo) = fo(x)qF,G,
= fo(x)fer, (o).
We assume now that f,(xy) = f,(x)fr,(y) holds for all words y € Z* of

length less than 1, and states g€ Q.
Lety=01...0010;andput z=01...0c-1, then

fq(xz) =fq(x)qu, (2).
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Now
falxy) = fo(xz0,)
= fo(x2)qF .G,
= fq (x)fql-'. (z)qFxxGu,
= fa(x)fer,(2)qF,F,G,,
= fa(X)fer,(z07)
= falx)far. (y).

For x = A or y = A the result is immediate. 0

‘Next we turn to the case where 4 is not complete. For g € Q we can
define a partial function f, :X* » @* by

fq(0’|0’2 e Uk)= 6,6,... O for o102...0% e3*
if

qFap'chp quo;’ qFa‘Gop cesy qu...c.’ qu...w._|Gog
are all defined and f,(A) = A.

However if gF,,, F,0, . . .  @Fp0y..0,_, are defined but gF,,,, ., =D
we note that the machine stops completely and no more output symbols
can be printed.

The case where g¢F,,...,qF,, ,_, are all defined but
q9G,,, ..., qF,,. +_,G,, are not all defined can be dealt with as follows.
If qF,,__,.,.,_,Cv..,, = (& we regard the output as a blank space on the output
tape. This will be denoted by [J. Consequently the output word could
take the form

60,...606.....6

(A slightly different interpretation will be used in sections 6.4 and 6.5.)

We should not confuse [J with A. A simple example will illustrate some
of these points.

I::xample 6.3
M is defined by the table:
M Q 9
F 0 7] '
1 q: %

G 0 a (7]
1 b b
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so that
q1Fo= 3, 21 F1Go= D etc.

Now f,(0)=a, f,(10)=b0, f,(101)= 505, £,(100)=b0a, and
f.,(01) = @ since g1Fo= 2. But what is f,,(1001)? Either f,,(1001) = &
since the machine stops before all the input word has been fed in, that
is after 100 in this case, or we put f,,(1001) =b O a, that is [4(1001)=
£,(100) where 100 is the smallest initial segment of 1001 for which the
machine produces a complete output.

To avoid these problems we will only consider fo(x) to be defined if

qu, qF,‘,,, vy qu...m-l

are all defined where x =0,0,...0,€Z*. We describe this by saying
that x is applicable to q. This will guarantee that the image fq(x) is of
the same length as the length of x whenever x is applicable to q. Notice
that the length of O is 1, whereas the length of A is 0 and clearly in our
example f,,(A)=A (no tape goes in and no tape comes out!) whereas
f(0)=01 (a blank tape comes out of length 1).

If xy is applicable to q then the conclusion of 6.1.1, namely fo(xy) =
fo(x)far,(y) is valid. Clearly if x e T* is not applicable to q then neither
is xy for any y e Z*.

We can, to a certain extent, overcome some of the difficulties con-
cerned with the applicability of inputs by moving to the completion of
the Mealy machine.

Let A =(Q,%,0,F,G) be a Mealy machine such that the state
machine 4 =(Q, =, F) is incomplete. Let M =(QU{z}, %, F') be the
completion of 4 and define G :(QU{z})xZ->0 by

G'(q,0)=G(q,0) forqeQ o€k,
G'(z,0)=0 foroel.

Then € =(QU{z}, 2,0, F', G') is called the state completion of M.

We now notice that every x € £" is applicable to any state q'e QU{z}
and so fi is defined as a function although from X* to (OU {OhH*.

If o102 ... ok is not applicable to q in the original machine A but
0102 . ..0x-1 is applicable to g, the output obtained by applying
0102 . . . 0% t0 q in the state completion is given by foor ... ox-1)00

Note that f},(x) =f,(x) if x is applicable to q.

In general if M is an arbitrary Mealy machine and q is a state of M
then q defines a partial function f; : $* - (0 U{O)* where f,(x) is defined
only when x is applicable to g with x € >
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Put ©, =OU{0}. Let x, y € OF, say
X=aaz...ar y=ajay...a, wherea,a€®,.
We say that x covers y if, for each 1<i<k we have either o; = a; or
ai =0. This is written as x # y. We say that x and y are compatible,
written x|y if, for each 1=<i=<k, we have either a; =a, or a;=0] or
a;=0.

Clearly x #y implies x||y.

Thus for © ={0, 1} we have 001110 11010 and 00110(|00100,
also 0JOJ100/]01100. Notice however that 000110]01100] is false and
so compatibility is not a transitive relation. The relation ‘covers’ is not
even symmetric.

Turning from compatibility amongst words to a related concept for
states we proceed to the following definition. Let g, q; € Q, we say that
q and q, are compatible (or output compatible) if

fa()lIfe,(x) for all x € =* and x applicable to q and g,
and write q[|q,. If two states are compatible and the machine is started
in either of these states then the output words will not be ‘noticeably

different’, they may not be identical but where they do differ one word
will have a blank space at that position.

One basic aim is to construct a Mealy machine with a state set of
minimal size that will behave in the same way as a given Mealy machine.
This involves looking at the partial functions £, for each state q in the
original machine.

6.2 Minimizing Mealy machines
We first consider a complete Mealy machine 4=
(Q, %, ©, F, G). Define a relation ~ on Q by

9~ fe=f,, whereq,q,€Q.

A machine #M/~=(Q/~,%,0, F,G’) can now be constructed by
defining
[q)F. =[qF,]
(9)G; = 4G,
where [q] denotes the ~-class containing q. This definition is meaningful
since ~ is an equivalence relation and if g ~g¢, and o €3, x € I* then

falox) = fo(o)for, (x) by 6.1.1

}forqeO,creE,

and

falox)=fo(0) - far.(x)=fo(0) * forr, (%)
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so that

for, =fur, andthusqF, ~q:Fo.
Furthermore

4G, =f(0)=fu(0)=q1G, foroe 3. )
We will see that f{o;:£* - ©*, the function defined by #/~ in state (q]
equals f, :2* > @*. X .

We call 4/~ the minimal Mealy machine of M. The reason for this

name is to be found in 6.2.2.

Theorem 6.2.1 . .
Let £ =(Q, 3, ©, F, G) be a complete Mealy machine. If M)~
is the minimal Mealy machine of #/ then
(i) the surjective function ¢ : Q » Q/~ defined by
¥(q) =[q] satisfies the conditions

¥(qQ)F, = ¥(qF,)
v(q)G,=qG, forqeQ,oeX
(ii) for each g€ Q, fiq1=fo

Proof (i) For q € Q, o €2 the definition of M/~ yields

¥(q)F, =[q)F. =[(qF,)= v (aF,)
and
¥(q)G.=[q]G,=4G..
(ii) Let o €2, then
fialo) =[q]1Go = 4G, = f, (o).
Assume that for words x € =* of length less than n we have fiq)(x) =f4(x)
and let y € £* be of length n, so that y = xo for some x € S*and c€l,
qeQ, then fla(y)=fla®)qIFiGo = fo(x)W(aF.)Go = fo(x)qF.Go =
f.(xo) = f,(y). Hence the result follows by induction. . .
(We note that ¢(q)F., = ¢(qF,) can easily be extended by induction
to ¢(q)F. = ¥(qF.) where x e Z*)) 8]

Corollary 6.2.2
Let 4 =(Q,%,0,F,G) be a complete Mealy mg‘chine and
M/~ =(Q/~,%,8, F',G') the minimal Mealy machine of .#. Suppose
that M, = (O, £, O, F,, Gy) is a complete Mealy machine and ¢ : Q-Q
is a surjective function satisfying
(i) #(@)(F),=¢(qF,) forallgeQ, o€l
(i) (Me@=fa forallgeQ
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then a surjective function £: Q, -» Q/~ exists such that
(i) €(q))F. =¢(qi(Fy),) forallqeQy, o€l
() fewan =(fi)e, forallgie Q.

Proof Exercise 6.2. 0

The method of actually calculating the minimal Mealy machine
depends on finding the relation ~. This can be done by a series of
approximations to the relation. For each positive integer i define a

relation ~; on Q by
q~iq'Sfe(x)=fr(x) forall xeZ" of length less
than or equal to i.
Clearly g ~q'¢>q ~,q' for all i >0.

Proposition 6.2.3
Fori>1, g ~,q' if and only if

q~i1q'and qF, ~,_, q'F, foralloes.

Proof Suppose q ~, q' and gF, ~,_, q'F, and let xeX* be of
length i. Then x = oy for some y € 2" of length i — 1 and o € S. Now
fo(x)=folay)
= folo) * for, ()
=fe(@) * for,(¥)
= fq'(")’)
= fo(x).

The converse is now obvious. )

Each equivalence relation ~; defines a partition =, of the set Q and
it is clear that

ma2m2...

Suppose that H, is a m;-block and q, q'€ Hy; if o € £ is such that gF,
and q'F, belong to different w,-blocks then proposition 6.2.3 tells us
that g ~; q' cannot hold. More generally if 4 and q’ belong to the same
m-block but gF, and q'F, belong to different ;-blocks then q and q'
cannot belong to the same r,.,-block. In the language of state machines
this means that if o, is an admissible partition then m,, = m,
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Proposition 6.2.4 " 3
For i =1, m.,=m if and only if m; is an admissible partition
on M =(Q,Z, F).

Proof Suppose that .1 = and g, q' € Q are such that g ~, q'.

Then for o € X, gF, ~q'F, since ¢ ~1.1 4. '
Conversely suppose that =, is admissible and let ¢, q'€ Q withq ~;q
but g #.+1g'. By 6.2.3 either g #1q' or some o€ 3 exists such that
qF, #.q'F.,, but this is impossible. 0

We are now in a position to calculate the minimal Mealy machine
since we can easily establish that m; = .1 > m = 7. for k =0and hence
the relations ~; and ~ coincide.

Example 6.4 .
Let =0 =1{0, 1} and /A = (Q, £, 6, F, G) be given by

M q 92 qs qa qs

F 0 q: Qs q2 4 qs
1 qs qs qs qs G

G 0 0 1 0 0 1
1

Then
m= {{41, qs3, ‘h}, {qz’ 45}},

2 ={{q1, 3}, (a4}, (a2}, {qs}} .
which is admissible and hence , = 73 etc. The minimal machine is thus:

A~ (@) g (e [as)

F' 0 fq {qd [a] [gs)
1 fed (e [ [ad

G' 0 0 1 0 1
1 1 1 1 1

Turning to the incomplete case we will first exa:nine the problem ?f
minimizing a state complete Mealy machine. If M=(QZ%,0,F G) is
state complete, the relation || on Q may not be an equivalence relation,
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since transitivity may fail. We can, however, still define a sequence of
relations on Q as follows:

for each positive integer i and q, 9’ € Q define
qlliq’' & fa(x)lIfo(x)
for all x € =* of length less than or equal to i. Then

qlla’eqliq' foralli>o0.

Proposition 6.2.5
Fori>1,qlliq'ifand onlyif ql; ' and qF, ||, q'F, forallo e 3.

. Proof Suppose that q|; q' and gF, |l;-; q'F, and let x € 3* be of
length i. Then x = oy for some y € £* of length i — 1 and o € . Now

falx)=foloy) = fo()for, (y)

fa(x)=fy(oy) = el fer (¥).
We have

fa(@)fe(e) and for, (¥) I far. (y)

and clearly this means f,(x)||f,(x), that is q[l; ¢’. The converse is easily
checked. 0

For each relation ||;., on Q, we examine the relation | on Q and see
what' the state maps F, (o € X) do to the pairs of states (g, q') satisfying
qlq'. 1f qF, |l q'F, is false for some o € S then g/}, q' is false. As before

we eventually must reach a position where the relations |, and ||, are
identical. Then ||, equals the relation |.

For each g € Q, define

A@)=1{q'|qllq}.
Clearly q € A(q). The collection & of distinct A(q) (g € Q) forms a set
of subsets of Q but not generally a partition, i.e. we could have A(q)N
A(.q }# & and .A(q) # A(q"), we could also have A(q)gA(q"), 9, 9'€ Q.
It is clear that if ql|q’ then gF,[|q'F, for o € £, and so for all q'c A(q)
we have q'F, € A(qF,) and thus A(qQ)F, < A(qF,)for qe Q, 0 € 3.

The subsets A(q) € & may have the following unfortunate property;
name?,ly‘ that if q', 4"€ A(q) then ¢'liq" is false. We now search for an
qdmzsszble subset system m = {H;}ic; of Q satisfying the following condi-
tions:

(i) Given i € I, there exists q € Q such that
H,c A(q).

Minimizing Mealy machines 187

(ii) If q', 9" € H; then
q'lq".
It is always possible to find such an admissible subset system for any
machine .ﬁ, since 1o clearly satisfies the conditions. We call such an
admissible subset system a compatible subset system. In general it may
not be a partition of Q.
If 7 ={H;};cs is a compatible subset system then a Mealy machine
M= can be defined as follows:
M7 ={H}e1,%,0,F",G)
where
HFZI=H; wherejel ischosen so that H,F, c H),
. [4G, ifaqe H, exists such that qG, # 1]
HG? =| )
&  otherwise.
Since  is an admissible subset system, rather than a partition, in general
there may be many possibilities for the definition of F™ and we will
assume that a particular choice has been made (see chapter 4 for a
similar definition) and then F™ is well-defined. Since  is compatible it
is clear that G” is also well-defined.
Now let q € Q, there then exists an i€l such that g€ H,; we now
establish a connection between the sequential function f, defined with
respect to A and the sequential function f7, defined with respect to M.

Theorem 6.2.6

Let Al =(Q, 3, O, F, G) be a state complete Mealy machine and
7 ={H}:es a compatible subset system on Q. Let e Q then g€ H, for
some i € I and if fi, : 2* = (@ UD)* is the sequential function of M/ in
state H, then for each x e £*,

f'l'l.(x) #fd(x)‘

Proof Let o2, then f(0)=4G,. If q'G,=@ for all q'e H,
then 4G, = HG? = @.1f q'G, # @ for some q'€ H, then HG; =q'G,.
Since ql|q’ either 4G, =q'G, or ¢G, = . In all cases H,G #qG, so
fr (o) #f,(c). Now suppose that [, (x) # fo(x) for all x e 3* of length
less than n and let y € £* be of length n. Writing y = xo for xe3*, o€l
we see that

fq(y) =fq(x) * qFxGo
and

) =fh(x) HFG:.
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By the inductive assumption f7,(x) # f,(x). Let HiF ] = H, where HF, c
Hy, then gF, € H. Now HG; = q'G, where q' € H; and since q'||qF, we
see that H;G_ # qF,G, and so f7,(y) # f,(y). The result follows by induc-
tion. 0

In many ways the Mealy machine 4/ performs similar tasks to the
original machine ., but it may not be the smallest such machine. The
size of M/m equals the number of subsets in the compatible subset
system 7 = {H,};c; and we would naturally ask for this to be as small as
possible. A compatible subset system 7 is called maximal if no non-
trivial compatible subset system 7 exists such that = < r. We regard {Q}
as a trivial compatible subset system.

The Mealy machine 4/, where 7 is a maximal compatible subset
system, will be called a minimal cover for . There is no unique minimal
cover in general for a Mealy machine .4, and in fact different minimal
covers for a particular machine . can have rather different properties,
The task of constructing the minimal covers will not be discussed in any
detail here; it amounts to the calculation of the maximal compatible
subset systems and this in general is done using ad hoc methods.

Example 6.5
Consider the machine # = (Q, £, ©, F, G), where2=0={0, 1},
given by:

A @ @& & q g

F 0 92 q q2 O qs
1 qs qs qs qs qa

G 0 0 %) 7] 0 1
1 1 1 7] 1 177]

To calculate the relation || on Q we proceed as follows. First we describe
the relation |}, by writing (i, /), to denote g; |, ¢; and recall that the relation
is symmetric. Thus

(1,2),(1,3),(1,4), (2, 31, (2, 41, (2, 5)1, (3, 4), 3, ).
Todetermine the relation |, we examine (q.F,, q/F, ) for each pair (i, j) €|},
andif q.F, = qi, qF, = qrand (k, 1) ¢ |}, thenby6.2.4 we know that (i, j) € ||..
This leads to

(1) 2)21 (l) 3)2) (1) 4)2’ (2’ 3)2v (2’ 4)2! (3) 4)2
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and then

(1,2)3,(1,3)5,(2,3)s
and

(1,2)s, (1,3)4, (2, 3)a.
Therefore || is the same as [l and the set & = {{g1, 92, 43}, {94}, {gsh 'w'hich
is, in this case, a compatible subset system, and a partition. A minimal
cover is thus given by:

ﬂ/ﬂ Hl Hz H3
F' 0 Hl H] HJ
1 Hg H| H:

G” 0 0 0 1
1 1 1 %)

where m = {H,, Ha, Hs} and H, ={q1, 42, ¢:}, H2={q4}, H3={gs}.

Example 6.6
Let 4 =(Q, 3, 8, F, G) be defined by

M q q2 93 qa qs
F 0 4 q qs qs q
1 qs ] q1 qs q

17} 0 0 0
0 1 @ 1 177]

Q
-0
(=]

where =0 = {0, 1}. Then |} is given by
(1, 3, (1, S, (2, 31, (2,41, (2, 51, (3, )1, (3, 5)1, (4, 5
and we also obtain
(1,3), (1, 5)2, (2, 3)2, (2, 4)3, (2, 5)2, (3, 4)2, (3, 5)2, (4, 5)a.
Thus
% ={{q1, 95, 95}, {42, 3, 94, g5}, Q}.
If H,=1{q1, 95 qs} and H2={q2, q4} then w= {H,, H,} is an admissible
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subset system which is also compatible. Then M/ is given by

-

-“/" H| HZ

F*™ 0 H, H
1

G~ 0 0 0
1

and this is a minimal cover for /. Here again 7 was a partition of Q
even though & was not.

Example 6.7
Let # = (Q, £, ©, F, G) be given by

M 4 9 qs 9 gqs

F a qQ 9 q2 qs qa
b a q qs qs qs

< q1 qs q2 qs Qs

G 0 g 0 7]

>R

1
2 o0 1 1 0
¢ 1 g 0 g 1

where Z={a, b,c} and ©={0, 1}. Then |, is gi
, b, , 1}. given by (1, 4),, (1, 5),,
(2, 5)1, (3, 4); which is also |. l §

& ={{q1, q4, a5}, {q2, qs}. {93, 44}, {a1, 93, 94}, {91, 42, q5}}.
Let Hl = {‘h, 44},. H2 == {qu 45}, H3 = {qSQ q‘}’ H‘ = {qh qS}’ then m=
{H,, H,, H,, H,} is an admissible and compatible subset system which

is not a partition. A machine, .ﬁ/ ar, which is a minimal cover for M is
given by

~

M H, H, H, H,

Fv

a Hz H3 Hz H|

b H, H, H, H,

¢ H, H, H, H,
G” 0 1 g 0

o8
Q
=
—
=
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More general covers can be introduced as follows. First let M=
(Q, 3, ®, F, G) be a Mealy machine. If 4'=(Q', 2, 8, F', G') is another
state complete Mealy machine and ¢: Q-+ Q" isa function then we say
that ¢ is a covering of A by A i, for each g Q,

Fo(x) # fo(x) forallxeZ*,

where f, and feq) are the partial functions associated with A in state
q and ' in state ¢(q) respectively. We write

A=A
This means that machine A’ will do all that /4 can do, and possibly

more. In the case where M is state complete and M’ = A/ m for some
compatible subset system = then

M <A

It is now necessary to extend our concepts of compatibility to Mealy
machines that may not be state complete.

Let 4 = (Q, =, ©, F, G) be a general Mealy machine andlet g, 1€ Q.
We say that q and g, are compatible if, whenever x € X" is applicable
to both g and q;, then

falx) far(x).

As before we may define the relations |l: on Q for each positive integer
i. The subsets
Al@)={d'lqllq}
may be formed for each ge Q and also the collection & of the distinct
A(g). Using our new compatibility definition we can now look for
admissible subset systems 7 = {H}ie1 of Q satisfying
(i) for each i € I there exists a g€ Q such that H, c Alq),
(i) if q', q" € Hi then q'llq".
We call = a compatible subset system as before. Define a Mealy

machine /7 = {H}es =, 8, F7, G") as follows:
HF" = H, if3jelsuchthat @ # HF,cH,
7" l@ otherwise
. (4G, ifagqe H,exists satisfying qG, # O
Hle = { N
@  otherwise.

As before we make a choice for the definition of F . The compatibility
of  ensures that G” is well-defined.
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Theorem 6.2.7

Let £ =(Q,%,0,F,G) be a Mealy machine which is not state
complete ar!d suppose that /¢ = (Q U{z), £, ©, F’, G') is the state com-
pletion of 4. If = ={H,},c, is a compatible subset system for A then

7= {Hl U {Z }}iel

is a compatible subset system for M. Conversely, let r={K};c; be a
compatible subset system for 4° then

™= {K\Mzes

is a compatible subset system for /.

Proof Let w={H};c; be a compatible subset system for M.

Clearly »° = {H;U{z}}ic: is an admissible subset system for Me for if
o €X then

HF,cH;, forsomejel
and

(H,U{z))F, < HU{zF.} = H,U{z} e =",

tNow let H, € A(g). Since z||q in .l?‘ we see that H;U{z} < A°(q) where
A‘(q) denotes the set of states of #° compatible with g.
. Flr:ally for each q', q" € H, we have q'||q" in 4. Clearly q'||z and q"|| z
in #° and so #° is a compatible subset system.

.Now suppose that r={K;};c; is a compatible subset system for M.
First note that the non-empty subsets of the form K)\{z} (jeJ) form
an admissible subset system for .4, since

(K]\{Z})F, = K’F,\{Z} c Kl\{z}
for some /€ J, where o€ X.

. Now let K; < A°(q) for some q€ QU{z). We may assume that q # z
since A°(z)=QU{z). Let q’'e K;\{z}, then q'llq in #°, where q€ Q.
Suppose that x € * is such that x.is applicable to both ¢' and q in 4,
then f,(x) and [,(x) exist (in #4) and since Lo fo(x) in M° we have
fo )| fo(x) in A Hence q'|lq in 4.

Finally let q', ¢" € K;\{z}. By a similar argument we see that q’||q" in

¢ and thus ¢'|q" in M. Therefore r* is a compatible subset system
for M. u}

As l.)efore a compatible subset system i is called maximal if no
non-trivial compatible subset system 7 exists such that 7 <r.
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Theorem 6.2.8
Let 4 =(Q, £, ©, F, G) be a Mealy machine which is not state
complete and M =(QU{z}), %, 8, F', G') its state completion. If 7=
{H)}icr is a maximal compatible subset system for M then ==
{H,U{z}}ies is a maximal compatible subset system for A°.
. Conversely let 7 ={K}};c; be a maximal compatible subset system for
M°, then

™ ={K\(z}}/es

is a maximal compatible subset system for M.

Proof Assume first that m={H}; is maximal and let 7° <7t
where  is a compatible subset system of 4 ¢, Consider the subset system

*={K\{z}}ses

where the system 7 ={K};c,. From the previous result we see that r* is
a compatible subset system for M and clearly 7 < 7*, if = =7* then we
must have 7° = (r*)°, but #° <7 implies that z € K| for all jeJ and so
(7*)° = r. Thus we obtain a contradiction and so o <7*. This means that
r*={Q}) since w is maximal. Then 7= (*)° ={QU{z)} and so =° is
maximal in 4°.

Now let 7 ={K;};e; be maximal in A¢ and suppose that 7* <p where
p is a compatible subset system for A Then (+*)° =p° and clearly

™ =((r*) ) =) =p
which implies that (+*)° <p°. If p = {L}.c1 then for each je J, K\z}s L
forsome € T and so K; € L, U{z} € p° for each j € J, even when K, ={z}.

Therefore 7 <p° and the maximality of r forces p¢ ={QU{z}} and thus
e ={Q}. 0

These two results enable us to obtain minimal covering machines for
incomplete Mealy machines directly from the covering machines of their
state completions.

Let 4 be a Mealy machine. If AL is not state complete, consider the
state completion At° and construct a maximal compatible subset system
« for AL°. Then the compatible subset system #* for A is maximal and
any Mealy machine of the form A/ =* will be a minimal cover for A.

The justification for this terminology is obtained if we generalize our
notion of Mealy machine covering to include incomplete Mealy
machines.
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For any arbitrary Mealy machines M=(Q,%,0,F,G) and M'=
(Q', 3,8, F,G') we say that /' covers M, written #'=AM, if there
exists a function ¢ : Q@ » Q' such that for each qe Q

f"t(q)(x) # fo(x)
for all x € £* applicable to g.

Theorem 6.2.9

. Let 4 be a Mealy machine and = a compatible subset system
for M. Then

M=M/n.

Proof Let x € 2* be applicable to the state g€ Q, then, if x =
oy...0nallofgF,,,. .., qF,, o, _,aredefined. If g € H, for i € I we have

qu € HlFan evey qFag...o._l € PIIFUL..W..‘

and so x is applicable in M/ w to H,

Putting ¢ : Q - {H,},¢; to be any function satisfying q € ¢(q), g€ Q we
see that a similar proof to 6.2.6 will yield

[ (x) # fo(x). 0

Example 6.8
Let /L =(Q, %, ©, F, G) be given by

E
=
L]
~

qs 9 qs

F a 0 D q qs qa
b [} 7] qs qa 17}
3 q 9 q2 qs qa

G a 0 1 7] 0 1]
b (7] 0 1 1 0
c 1 (/] 0 1] 1

:here X ={a, b, c}, ®={0, 1}. (This is an incomplete version of example
1)
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Then ¢ is given by

A @ 4@ 4 4 4z
F a G z q2 qs qs z
b 0 z a Q4 z 2z
c q CE 92 qs qs z
G a 0 1 1] 0 1] 1]
b @ o 1 1 0 @
¢ 1 (7)) 0 (7] 1 (7]

We calculate the relation || for 4°.
Now |; is given by

(lt 4)h (lt 5)1’ (2t 5)19 (3’ 4)h (lt Z)], (2t Z)], (3t z)l’ (4t 2)1, (5’ Z)].

The relation || is given by

(1’ 4)2' (1’ S)Zt (lt Z)Z’ (2t 5)2’ (2’ 2)29 (3t 4)2t (3y Z)Zt (4t Z)Z’ (5’ 2)2-

So
2 ={{q1, 9e 2}, {q2, s 2}, {03, 94, 2}, {01, 43, G4, 2},

{qh q2, qs, Z}, {ql’ q>, qs, qa, q4s, Z}}.
LetHl = {qh qas Z},Hz = {th qs, z}r H3 = {q3' Qs z}tHl:—- {qh qs, Z}, then
m ={H,, H,, Hs, H.}is a compatible subset system for 4. It is a maximal
compatible subset system for A° and so n*={H:\{z}, H:\{z}, H:\{z},
H.\{z}} is a maximal compatible subset system for M.
Now 4/ =* could take the form, for example

M=t HY HY HY H?

F* a Ht HY H? H}
b Ht @ HY H?

¢ HY HY H? H?

G* a 0 1 g o
b @ 0 1 0

c 1 7] 0 1

where HY ={q1, qs}, H? =192, a5}, H3 =145, 94}, H? = {q1, qs}.

This is ‘almost isomorphic’ to the Mealy machine AM/m obtained in
example 6.7, but this should come as no surprise since the machine A
in 6.7 clearly covers the machine considered here and so we would
expect some close connection between their minimal covers.
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We close with the remark that our approach to the minimization of
a Mealy machine actually makes use of the fact that the machine may
not be completely defined. The entries & in the tables specifying the
machine’s output are sometimes called ‘don’t care’ entries since their
value is of no consequence. We can take advantage of this freedom to
generate much smaller covering machines than if we were to complete
the output function in a similar way to the completion of the state
function. For this reason we have chosen a rather general form of the
concept of machine covering.

6.3 Two sorts of covering
The purpose of this section is to examine the relationship
between the covering of one Mealy machine by another and the connec-
tions between their state machines. To examine this problem in general
it is necessary to extend the definition of Mealy machine covering to
include the case where the input and output alphabets do not coincide.
Let #4=(Q,%,8,F,G) and A'=(Q,'Y, ®', F',G") be Mealy
machines, not necessarily state complete.
Let £:32-3%', p:©@->0' be functions and suppose that a function
¢ : Q- Q' exists such that for each q € Q we have

fo (E(x)) # p(fo(x))

for all x e * applicable to q and such that £(x) is applicable to v(q).
(The functions ¢ and p are of course assumed to have been extended
to the free monoids * and ©* respectively.)

As usual we will write 4 <A’ If 4 =(Q,3, F) we will call 4 the
state machine of 4.

Theorem 6.3.1
Let 4 =(Q, 5, ©, F, G) be a Mealy machine and suppose that
=(Q', T, F') is a state machine satisfying # =<.#’, then there exists
a Mealy machine 4’ = (Q', 3, @', F', G') such that for each ge Q and
x €X* applicable to q

fo(x) = for(&(x)), for some function ¢:Q > Q".

Proof We are given a function £: 2 - X' and a surjective partial

function n: Q' Q such that 7(q')F. € n(q'Fi,) for each q'e Q' and
xeX*,

Put ©' =0 and define G': Q' x X' >0 by

G'(q'. o) = {G(n(q'), o) ifo'=§(o)forsome oeX and n(q") # D,
1. otherwise.
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Now let ¢:Q~ Q' be a function satisfying the condition ne¢ =10;
such a function must exist since 7 is sur]ectwe We show that ¢ df,ﬁnes
a covering of Mealy machines M sA' where M'= (0' 3¥,0,F,G".
Choose any q € Q. Let x € =* be applicable to ¢ in A and suppose that
x=0y...0% Then

qFon sy qu...o._.
are all defined. Since q = n(¢(q)) we see that

qu = ﬂ(‘l’(q»Fm 1= ﬂ('ll(q)F'aa.))

GFo,..on .1 = MW@ Fo,..on., S MW (@F eior...on 1)
since 7 is a state machine covering. Thus &(x) is applicable to ¢(q) in
AM'. Now for c €2,

fo(@) = 4G, = n(#(9))G, = ¥(q)G o) = futar (£(0)).
Assume that f,(x) = fyq)(£(x)) for all words x € Z* of length less than n

which are applicable to q. . .
Now let y = xo where y is of length n and y is applicable to q. Then

fa¥) =fo(x) - gF.G,
=ﬂb(c)§(x) . qF,G.,.

Now
qF,G, = n(¢(9))F.G,
€ n(W(Q)Fex)Gs
=Y(q)F;x)Gew) by the definition of G'.
Since
qF. # &
we have
qF.F, = ¥(q)F ¢)G o)
and so
f2(¥) = fuaE(¥)). 0
Corollary 6.3.2
In the situation of 6.3.1 we have
M.

One conclusion that we may draw from this result is that whereas the
concept of covering of Mealy machines developed in section 6.2 and
above is suitable for the problem of minimizing incomplete Mealy
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machines, when we come to examine the relationship of Mealy machine
covering with state machine covering it is too general. Our aim in this
chapter is to apply the results of chapters 3 and 4 on state machines to
the theory of Mealy machines, and to achieve this we will introduce a
special form of Mealy machine covering more suitable for this task.
When the machines are complete there is no difference in the two
concepts.

Let #=(Q,%,08,F,G) and A'=(Q",%,0,F,G) be Mealy
machines. Suppose that £: 2 2', p: © » @' are functions, and a function
¢ : Q- Q' exists such that for each g€ Q and x € 2*, x is applicable to
q if and only if £(x) is applicable to ¢(q) and

p(fa(x)) = fuar(£(x)).
We say that 4’ strongly covers A, or that ¢ is a strongly covering
function, and write

MM
Clearly 4 « .,42' implies M < M.

To make progress in the other direction we need the following concept.
A Mealy machine M= (Q, 2, 8, F, G) is called reduced if given distinct

states q, g, then there exists x € 2* such that f,(x) # f,,(x), with x appli-
cable to both q and q;.

Theorem 6.3.3

(Ginzburg [1968]) Let A4 = (Q, X, 8, F, G) be a reduced Mealy
machine and suppose that 4 « A’ where M'=(Q',%,8,F,G'). Then
M <= M’ as state machines.

Proof Let ¢: Q- Q' be given such that, for g€ Q,

fax) = fo(x)
for all x € 2* applicable to q.

We first note that ¢ is a one-one function, for if q, g1€ Q and
¥(q) = ¥(q1) then fiq(x)=f(x) =f,(x) for all xeZ* applicable to q
and ¢, and so g = q, since 4 is reduced.

We wish to construct a surjective partial function n : Q' - Q such that

n(@)F.cn(q'F,) forallqg'eQ’, xeX*.

First note that there exists a unique function x : ¢(Q) - Q defined by

x(W(q))=q forall ¥(q)e¥(Q).
This is well-defined since ¢ is one-one. Thus x defines a surjective
partial function from Q' to Q, but it does not necessarily satisfy the
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requirement for it to be a state machine covering since

V(Q)F, = ¢(Q)
may not hold for all x e2*.
For x € =* define a partial function
.:Q->Q
by
¥(q)=(W(q)F, forqeQ.
Now choose a partial function a, : Q'+ Q such that
Dla,) = ¥(Q)F,
and
da,(q)=q" forall ¢'e ¥(Q)F;
thus
(W(a:(q))Fx=q' forall ¢'e y(Q)F.
Define a partial function
7:Q'>Q
by
7:(q") = (a.(q"))F, forall ¢'e Y(Q)F,
Notice that ¥, =¢ and na(¥(q)) = ar(¥(q)) for all Y(q)e ¢(Q), and
since ¢ is one-one and Yax(¢(q)) = ¢(q) we have
ar(¥(9))=q.
Consider now the relation

n=U n.:Q'~»Q.

x€X®

Figure 6.1. The definition of 7.
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Then'E(n) =Urexs ¥(Q)F. We establish that 7 is a partial surjective
function. Since n, S 7 it is clear that n is surjective. See figure 6.1.
We must now show that 7 is a partial function.

First let g€ Q, and a, B € * with a8 applicable to ¢q. Th =
, ’ ’ q. Then fo(aB) =
flar(@B), which by 6.1.1 gives «(p

fa(@) * for.(B) = fuar(@) - fuiFs(B)
and so
fer.(B) = fuarr.(B)
since fy(a) = foar(a).
Now
fer.(B) = fuar.)(B)
since B8 is applicable to gF, and thus
foar (B) = fur.(B)=fr.(B).

Now let z € £* be applicable to n,(q’) where q' € D(n,).
Then

fauar(2)= fa,q0F.(2)
= fetaniarrn(2)
=f 'w(a. @Fi(2)
= feanan(z)
= fo(2).
Thus

[aan(2)= ‘g“{fw(q‘)(z)} =f;'(z)

for q'e D(n) and all z € T* applicable to n(q’).

If we now assume that gy, g2€ Q are such that q,, g, € n(q’) for some
q' € D(g) and q, # q;, then there exists a z € I* applicable to q, and q,
such that f,, (z) # f,.(z). Then

fo(2)e{fe(2)} and f.(2)e{fy(2)}

which implies that f,, (z) = f,,(2) since {f; (z)} is a singleton element of
©*. This contradicts the assumption that q; # q,. Consequently n: Q'+ Q
is a partial surjective function.

We now show that for ¢'e Q', te 3*

n(@"YF.cn(q'F?).

If n(q')F, # @ then there exists z € =* such that f,r,(z) # @ since M
is reduced.
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Now
fraa(t2)=fo(12)
and so
faiar (O niarr(2) = fo (Ofar(2)
which implies
far(2)=fer(2) # B.
Hence q'F; # 9.
For x € T* applicable to g € Q we have
falx)= fo(x)
and for x € =* applicable to qF, we have
far(2) = fuarn(2)
and
facwiarn(2) = fuara(2).
But
foF«(2) = f:i(qi-'.)(z) = f’w(q)p;(l)
and thus
focwiary (2) = fuari(2) =far,(2).
Hence 7, (¢(q)F)=qF, forall xe =* applicable to q.
Finally let n(q") be defined, then
q' =v(q)F,e¥(Q)F, forsomexe s*. qeQ
and
1(q")F. S n(W(qQ)F;)F,= qFF, = qF
= nxc(‘ﬁ(Q)F:u) = ﬂ(q'F:)
as required. 0

We can now piece together some of our earlier results. Let /4 be a
Mealy machine and suppose that A is the state machine of . From
chapters 3 and 4 we can obtain a decomposition

J‘{Sd|°d2°...°dﬂ

and then by 6.3.1 the state machine dyo sdyo. ..o, can be provided
with outputs to turn it into a Mealy machine that covers the original
machine. It follows that in general a Mealy machine can be replaced by
a minimal covering machine which, in turn, can then be replaced by a
series of machines connected up in series and parallel which have, as
underlying state machines, group machines and reset machines. This is
a very significant result.
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6.4 Sequential functions

For this and the next section we will use a slightly different
interpretation of the behaviour of an incomplete Mealy machine. We
will only consider normal Mealy machines, and the difference between
their operation here and in the previous sections is concerned with the
appearance of blanks on the output tape.

Let 4 =(Q, 2, O, F, G) be a normal Mealy machine and let g€ Q,
xeX* Ifx=0102...048ndqF,,,qF 0,03 - . - s @F 0,0, ... o, AT 21 defined
then the output word f,(x) is completely defined and is an element of
©*. We define a partial function f, :3* » @* by

fo(x) ifqF4,, QF 0,04 ...+ qF 0,05. ..o, are all defined
falx)= where x =10, ... 0.
%] otherwise

This adaptation of the function f, satisfies several properties. Clearly
blanks cannot occur in f,(x) for any x € £*. Another point of interest
is that for f,(x)# @& the machine must stop in a defined state, i.e. qF,
must exist. Thus f,(x)# @ if and only if x is applicable to q and
qF, # @. In general f,:3*- ©* is a partial function according to this
interpretation, and will be a function if ./ is complete, in this case f, = f,.

We can now state some simple consequences of this interpretation
which are really analogues of some earlier results, namely 6.1.1, 6.2.1,
6.2.2 and 6.2.3.

Proposition 6.4.1
Let # =(Q, £, O, F, G) be a normal Mealy machine and g€ Q,
then for x, ye 3*

ﬁv(x)') =f.,(X) : qu.(Y)-

Proof We need only note that if f,(xy)= @ then either f,(x)=
@ or fur,(y)= @ which means that f,(x) - for.(y)=@. 0

Theorem 6.4.2

Let 4 =(Q, 2, ©, F, G) be a normal Mealy machine. The rela-
tion defined on Q by

a~asf =1,

is an equivalence relation. If MI~=(Q/~, 3, ©, F', G') is defined by
[q)F. =[qF.]
(41G. =[4G.)
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for g€ Q, o€ X then
(i) the function ¢ :Q~ Q/~ defined by ¢(q)= (q).q€Q,
satisfies

¢(@F, =[qu]} for g€ Q, € X;
)G, =4qG,
(ii) fiq = fa for each ge Q.

We call 4/~ the minimal machine of M. (An analogue of 6.2.4 also
holds here.) The machine A/~ has the property that if [¢], [q1]e Q/~
there exists a word x € S* applicable to both [] and [q1] such that

f-{ql(x)#nml(x)- i
This property will be described by saying that 4/~ is sequentially
reduced, or s-reduced for short. .

Let f:3*-©* be a partial function. We call f a sequential partial
function if there exists a normal Mealy machine #£ =(Q, %, 0, F, G) and
a state q € Q such that f(x) = fo(x) for all xe Z*. o

Naturally the machine A may not be unique and one of our aims !s
to find a minimal Mealy machine satisfying the required conditions. This
can be set into the more general problem of minimizing an arbitrary
Mealy machine, and the minimization procedure will yield a machine
with as few states as possible.

Example 6.9
Let £ =0 ={0, 1}. The function f:X* > @* is defined by

fx)=x forallxeX*.

If we construct the Mealy machine:

0.(0)‘ q }I.(l)

then

The Mealy machine:

0,(0)
l,(I)C q q,Dl,(l)
0,(0)

also satisfies the property
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Furthermore
f @ = f

This second machine is in some sense less efficient than the first, it has

more states but can do nothing more than the first machine. Both
machines are complete,

Example 6.10
Let £ ={0}, ® = {0, 1}. Define f:3* -+ ©* by
f(A) = A, f(0)=0, f(00) =00, (0" **) = 001" (n >0).
To see that f is sequential we construct the Mealy machine:
93

0.“/
0,(0) 0, (0>

q, q: 0,(1)

o.<\|\

qs
and note that f, = f. This machine is also complete.

Example 6.11

Let X = {0, 1} and suppose that x, y € =* then x and y represent
binary numbers, and we will define a machine that adds them together
and gives the result as a binary number. Recall that if x =010;. .. 0%
then x can represent a positive integer by using the expansion

x=01+0: 240322 +...0; - 27",

We have written this expansion out in the reverse order to what is
normal; this is caused by our convention that the tapes enter machines
so that the left-most symbol is the first one read. When adding two
numbers normally we look first at the right-most symbols, so these are
the symbols that we must input first. Thus 2=01, 3=11, 4=001,
5=101, 6=011, 7=111, 8=0001 etc. Define the machine ./ =
(Q, 2, 8, F, G), where £ ={0, 1}x{0, 1}, =10, 1},

(1,00¢(1) (1,0) (0)
1, N <)
(0,0)¢(0) q 0.0y (1) q (1, DH (1)
©, (1) 0, H {0
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Now let x, y be binary numbers, we first ensure that they are of the
same length by adding a succession of Os to the right hand side of the
shortest word until they are of equal length. Now we have two words
01...0x and o} . .. ok representing the binary numbers x and y. If we
add them together the binary representation of x +y is either of length
k or k +1. Since our sequential machine cannot convert two words of
length k into a word of length k + 1 we must make sure that our original
inputs are of length k +1 by adding a further O to the right of each
word oy...0x and oi...oh Now we input the word (01,01)
(o2,0%)... (ork, o:)(0,0)e 2"’ into the machine in state q. The resulting
output

fol(or, o) . ... (0% o1)(0, 0)
will represent the sum x +y (in our reverse binary representation).

For example 2=01 and so the input (0, 0)(1, 1)(0, 0) will result in
the sum 2 + 2 which can be read off from the machine diagram as 001 =4,
Similarly 5+8 is obtained with the input (1, 0)(0, 0)(1, 0)(0, 1)(0, 0)
which gives 10110== 13, and so on. The sequential function f; is thus a
binary adder. The final input (0, 0), which must be incorporated in any
input word, is called a carry and ensures that the final state is q and
that no part of the binary sum has been ‘left at’ q'.

We now consider a sequentlal partial function f:2*->@* Thus a
normal Mealy machine M =(Q,%,0,F,G) exists such that f=f, for
some q € Q. Because of 6.4.2 we can replace A by the minimal machine
M/~ and then f=fi,. This means that given a sequential partial
function we can find an s-reduced machine to represent the partial
function. To ensure that the machine is the most efficient possible we
remove all states that cannot be reached from the initial state.

Let f:Z* - 6* be a sequential partial function and M4 =(Q,%,0,F,G)
the minimal, s-reduced Mealy machine such that f = f. for some g€ Q.

Form the set Q; = {qF, | x € £*} and define the Mealy machine

M;=(Q,%,8,F, G)
where
q'(F).=q'F,
and
q'(G)s=4'G,

foroel, q'cQy.
The pair (ﬁ,, q) is called the minimal sequential machine for f. Our
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terminology implies that (.42,, q) is unique, but to be more precise it is
only uni(!ue up to isomorphism, where this is defined next.

Let #4=(Q,%,6,F,G) and A'=(Q',%,0,F’,G") be complete
Mealy machines. A function ¢:Q-Q’ is called a Mealy machine
homomorphism if

v(F,)=v(qQ)F,
4G, =¢(q9)G,
forqe Q,o€eX.
If ¥ is a bijective function then ¢ is called an isomorphism.

Theorem 6.4.3

Let f:X*-©* be a sequential partial function. Suppose that
s-reduced Mealy machines

M=(Q%,0,F,G) and M'=(Q,%,6,F,G
exist such that f=f, for some ge Q and f=f, for some q'¢ Q". If

(.ﬁ,, q) and (M r q") are minimal sequential machines of f then there
exists an isomorphism

¥ :fi,-».l?;- such that ¢(q) =q'.

Proof Let x,zeZX*. Since f,=f, we have f,(xz)=/f\(xz)
and so

fa®)  Far(2) = Foo(x) - Frri(2)
which implies that fr, (z) = fi,¢.(z) and so
for.=Fors
Define ¢ : My > M} by
V@F,)=q'F, (xeX¥).
This is well-defined for if gF, = qF, (x, y € £*) then
for.=for, andalso for, =fir,
far, = For;, which implies that fir, = fir;. By the s-reduced nature
of /' we must then have q'F’, =q'F,. A similar argument yields the
fact that ¢ is one-one. It is clearly onto and for x € =*
¥(qF.)=y¥(q)F; since q'=y(q).
Given o € X we have

‘/’(qFxFa) = .l’(qFx)F:r
and

GF,G, = fr.(0) = fyF:(0) = (4F,)G.,.
Hence ¢ is an isomorphism. a
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Theorem 6.4.4
Let ¢ : M -» M’ be a Mealy machine homomorphism and suppose
that q € Q, the state set of 4. Then

f = f )
Proof This is left as an exercise. a

Given a partial sequential function f:Z*->®* we can now consider
associating with it a minimal machine (ﬁ,, q) in an essentially unique
way, any other minimal machine will be isomorphic by 6.4.3. This justifies
calling (ﬁ,, q) the minimal machine of f. By the construction of My it is
accessible in the sense that any state of .ﬁ, occurs as an image of q under
a suitable input. This ensures that there are no ‘redundant’ states in Ay,

Let f:3*-»©* and g:©*->T™ be partial sequential functions and
suppose that M, q), (M., q') are the minimal machines of f and g.
Writing

M,;=(Q,%,8,F,G) and M,=(Q,0,IF,G)
we can now form the Mealy machine

My =(Q'xQ,%,T,F°,G*)

where
(4}, q0FZ =(q'1F uiqon 1Fo)
and
(4,962 =41Goaer for ;1€ Q1,qi€Qi, o€,
and where
w:0OxZ+0
is defined by

w(q,0)=G(q,0) forqeQ, ocel,

Consider the partial sequential function & :Z*->T™ defined by this
machine in state (', q). Let o € £, then
h(a)=q'G e
=q'Gqo,
=4'Gt
=g(f(o)).
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ForxeX* ocelX
h(xo)=h(x)-(q', 9)F;G3
= h(x) - (q'Fu+(x)» qF.)Gs using the notation of 2.6
= h(x) ' (q'F:u’(Q.x))G:u(qF..v)
=h(x)* q'Fo+@nGar.a,
=h(x)-q'F 'f(x)G,qF,G,
= g(f(x)qG.G,)
= g(f(xo))
providing that we can establish the identity
0*(qy, x)=f,(x) forq,eQ,, xe3Z*
Now for 0 €2, w*(q, 0) =w(q, o) = qG, = f(0). Let us consider a € 3*
and
©*(q, oa) = w(q, o)o*(q:1F,, a)
= fa (@) fur.(@)
= L,(a'a)
by the usual inductive process. Hence w*(qy, x) = f-,,,(x) as required.

Consequently the machine #,w4; in state (q', q) defines the partial
sequential function go f:Z*-» I,

Thus the composition of two partial sequential functions is again a
partial sequential function.

The other ‘products’ defined between Mealy machines give rise to
natural operations on the corresponding partial sequential functions.
For example, given Mealy machines M= (Q,%,8,F,G) and M'=
(Q', %, @, F', G') we can define the product

MAxM' =(QxQ,ExT, 8%, FXF', GXG')
which will then define a partial sequential function
(F%faa: (EXE)*>(OxO)*
by
(FX e ar(x x) = (Fo(x), For (x))
forxeX* x'e(2)* qeQ,q'c Q.

6.5 Decompositions of sequential functions
In this final section we will apply some of our earlier results to
problems associated with sequential functions.
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i i i d suppose then (ﬁ,, q)
Let f:£* - ©* be a partial sequential function an '
is the minimal machine of f. If A =(Qy £,®, F, G), then (Qy, %, F) is
a state machine, and so we may construct the transformation se‘mngroup
TS(Qp, £, F) and we call this the syntactic transformation semigroup of
J. It will be convenient to write this as
oA =(Qy, Sp).
Suppose that & has a decomposition of the form
drSQl". ..oB,,
what can we say about the sequential function f?

Theorem 6.5.1 ' '

(Eilenberg [1976]) Let f:Z* > ©* be a partial sequential fl'mc-
tion and let 5, < 3B, ° B,. Then there exist partial sequential functions
g 2*-T g @* such that

fsgiog
and

Ay =By, Ay=Ba

Proof Consider the syntactic transformation 4’semigroup d,s--
(Qy, Sy) of the minimal machine (#;, ). For each x e ) .we have F, € ' ,i
If B, =(P,, Th) and B, = (P, T,) then of < B, o B, implies th.at a ;’aama
function ¢ : P, X P> > Qy exists such thatfor each s € Sy thereexists 12 € T,
h*: P,- T, such that

¥(p1, p2)s S U(prh*(p2), pat2)
for (p1, p2) € P1 X Pa. Let (i1, i2) € Py X P; such that Pl i) =q.

Put I'= P, x £ x T, and define

ﬁl = (PZ’ 29 r’ sz Gz)

by
p2F2 =paty where F,=S€S;
p2G> =(p2, 0, h*(p2)).

Then consider the partial sequential function
g2t

defined by .ftﬂz in state i,. o

Now put M, =(P,,T,8,F, G') where

piFy=pity if y=(p20,0)
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and
¥(p1, p2)Gs if Y(p1, p2)# D #pity
PlG-‘,= & ifpy=0
arbitrary otherwise.

Now g,:T*->@* is defined by 4, in state i,. The partial function
81°82:Z* > @" is then defined by 4, w M, in state (i, i,).
For p\ € Py, p,€ P,, o € 3 there exists s = F, € S; and then
(ph pZ)G-c = plez(Pz.U)
=p1G, where y=(py, 0, h*(p2))
=¢(p1, p2)G,

w‘l‘hene‘yer U(p1, p2) # D # p1h*(p,). (Here G is the output function from
MrwMs.) If pih*(p2) =D then (py, p2)(h’, 1") = D and so ¢(py, p2)s =
@ . Consequently f < g, ° g, as required. 0

Theorem 6.5.2
Let f:2* - @* be a partial sequential function and let
A< By X B,,

then there exist partial sequential functions
g1 :2*->T¥
g2:2*-»T%

and a function 8 :I"y xI'; » @ such that
f(x)=(g1 A g2)(B(x)),

where
(81 A 82)(x) = (g1(x), ga2(x))

for x e Z* and
Ay =By, A,<B,.

Proof This construction follows a similar argument to the pre-
vious proof. However we use the Mealy machine construction 4, A 4,

that is, the restricted direct product. Here the alphabets I'; and I, are
defined to be P, XX and P, x X respectively.

B H F, X rz -0
is defined by

n_J W(p1, p2), 0)G, if o=0'and ¢¥(p,, p2)* D
B(p1, o, p2, 0') —{ arbitrary otherwise,
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where & :P,x P, Q is the covering partial function. The details are
left to the reader; they will be found in Eilenberg [1976].

Example 6.12
Let T ={c}, ©=1{0, 1} and f:X* > ©* be defined by

f(@)=0, fle?)=01, fe") = 010”2

for n = 3. Then f is a sequential function defined by the complete Mealy
machine started in state a:

0, (0 0,(1)
a b c Qo.(O)

This has state machine €2 which, by the holonomy decomposition
theorem, has a covering

Can=2-¢.
The covering ¢:Pyx P, Q (using the notation of theorem 6.5.1) is
given by

a=y¢((b a))=v(c, )

b=u((b, {b, c})

c=¥((c,{b,ch)
where P, ={b, ¢}, P,={{a), {6, c)). If Ty={n, 11}, Pity= {c}), Pyty ={b},
T, ={t2)} then h”: P, T, is defined by h“({a}) =11, A°({b,c}) =1 and
g2:X*->T™ is defined by

g2(0)=(a,0,11), gx(0)=(a,0,)) (b, cl oy 1)
and generally

g2(e™) =(a, 0, 1)), c}l, oy 1) ... ({b, ) o, 1)

forn>1.
Now

gi(ga(e)) =gi(a, o, 11)
=¢((b, a))G, =aG, =0
81(82(0)) = 0bF e 01)G', where y=({b, c}, o, 11)
=0bt,G,
=0y(bty, {b, )G~
=0bG,
=01
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g1(g2(0*) =01(bF ,G") 6.4 Examine 6.3.3 in the case where ¢ : Q » Q' satisfies

=01(cG") fox)Efoa(x) forall xeZ*,
- =01(cG,) 6.5 Prove that if ¢ :4 - A’ is an isomorphism and ¢(q)=g¢’, then
=010. fo=fu.

Continuing we see that
g1(g2(e™)=010"" forn=3.

6.6 Prove 6.5.2.

6.7 Minimize (if possible) the following machines (where =0 =

6.6 Conclusion 0, 1p:
We have seen how the concept of a Mealy machine can be used . P
to model a variety of discrete situations. Using the results of this chapter ® 4 a b ¢ d ¢ f
we can analyse the underlying state machine and transformation semi- F 0 a b c e b a
group by means of our results from chapters 3 and 4. To recover 1 ¢ d b d f
information about the original situation we can apply the results of this G 0 0 1 0 1 0 1
chapter to give facts about Mealy machine coverings, or if the model is 1 1 1 1 1 0 1
concerned with sequential functions we can decompose them. By choos-
ing a suitable decomposition theory we can then highlight various proper-
ties of our original model and this may well throw light on the situation (ii) A, a b ¢ d e [ 8
that we are modelling. F 0 a d b f ¢ a ¢
The subject discussed here is undergoing much rapid development 1 c d e d a b d
and it is likely that over the next few years many new and useful results
will appear. For those interested in reading further I would strongly G (1) ? ?3 ? 8 lz 60 }
recommend that the two masterful volumes by S. Eilenberg be studied.
6.7 Exercises (iii) My a b c d e f g
6.1 Let L =(Q,%, O, F, G) be a Mealy machine and i€ Q a given
R . . . . F 0 a d b c c a c
initial state. Consider the partial sequential function f,:$* - ©*. 1 & @ e a a b d
Let M = (4, i, Q) be a recognizer defined by # = (Q, T, H) where = o o2 1
= . is gi 0
I=2x®, H:QxZ-Q is given by G (1) ? g 0 8 9 2 1

(q1(o, 8))H =gF, if and only if 4G, =6, q€Q, o€X,
0e0.

Prove that || = {(a, B)|a € 2*, B € 8%, fi(a) =B}.
This shows that f; is a rational function, i.e. one whose graph is

6.8 Describe the sequential partial functions f., f. for the machine

a rational subset of £* x 0%, - a b ¢
F 0 b c a
6.2 Prove 6.2.2. 1 . 5 @
6.3 In the notation of 6.2.8 prove the following:
c\k G 0 1 1 1
(7)== 1 0 2 @

(™ '=r
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6.9 Describe the sequential function fon.om of example 3.2.7.

6.10 Describe the sequential function for of example 3.2.9.
minimal machine for this function.

6.11 Complete the details of theorem 6.5.2.

Find a

Appendix

The following program evaluates the semigroup of a state machine with up to
five states and nine inputs. The semigroup elements are listed and a
semigroup multiplication table constructed. The states are described by
numbers 1, 2, 3, 4, 5 and the inputs by letters A, B, C, D, E, ..... The next
state function is described as an n-tuple (n = 5). Implementation is on an
Apple or ITT 2020 microcomputer running Apple Pascal with a printer. The
program was written by Dr A. W. Wickstead, Department of Pure
Mathematics, Queen’s University, Belfast.

PROGRAM SEMIGROUPSH

CONST BLANK=' ‘$(%15 BLANKS%)
SEPARATOR=’ ‘4
(8 ‘-’ 66 TIMESS)
MAXWORD=154
STACKSIZE=»S04
TYPE MORD=RECORD VALIPACKED ARRAYL1..5) OF 1..3}
STRISTRINGLMNAXWORD]

END$
VALUES#PACKED ARRAYC1..3) OF 1..5¢
VAR PRINTITEXTS
SOFILESFILE OF WORD$
DOMPOINT ¢ IsJ3 INTEGER}
OPTION/NUNICHARS
FILENANE!STRING}

PROCEDURE CONTINUES
BEGIN

WRITELNS

WRITE(’PRESS RETURN TO CONTINUE °)}
READLNS

END}

PROCEDURE GENERATE}

VAR PRINTCNTvUORDB!ZEvUNlCNvUORDNUNvFUNCTNUHvDONSIZEvFUNCTSIZE!INTEOERO
NEWONE 1WORD$
STACKENDIARRAYLO. .11 OF INTEGERS
STACKSARRAYLO. 171, .STACKSIZE) OF WORD}
STARTERSARRAYC1..9) OF WORD}
USEDIPACKED ARRAY L1..5s1..5r8.45¢1..5,1..5] OF BOOLEAN}
TEMPISTRINGL 114

PROCEDURE CMECKPAOE}
VAR I:INTEGER#

BEGIN

IF PRINTCNT>S9 THEN
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BEGIN
FOR 13=1 TO &4-PRINTCNT DO WRITELN(PRINT)#
PRINTCNT =0}
END
END»

PROCEDURE WORDMESS(I!INTEGER)#

BEGIN

UR;TELN(PRINT)O

WRITELN(PRINT, ‘WORD SIZE?: ‘/»WORDSIZE»’' NUMBER O (] ‘

URITELNCPRINT S R OF NEW WORD(S)! ‘+STACKENDLID)}
PRINTCNT:aPRINTCNT+3$

CHECKPAGE?

END#

PROCEDURE OUT#
BEGIN
WRITE(PRINT¢’ (*)}
FOR DOMPOINT!=1 TO DOMSIZE DO
BEGIN
WRITE (PRINT)NEWONE . VALCDOMPOINT ) §
IF DOMPOINT<DOMSIZE THEN WRITE(PRINT+‘s’) ELSE WRITE(PRINT,’) )}

ENDy
WRITELN(PRINT)NEWONE.STR)
PRINTCNT IsPRINTCNT+14
CHECKPAGE}

(881-%)

SGF ILE™ $ =NEWONE §
PUT(SGFILE)> $
(s81+42)

END}

PROCEDURE SETUP}
BEGIN

WRITELNC(‘FILENAME FOR OUTPUTT (<RETURN> FOR‘)}

WRITE(NONE )}

READLN(FILENANE) }

IF (FILENAME<>‘’) THEN IF (FILENAMELLENGTH(FILENAME)J<>’!‘) THEN
REWRITE (SGFILEsFILENAME) ELSE WRITELN('NO OUTPUT FILE OPENED')?

FOR DOMPOINT:=1 TO S DO NEWONE.VALLDOMPOINTI:=DOMPOINT}

NUME=CHR(0)

PRINTCNT$=0$

TENPI=’?"}

WORDSIZEl=1}

WRITE(‘SIZE OF DOMAIN (1..3)T ‘)¢

REPEAT UNITREAD(2sNUMs1) UNTIL NUM IN [°1°,.°S°D}
($THIS USE OF UNITREAD READS SINGLE CHARACTER NUM FROM KEYBOAR

PRINTING IT ON THE VDUSR) 0ARD WITHOUT
WRITELN(NUM) ¢

DOMSIZE: =ORD(NUM)-48}
WRITE(*NUMBER OF FUNCTIONS (1..9)T ‘)
REPEAT UNITREAD(2,NUMr1) UNTIL NUM IN [°3°,.°9°38
WRITELN(NUW) }
FUNCTSIZE $ =ORD(NUM) 48}
FOR FUNCTNUMI=1 TO FUNCTSIZE DO
BEGIN
FOR DOMPOINT!=3 TO DOMSIZE DO
BEGIN
WRITE('VALUE OF FUNCTION °‘¢FUNCTNUM»‘ AT ‘+DOMPOINT»’ T ‘)%
REPEAT UNITREAD(2s,NUMs1) UNTIL NUM IN [‘1°.,.CHR(AB+DONSIZE)]}
WRITELN(NUM)
NEUWONE . VAL LDOMPOINT 13 =ORD(NUM)-48 Y
TEMPU113=CHR(S644FUNCTNUN) §
NEWONE .STR:=TEMP}
END}
STACKLO¢FUNCTNUM) $ *NEWONE §
STARTERIFUNCTNUMI t =NEWONE }
ouT#
ENDS
STACKENDLOJ ¢ =FUNCTSIZE )
WRITELN(PRINT)$
WRITELN(PRINT, ‘ORIGINAL ‘»FUNCTSIZE,’ FUNCTION(S) ')}
WRITELN(PRINT)}
PRINTCNT $ =PRINTCNT+3¢
CHECKPAGE #
WHICHS=1}
FILLCHAR(USED,SIZEOF (USED) yCHR(O) ) §
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FOR FUNCTNUMt=1 TO FUNCTSIZE DO USEDLSTARTERLFUNCTNUMI . VALL1]»

STQRTER[FUNCTNUHJ-VhL[2J'STQRTERKFUNCTNUHJ-VAL[!]-STARTER[FUNCTNUHJ-VhL[QJ-

STARTERCFUNCTNUMI . VALLS]I¢=TRUE}
END}

PROCEDURE TOOHARD}

GIN
WRITELN( ‘SEMIGROUP IS TOO BIG FOR THIS PROGRAM')}
(s81-%)
CLOSE(SGFILE.PURGE)}
(as148)
CONTINUE S
EXIT(GENERATE)
END}

PROCEDURE NEWLEVEL #
BEGIN
STACKENDEWHICH] $=0}
FOR WORDNUMi=1 TO STACKENDC1-WHICH) DO (#FOR EACH NEW WORD AT LAST LEVEL®)
BEGIN
FOR FUNCTNUM$=1 TO FUNCTSIZE DO (SFOR EACH ORIGINAL FUNCTIONK)
BEBIN
FOR DOMPOINT:=1 TO DOMSIZE DO (%FOR EACH POINT OF DOMAINX)

BEGIN
NEUONE.VAL(DOHPOINT]I-BTQRTER[FUNCTNUH]onL[BThCK[1-UNXCN-UDRDNUH].

VALCDOMPOINTIIS (SVALUE OF ((ORIGINAL FUNCTION) )XWORD) AT DOMPOINT®)

END}
NEUONE.STRS-CONCOT(STQCK[I-UNXCN-UDRDNUH].BTRvBTARTERtFUNETNUH].BTR)!
IF NOT USED[NEUONE-V&L[l]vNEUONE.Vth?]-NEUONE.VhL[!JvNEUDNE.VQL[‘]-
NEWONE .VALLS)] THEN
BEGIN
1F WORDSIZE>MAXWORD THEN TOOMARD}
USED[NEUONE.VAL[!]-NEUONE.VﬁL[Z]-NEUONE.VOL[!]-NEUONE-V&L!A]-
NEWONE .VALLSJI1$=TRUE}
STACKENDCWHICH) $=STACKENDCWHICHI+1 4
1IF STACKENDCWMICHI>STACKSIZE THEN TOOWARD}
STACKLWHICH»STACKENDLWHICHI1 ¢t =NEWONE
ouT#
END?
END
END}
WORDSIZE  =WORDSIZE+1}
IF STACKENDEWHICHI<>O THEN WORDHMESS (WHICH)}
WHICH: =1-WHICH}
END?

BEGIN(SGENERATES)

PAGE (OUTPUT )}

GOTOXY (1004804

WRITELN(’SEMIGROUP GENERATION)}

GOTOXY (0,100 8

WRITELNC’YOU MAY SPECIFY UP TO 9 FUNCTIONS ON‘)}
WRITELNC’A SET OF UP TO 5 ELEMENTS. THE PROGRAM’)}
WRITELNC‘WILL LIST THE ELEMENTS IN THE )}
WRITELN(SEMIGROUP THAT THEY GENERATEs AND A‘)}
WRITELN(‘DESCRIPTION OF EACH IN TERMS OF THE')#S
WRITELNC ‘ORIBINAL FUNCTIONS. )}

WRITELNS

SETUP}

REPEAT NEWLEVEL UNTIL STACKENDL1-WHICHI=0}
(891-%)

CLOSE(SGFILE,LOCK) $

(X8148)

FOR It=1 TO 66-PRINTCNT DO WRITELN(PRINT)}

END#

PROCEDURE MULTIPLY}
VAR PRODUCTIVALUES)
STACKIARRAYLO. +235] OF VALUES}
CODE$PACKED ARRAY [1..501005e20.5¢14.5¢1..5) OF 0..25%)
PAGESWD ¢+ PAGESHT ¢+SIZEe 1+ JIINTEGER?
LISTIARRAYLO. .255) OF STRINGLMAXWORD])

PROCEDURE SETUP)

BEGIN

MRITE(‘FILENAME FOR INPUT? ‘)i

REPEAT READLN(FILENAME) UNTIL FILENAMES>'’#
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RESET(SGFILE»FILENAME) §
FILLCHAR(CODE»SIZEOF(CODE)»CHR(0))$
SIZE =04
REPEAT
BEQGIN
STACKILSIZE11=8GFILE™ VAL }
LISTCSIZEI$=CONCAT(SGFILE~ .STRyCOPY(BLANK»1+15-LENGTH(SOFILE™.8TR)))}
CODECSGFILE™.VALL11,86GFILE".VALL2]»8OFILE~.VALL3]»SGFILE".VALL 4],
SGFILE™.VALLS]1!=SIZE}
(s81-%)
GET(SGFILE)$
(381+48)
SIZE1=SIZE+1$
END

UNTIL EOF(SGFILE) OR (SIZE>253)#4
IF NOT EOF(SGFILE) THEN
BEGIN
WRITELN( ‘SEMIGROUP I8 TOO BIG TO COMPUTE TABLE’)#
URITELN(’ROUTINE ABORTING’)S
CONTINUE $
CLOSE (SOFILEsLOCK)$
EXIT(MULTIPLY) S
END$
CLOSE(SGFILE»LGCK) ¢
PAGESHT I=(S1ZE-1) DIV 404
PAGESWDI=(SIZE-1) DIV 7}
END#

PROCEDURE PRINTPAGE(I»J1INTEGER) S
VAR KrLsXsYIINTEGERS
BEGIN
WRITE(PRINTBLANK,CHR(124)) 3
FOR Ki=0 TO 6 DO
BEGIN
IF 7%J4K<SIZE THEN MRITE(PRINT,’ ‘»LISTL7XM4K1)}
D

EN
WRITELN(PRINT)}
WRITELN(PRINT»SEPARATOR »SEPARATOR) §
FOR Li{=0 TO 59 DO
BEGIN
X1=608T4L#
IF X<S8IZE THEN
BEGIN
WRITE(PRINT,LISTLXI,CHR(124))}
FOR Kt=0 TO 6 DO
BEGIN
Yia?RJ4K$
IF Y<BIZE THEN
BEGIN
FOR DOMPOINT!=t TO S DO
BEGIN
PRgDUCTEDUNPOINTJI-BTRCKEV.ST“CKEXrDONPOlNTJJO
END}
WRITE(PRINT»‘ ‘»LISTLCODECPRODUCTL13»PRODUCTL2],PRODUCTLII,

PRODUCTLAJ»PRODUCTLSIIN)
END$

END#
END#$
HRITELN(PRINT) ¢
END¢
FOR Lt=0 TO 3 DO WRITELN(PRINT)}
ENDS

BEGIN(SMULTIPLYX)
PAGE (DUTPUT) #
GOTOXY(7+6) 4
WRITELN(/PRINT MULTIPLICATION TABLE’)#$
BOTOXY(0,10) 4
WRITELN(’THIS ROUTINE WILL PRINT THE TABLE’)#$
WRITELN(’GF A FUNCTION SEMIGROUP THAT HAS BEEN’)}#
WRITELN('PRODUCED BY THE GENERATION OPTION’)#
WRITELNS
SETUPS
FOR 14=0 TO PAGESHT DG

BEGIN

FOR Ji=0 TO PAGESWD DO PRINTPABGE(I,J)

END$
END$
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BEGIN(SPROGRAMY)
OPTIONI=CHR(0) ¢
REWRITE (PRINT» ‘RENOUTE )}
REPEAT
BEGIN
PAGE (OUTPUT) §
GOTOXY(10+8) 4
WRITELN( ‘FUNCTION SEMIGROUPS ')}
GOTOXY(9+8) ¢
WRITELNC/(C) 1981 A.W., WICKSTEAD')}
GOTOXY(0r»12)4
WRITELN(’OPTIONS! GIENERATE SEMIGROUP’)$
N
:::}Etﬂ(’ MIULTIPLICATION TABLE')}
WRITELN( QIT )¢
WRITELN(’
REPEAT UNITREAD(2,0PTION»1) UNTIL OPTION IN L’G*s’M’¢’0Q’3}
CASE OPTION OF
‘G’ 1GENERATE )
‘M IMULTIPLYS
‘0’ $PAGE(OUTPUT)
END(XCASES®)
END}
UNTIL OPTION=‘Q’}
CLOSE(PRINT)#
END.
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Stage of transformation semigroup 100

State complete Mealy machine 178

State completion of Mealy machine 181
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