

**3.** To Commemorate the Centenary of Rutherford's Atomic Nucleus: the Scattering of an Ion by a Neutral Atom



An ion of mass m, charge Q, is moving with an initial non-relativistic speed  $v_0$  from a great distance towards the vicinity of a neutral atom of mass M >> m and of electrical polarisability  $\alpha$ . The impact parameter is b as shown in Figure 1.

The atom is instantaneously polarised by the electric field  $\vec{E}$  of the in-coming (approaching) ion. The resulting electric dipole moment of the atom is  $\vec{p} = \alpha \vec{E}$ . Ignore any radiative losses in this problem.

**3.1** Calculate the electric field intensity  $\vec{E}_p$  at a distance r from an ideal electric dipole  $\vec{p}$  at the origin O along the direction of  $\vec{p}$  in Figure 2. [1.2 points]





**3.2** Find the expression for the force  $\vec{f}$  acting on the ion due to the polarised atom. Show that this force is attractive regardless of the sign of the charge of the ion.

## [3.0 points]

**3.3** What is the electric potential energy of the ion-atom interaction in terms of  $\alpha$ , Q and r?

## [0.9 points]

**3.4** Find the expression for  $r_{\min}$ , the distance of the closest approach, as shown in Figure 1. [2.4 points]

**3.5** If the impact parameter b is less than a critical value  $b_0$ , the ion will descend along a spiral to the atom. In such a case, the ion will be neutralized, and the atom is, in turn, charged. This process is known as the "charge exchange" interaction. What is the cross sectional area  $A = \pi b_0^2$  of this "charge exchange" collision of the atom as seen by the ion? [2.5 points]