Theoretical Question 3

Part A

Neutrino Mass and Neutron Decay

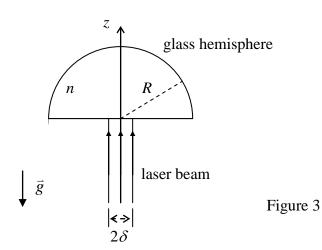
A free neutron of mass m_n decays at rest in the laboratory frame of reference into three non-interacting particles: a proton, an electron, and an anti-neutrino. The rest mass of the proton is m_p , while the rest mass of the anti-neutrino m_v is assumed to be nonzero and much smaller than the rest mass of the electron m_e . Denote the speed of light in vacuum by c. The measured values of mass are as follows:

$$m_n$$
=939.56563 MeV/ c^2 , m_p = 938.27231 MeV/ c^2 , m_e =0.5109907 MeV/ c^2

In the following, all energies and velocities are referred to the laboratory frame. Let *E* be the total energy of the electron coming out of the decay.

(a) Find the maximum possible value E_{max} of E and the speed v_{m} of the anti-neutrino when E = E_{max} . Both answers must be expressed in terms of the rest masses of the particles and the speed of light. Given that $m_{\nu} < 7.3 \text{ eV}/c^2$, compute E_{max} and the ratio v_{m}/c to 3 significant digits. (4.0 points)

Part B


Light Levitation

A transparent glass hemisphere with radius R and mass m has an index of refraction n. In the medium outside the hemisphere, the index of refraction is equal to one. A parallel beam of monochromatic laser light is incident uniformly and normally onto the central portion of its planar surface, as shown in Figure 3. The acceleration of gravity \bar{g} is vertically downwards. The radius δ of the circular cross-section of the laser beam is much smaller than R. Both the glass hemisphere and the laser beam are axially symmetric with respect to the z-axis.

The glass hemisphere does not absorb any laser light. Its surface has been coated with a thin layer of transparent material so that reflections are negligible when light enters and leaves the glass hemisphere. The optical path traversed by laser light passing through the non-reflecting surface layer is also negligible.

(b) Neglecting terms of the order $(\delta/R)^3$ or higher, find the laser power P needed to balance the weight of the glass hemisphere. (4.0 points)

Hint: $\cos \theta \approx 1 - \theta^2 / 2$ when θ is much smaller than one.

[Answer Sheet] Theoretical Question 3

Wherever requested, give each answer as analytical expressions followed by numerical values and units. For example: area of a circle $A = \pi r^2 = 1.23 \text{ m}^2$.

Neutrino Mass and Neutron Decay

	Neutrino Wass and Neutron Decay
	e expressions in terms of rest masses of the particles and the speed of light)
The n	maximum energy of the electron is (expression and value)
	$E_{ m max}=$
The r	ratio of anti-neutrino's speed at $E = E_{\text{max}}$ to c is (expression and value)
	$v_{\rm m}/c=$
	Light Levitation
(b) The 1	laser power needed to balance the weight of the glass hemisphere is
	P =
_	