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1 INTRODUCTION
This booklet follows the structure of the study guide “Mech-
anics”. Some thermodynamical concepts are inherently rather
complex; meanwhile, understanding all the details of that com-
plexity are not necessary for a successful solving of Olympiad
problems. Because of that, the material is divided into two
categories: (a) basic topics, learning of which is sufficient for
solving a majority of the Olympiad problems, and (b) an ad-
vanced material, which is primarily aimed for deepening the
understanding of the origins of thermodynamics and is given
in a small shrift or moved into Appendices.

Thermodynamics differs from the other branches of physics
in that its laws are statistical and hence, are not absolutely
strict: they are valid only with a certain accuracy and certain
probability. For macroscopic systems, these statistical laws are
based on averaging over many atoms and molecules; owing to
that, the relative statistical fluctuations of average quantities
are very small, so that the accuracy of the statistical laws is
very high.

This claim can be also stated mathematically. Mathematical statist-
ics teaches us that if the value of a certain random quantity is obtained
independently N times, the standard deviation of the respective average
value (averaged over these N realizations) is

√
N times smaller than the

standard deviation of a single measurement. For instance, the root-mean-
square (rms) of the speeds of N molecules (v̄) has a standard deviation δv̄

which is
√

N times smaller than that of a single molecule, δv. The latter
has the same order of magnitude as the rms speed itself, δv ∼ v̄. Hence,
the relative magnitude of fluctuations of the rms speed of N molecules can
be estimated as δv̄/v̄ ∼ 1/

√
N . To get an idea about typical numerical

values, let us consider a gas inside a volume of one cubic centimetres. Un-
der normal conditions, one mole occupies a volume of 22.4 litres, and one
cubic centimetre contains N ≈ 6 × 1023 1

22400 ≈ 3 · 1019 molecules, hence
the relative statistical fluctuations of the thermodynamical quantities are
of the order of 1/

√
N ≈ 5 · 10−9, i.e. really negligible.

Within the framework of school physics and for a majority
of the Olympiad problems, the statistical nature of the ther-
modynamics remains unnoticed, because the formulae of ther-
modynamics and molecular kinetics can be applied exactly in
the same way as all the other physical formulae.

2 Heat and temperature
def. 1: Heat is the energy of the thermal motion of a system.

Note that the term “thermal motion” stands for a random mo-
tion of the microscopic particles making up the bodies (most
typically atoms and molecules). These particles are so small
and move so fast that typically, the thermal motion cannot be
directly seen.

Since the overall energy of any closed system is conserved,
the following very useful conclusion can be drawn directly from
this definition (formulated as a “fact”).

fact 1: the full energy (thermal+mechanical etc.) of a closed
system is conserved:

∆U = ∆Q − ∆W,

where ∆U is the change of the internal (thermal) energy, ∆Q

— the amount of heat given to the system, and
∆W = p∆V

is the mechanical work done by the system while expanding; p

stands for the pressure at the system’s external boundary, and
∆V denotes the change of the system’s volume.

This formula (the thermodynamical energy conservation law)
is referred to as the 1st law of thermodynamics (1LTD). All
the three terms of this law are signed quantities: if the system
gives away some heat then ∆Q < 0; if the volume contracts
then the work done by the system is negative, ∆W < 0 (in-
stead of W , one can also use the work done by external forces
∆We in which case ∆We = −∆W ).

The expression for the work here assumes that the relative
changes of the system properties are small, so that the pressure
p can be considered constant; thus, it would be more correct to
substitute the ∆-symbols (which are typically used to designate
a finite change) with differentials, or to write

W =
∫

p dV.

This formula implies that the work can
be found as the surface area under p(V )-
graph and can be derived as follows. Let
us consider a small surface area ∆Ai of
the interface separating the system under
study from the rest of the space, and let
us denote with ∆xi that component of its displacement which
is perpendicular to the surface element ∆Ai; we can consider so
short time interval that the displacement ∆xi remains as small
as needed. The pressure force acting on the surface element
∆Fi = p∆Ai, and its work ∆Wi = ∆Fi∆xi = p∆Vi, where
∆Vi = ∆Ai∆x1 is the increase of the system’s volume under
the surface element ∆Ai. In order to find the total work, we
need to sum over the entire interface,

∆W =
∑

i p∆Vi = p
∑

i ∆Vi = p∆V .
For an infinitesimal volume increment dV , it is rewritten as
dW = p dV and can be integrated over the whole process to
yield W =

∫
p dV .

In order to be able to solve problems, we also need the
concept of temperature, which is intuitively clear for everyone,
but a correct definition of which is quite complicated. Classical
(non-digital) thermometers measure the temperature using the
thermal expansion of liquids: warmer liquid takes more space
than a colder one. However, this cannot be used as a good
definition of temperature: different liquids expand at a differ-
ent rate, and most importantly, this approach would be applic-
able only to moderate temperatures (at high temperatures, all
the matter is in the plasma state, and at temperatures close
to the absolute zero, the few substances which remain in the
liquid state undergo phase transitions).

We know that if the temperature outside is low, we feel
cold: our body gives away some heat, and according to the
definition 1, the kinetic energy of our body molecules becomes
lower. Inversely, if the temperature is high, it’s hot: our body
cannot give away as much heat as is produced via physiological
processes, and the kinetic energy of our body molecules starts
rising. Therefore we can start with a qualitative definition of
the temperature:
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2. HEAT AND TEMPERATURE

def. 2: Temperature is a quantity which characterizes the
direction of heat exchange between two bodies, both of which
have reached a thermal equilibrium: when brought into con-
tact, the heat flows from a body of a higher temperature to the
body of a lower temperature (equal temperatures correspond
to a zero heat flux).

This definition is usable (not self-contradictory) only if we have
the following property. Consider an arbitrary set of three bod-
ies A, B, and C; suppose that when A and B are brought into
contact, heat flows from A to B, and when B and C are brought
into contact, heat flows from B to C. Then we can be sure that
when A and C will be brought into contact, heat will flow from
A to C. Experimental observations confirm this property (so
we can use def. 2), and actually even a more generic property
which is known as the second law of thermodynamics (2LTD):

fact 2: Whichever tricks are used (heat engines, Maxwell’s
demons1, etc), if no external work is done, heat can flow only
from a body of a higher temperature to a body of a lower tem-
perature (i.e. the direction of heat flow cannot be reversed as
compared to what is observed in the case of a direct contact of
two bodies).

Within the theory of classical thermodynamics, 2LTD is a
postulate following from experimental data; within the stat-
istical thermodynamics, the methods of mathematical statist-
ics are used to show that for processes involving macroscopic
bodies (i.e. made of a large number of molecules), outcomes
violating 2LTD will have negligible probabilities (the proof is
mathematically complicated and will not be provided here).

Note that the thermal energies of two bodies of equal tem-
perature are not necessarily equal; however, for a fixed body,
thermal energy is a monotonously increasing function of its
temperature2.

Now we have a qualitative definition of temperature, but we
still lack a quantitative one. For many problems it is enough
to know and understand the simplified and classical one:

def. 3: Temperature is a measure of a body at thermal
(quasi)equilibrium: if two bodies of different temperatures are
brought into contact, heat flows from the higher temperature
body to the lower temperature one. For a given body, tem-
perature is a monotonously increasing function of its internal
heat energy. Kelvin’s temperature scale is defined so that zero
heat energy corresponds to T = 0 K, ice melts by atmospheric
pressure at 273.15 K, and water boils at 373.15 K.

This definition is clearly insufficient for designing thermo-
meters suitable for very low temperatures. Apart from this
definition, there is also the Kelvin’s one which will be discussed
in section 4. The best and most generic definition is based on
the statistical approach to thermodynamics (in which case the
2LTD is derived from the laws of statistics); let us consider this
in more details. Quantum mechanics tells us that a body (a
set of particles which are bound by forces into a finite region
of space) is characterized by a countable set of its stationary
states — the states where the total energy has a well-defined
value. For statistical thermodynamics we need to consider two

bodies: one small (or moderately-sized) and one huge, which is
assumed to be in a thermal contact with the small one, i.e. the
two bodies can exchange energy. For instance, the small body
can be a single atom of a monomolecular gas, and the heat
reservoir can be the rest of the gas. The large one is referred
to as the heat bath and is needed to ensure that when the small
body obtains or gives away due to random fluctuations some
of its thermal energy, the temperature would remain constant.
Therefore, it needs to be much large (have much larger heat
capacitance) than the body which we analyse.

Let the energy levels of the body states be denoted by Ei

(e.g. for a single, almost free atom, Ei = p2
i /2m, where pi is

the momentum of the atom in its i-th state).

fact 3: It can be shown using mathematical statistics (see
Appendix 1) that the probabilities of the body for being in the
i-th or j-th state satisfy the Boltzmann’s law:

pi

pj
= e−β(Ei−Ej).

The constant β depends on (and describes) the state of the heat
reservoir, i.e. on the temperature; it is easy to see that smaller
values of β correspond to higher mean energies of the body.
Therefore, the temperature of the reservoir can be defined as

T̃ = 1/kβ = Ei − Ej

k ln(pj/pi)
,

where k is a constant which could be freely chosen, but is taken
equal to be kB ≈ 1.38 × 10−23 J/K to ensure agreement with
def. 3.

To sum up, the Boltzmann’s law
p ∝ e−E/kBT

serves as the definition of temperature which coincides with the
Kelvin’s temperature scale; here ∝ denotes proportionality and
E is the system’s energy. The only difference with the Kelvin’s
scale is that with the statistical temperature definition, one can
also have negative temperatures — assuming that the body
and heat reservoir have finite number of quantum-mechanical
states, and the net energy of the reservoir is so high that higher
energy states are more probable than the lower ones.

def. 4: Each body is characterized by its thermal capacit-
ance C which shows how much heat needs to be given to raise
the temperature by one degree: C = dQ/dT .

Note that this definition, when written for finite increments
as C = ∆Q/∆T , assumes that there are no phase transitions
(such as melting or boiling) within the considered temperature
range, because phase transitions incur additional heat absorp-
tion or heat release.

def. 5: In order to bring a substance from one phase to an-
other (typically from solid phase to liquid or from liquid phase
to gaseous phase), certain amount of heat needs to be given
to the substance, which is proportional to the mass m of the
substance: Q = λm. The factor λ is referred to as the latent
heat (e.g. latent heat of evaporation or latent heat of melting).

Typically, for moderate temperature increments near room
temperature, the heat capacitance can be assumed to be con-
stant; in that case, we can write ∆Q = C∆T . In the case

1See http://en.wikipedia.org/wiki/Maxwell%27s_demon
2This can be shown using 2LTD and a construction involving Carnot cycles (ideal heat engines).
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of larger temperature increments, this is no longer valid and
integration is needed: ∆Q =

∫
CdT .

fact 4: At low temperatures, the heat capacitance of crystal
materials is proportional to the third power of temperature,
C ∝ T 3.

If the body which is being heated expands, the supplied heat
is partially converted into mechanical work. Therefore, the
heat capacitance depends on the conditions under which the
body is held; most often, heat capacitance at constant volume
CV and the heat capacitance at constant pressure Cp are used.

fact 5: If a body is heated at a constant volume, no expan-
sion work is done, so that according to the 1LTD, CV can be
used to find the change of the internal energy of the thermal
motion of molecules: dU = CV dT and

U =
∫ T

0
CV (T ′)dT ′.

This integration makes use of the fact that at T = 0, there is
no thermal motion of molecules, and hence, internal energy is
zero. In particular, for crystal materials at low temperatures
when C = AT 3 integration yields U = 1

4 T 4.
In the case of liquids and crystals, the volume change is

typically small so that the expansion work is negligibly small
and Cp ≈ CV ; however, this not valid for gases, in which case
cp = CV + R (this will be discussed later in more details).

pr 1. [IPhO-1996] A thermally insulated piece of metal is
heated under atmospheric pressure by an electric current so
that it receives electric energy at a constant power P . This
leads to an increase of the absolute temperature T of the metal
with time t as follows:

T (t) = T0[1 + a(t − t0)]1/4

Here a, t0 and T0 are constants. Determine the heat capacity
Cp(T ) of the metal (temperature dependent in the temperature
range of the experiment).

The solution of this problem is rather straightforward: it is
enough to apply the definition 4 and make some mathematical
manipulations to eliminate time t. We can still try to formulate
an appropriate “idea” as follows.

idea 1: The body temperature T and the net heating power
P are related via equality P ≡ dQ

dt = C dT
dt . Therefore, the

tangent to the T (t) curve is proportional to the net power and
inversely proportional to the heat capacitance; many problems
can be solved by using this observation.

In the case of the problem 1, this idea is to be used algebra-
ically. In those cases when a T (t)-dependence is provided in a
graph, it tells us that as long as the heat capacitance of a body
remains approximately constant, we can find how many times
the net heating power is changed by determining the slopes of
the tangent at two different points of the T (t)-graph. Let this
be illustrated with the following problem.

pr 2. [EstPhO-2004] Water is being heated in an electric
kettle. At a certain moment of time, a piece of ice at temper-
ature T0 = 0 ◦C was put into the kettle. Figure depicts the
dependence of the water temperature as a function of time.

What was the mass of the ice if the heating power of the kettle
P = 1 kW. The latent heat of melting for ice L = 335 kJ/kg,
the heat capacitance of water c = 4.2 kJ/kg · K. The room
temperature T1 = 20 ◦C.

T (°C)
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In the case of this problem, we can also formulate a fact,
and a rather simple idea.

fact 6: The heat exchange rate (i.e. the heat flux, measured in
Watts) between a body and the environment is a function of the
temperatures of the body and of the environment, T1 and T2,
respectively; for a small tempera difference ∆T ≡ T1 −T2,
the heat flux is proportional to ∆T ; this is referred to
as the Fourier’s law. For larger temperature differences, the
dependence becomes nonlinear, because (a) heat conductivity
of the materials may depend on the temperature, (b) the heat
flux due to heat radiation is a non-linear function of T1 and
T2 (however, it can be still linearized for small values of ∆T );
(c) large temperature differences may cause convection of air
and fluids which will enhance heat flux in a nonlinear way. Pay
attention that the heat flux goes to zero for T1 = T2!

idea 2: Heat exchange rate of a body with the environment is
a function of the temperatures; hence, for processes during
which the temperature change remains small, the heat
exchange rate can be assumed to be constant. In partic-
ular, if a body has reached a thermal equilibrium while being
heated with a power P0, it has reached a temperature T0 by
which the heat loss power equals exactly to P0: PHL(T0) = P0;
hence, if the heater is suddenly switched off, the initial cooling
power of the body (due to the heat loss to the environment) is
P0.

Returning to the problem 2, the graph allows us to determ-
ine, how long time-delay τ in the heating process has been
caused by the piece of ice: this is the time needed to melt and
heat the meltwater up to the current water temperature. The
value of the ice-heating-time τ would allow us to determine the
mass of ice from the 1LTD if the net heating power (P minus
the energy loss to the environment) were known. The aver-
age net power received by the kettle during that period when
the ice is being melted and the meltwater being heated can be
determined from the graph using the ideas 2 and 1.

The particular case mentioned at the end of the idea 2 is
illustrated with the following problem.

pr 3. [EstPhO-2001] The filament of a halogen lamp has
length l = 5.0 cm and is made of tungsten. At the working tem-
perature of the lamp T0 = 3200 ◦C, the density of the tungsten
ρ = 18 200 kg/m3, the specific heat c = 235 J/(K · kg), and the
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resistivity ρel = 9.95 × 10−7 Ω · m. When a voltage of rectan-
gular waveform as shown in graph is applied to the leads of the
lamp, the temperature of the filament will reach the nominal
value T0 (strictly speaking, this is the average temperature; the
interior regions of the filament are slightly hotter). However,
due to voltage oscillations, there are small oscillations of the
filament’s temperature; find the amplitude of these oscillations
∆T .

The usage of the linear dependence mentioned in the fact 6
is illustrated by the following problem.

pr 4. A small house is being heated by an electric heater
of power P = 1 kW which maintains the interior temperature
t1 = 19 ◦C; the outside temperature t0 = 0 ◦C. A man enters
the house, upon which the room temperature starts rising and
achieves a new value t2 = 20 ◦C. Find the “heating power” of
the man.

Here the task of figuring out that the Fourier’s law can be
used (because the temperature difference is much smaller than
the temperatures in Kelvins) is left to those who solve the
problem. Be aware that for some loosely formulated problems,
the Fourier’s law is assumed to be used even when its applic-
ability is actually questionable (for instance for temperatures
T1 = 273 K and T2 = 373 K).

idea 3: The problems on heat exchange rate are analogous to
the problems on electrical circuits. There are following match-
ing pairs: temperatures correspond to voltages, heat energy -
to a charge, heat fluxes — to currents, a thermal resistance
(proportionality coefficient between the heat flux and ∆T , c.f.
idea 6) — to an electrical resistance, heat capacitance — to
electrical capacitance. The both Kirchoff’s law remain valid for
heat exchange processes: while the counterpart of the voltage
law is quite useless due to triviality (along a closed circuit, the
sum of temperature increments is zero), the counterpart of the
current law is useful and can be referred to as the continuity
of thermal fluxes: if the bodies of a system have reached sta-
tionary temperatures, for each body, the sum of heat fluxes
entering it equals to zero.

pr 5. [EstFin-2003] Thermal resistivity is a characteristic of
a material and is defined as the coefficient of proportionality
between the temperature gradient dT

dx and the heat flux density
(here we assume that the heat flux is parallel to the x-axis).
Note that the unit of the heat flux density is W/m2, hence the
unit of the thermal resistivity is K · m/W.
(i) A microprocessor of power dissipation P = 90 W is cooled
using a flowing water; the thermal contact between the pro-
cessor and the water is established via a copper plate of
thickness d = 5 mm and surface area s = 100 mm2. De-
termine the temperature difference between the microprocessor
and the flowing water. Thermal resistivity of copper ρ =
2.6 mm · K/W.
(ii) A wire is made of different alloys so that its thermal res-
istivity depends on the coordinate along the wire as shown in

the figure. The cross-sectional area of the wire S = 1 mm2 and
length l = 4 cm. Find the heat flux through the wire if one
end of the wire is kept at the temperature T1 = 100 ◦C and the
other — at T2 = 0 ◦C.

0.1

0.2

0   1   2   3   4
x(cm)

(K·m/W)

Second half of this problem makes use of a rather generic
method.

idea 4: Calculation of many physical quantities can be re-
duced (sometimes not in an obvious way) to the calculation of
surface areas under a graph (i.e. to an integral).

More specifically, if a system is described by a parameter x

(which can be time, coordinate, velocity, etc.) and a quantity
A can be expressed as A =

∑
i Fi∆x, where ∆x is a small in-

terval of the parameter x, the sum is taken over all the small
intervals, and Fi is a function of x (but not a function of A)
then at the limit ∆x → 0 we can write A =

∫
F (x)dx, i.e. A is

the surface area under the graph F (x).
In order to illustrate this method, let us consider the fol-

lowing mechanical problem. For a boat in water, the friction
force is given as a function of speed F (v), depicted in a graph
(it has a crossover from a linear function at small speeds to a
parabola for large speeds). You are asked to find, how far will
travel a boat of a given mass m and initial speed v asymptotic-
ally (i.e. upon waiting for a very long time). Let us divide the
displacement into small pieces, s =

∑
∆s, where ∆s = v∆t.

If the function v(t) were known, the last formula would have
been completed our task. However, the force is given to us as
a function of v, hence we need to substitute ∆t with ∆v. Force
is directly related to the acceleration, a(v) = dv

dt = F (v)/m,
which gives us a hint that we should try substituting ∆t via
∆v while introducing the acceleration:

∆t = ∆v · ∆t

∆v
= ∆v

∆v/∆t
= ∆v

a
.

This result serves us perfectly well:

s =
∑

v∆t =
∑ v

a
∆v =

∑ vm

F (v)
∆v →

∫
vm

F (v)
dv,

i.e. the displacement equals to the surface area under a graph
which depicts vm

F (v) as a function of v.
The next problem makes also use of the continuity of heat

flux; however, it also requires the knowledge of the Stefan-
Boltzmann law for heat radiation.

fact 7: For “grey’ bodies (which absorb a constant frac-
tion of the incident electromagnetic radiation, independently
of its wavelength), the heat radiation flux density (i.e. radi-
ated energy per unit area) w = εσT 4, where T is the tem-
perature of the body, ε ∈ [0, 1] — the absorption factor, and
σ = 5.67 × 10−8 W · m−2 · K−4 — the Stefan-Boltzmann con-
stant.
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The factor ε shows, which fraction of the incident light is ab-
sorbed; for a perfectly black surface ε = 1; for a perfectly
white surface ε = 0. This formula is derived using the assumption
that the radiating body is in a thermal equilibrium with the electromag-
netic waves in the adjacent vacuum; a knowledge of quantum mechanics
and application of the Boltzmann’s distribution are required, as well as
certain mathematical skills.

pr 6. [IPhO-1992] A satellite represents a homogeneous
sphere of diameter D = 1 m; you may assume that all the
parts of the satellite have the same temperature. The satel-
lite orbits around Earth (but is not in its shade). The Sun
can be considered to be an absolutely black body with the
surface temperature T⊙ = 6000 K, the radius of the Sun
R⊙ = 6.96 × 108 m, the orbital radius of the Earth around
the Sun L = 1.5 × 1011 m. Find the temperature of the satel-
lite assuming that it is coated with a perfectly grey paint (the
absorption factor is independent of the wavelength of the elec-
tromagnetic radiation). You may neglect the heat radiation of
the Earth.

For this problem, the following fact is to be used (those who
are “afraid” of the surface integral can skip to the paragraph
next to the fact).

fact 8: In a stationary state, the Gauss theorem is valid for
heat fluxes (this is completely analogous to the Gauss theorem
for the electric and magnetic fields):

∮
w⃗ · dS⃗ = P , where the

integral is taken over a closed surface, P is the heat power
released inside the surface, the heat flux density vector w⃗ is
parallel to the propagation direction of the heat energy, the
vector dS⃗ is parallel to the surface normal, and is equal by
modulus to the surface area of a small (infinitesimal) surface
element.

This is essentially a mathematical formulation of the continu-
ity law for the heat flux. In the case of a spherically symmetric
geometry (with an isotropic spherical heat source), the surface
integral simplifies to the product of the heat flux density with
the surface area of a sphere:

4πR2w = P,

where w = w(R) is the heat flux density at the distance R from
the centre of the heat source.

The next problem completes the topic of heat flux continu-
ity.

pr 7. [IPhO-1996] Perfectly black hot surface is kept at a
constant temperature Th. There is another perfectly black cold
surface which is parallel to the first one, and is kept at a con-
stant temperature Tl; there is a vacuum in the space between
the plates. In order to reduce the heat flux between the plates,
a screen is used, which is made of N parallel thermally insu-
lated perfectly black plates (in the figure, N = 2). Such a
screen is placed between the hot and cold plates, parallel to
them. By which factor x will the heat flux be reduced once a
thermal equilibrium is reached? The edge effects caused by the
finite size of the plates can be neglected.

Th Tl

This problem leads us to a system of N linear equations.
In general, solving such a system of equations is not an easy
task; this particular system, however, can be easily solved. It
should not be surprising, because long mathematical calcula-
tions are not compatible with the format of physics Olympiads;
we can formulate an appropriate recommendation — as a “non-
physical” idea.

idea 5: As a rule, the problems of physics Olympiads do not
require long mathematical calculations. If you obtain a long
or difficult system of equations then most likely one of the fol-
lowing is valid: (a) you have followed a non-optimal (i.e. more
complicated than necessary) solving method; (b) the method is
good, and the system of equations is only seemingly complex,
e.g. almost all the unknowns can be eliminated simultaneously
using the symmetries of the equations.

pr 8. [EstOpen-2014] Consider a black cube which is made
from a perfectly heat-conducting material. A parallel beam of
light with intensity I (W/m2) falls onto this cube. The equi-
librium temperature T of the cube depends on its orientation;
find the minimal and maximal values of T (Tmin and Tmax,
respectively).

This problem is physically quite straightforward, but full
(rigourous) solution requires mathetical skills in the field of
vector calculus.

idea 6: In the case of a homogeneous vector field F⃗ (x, y, z) ≡
F⃗0, its flux Φ =

∫
S

F⃗ · dS⃗ trhough a (possibly curved) surface
S can be found as the dot product of a certain effective flat
surface element S⃗eff =

∫
S

dS⃗, Φ = S⃗eff · F⃗0.

3 Gases
In statistical physics (thermodynamics), it is relatively easy
(i.e. difficult, but in many cases still possible) to make calcu-
lations if everything is very regular, for instance in the case of
crystalline solids. It is even easier to make calculations when
everything is chaotic, for instance in the case of gases and plas-
mas, because then the physical quantities can be averaged. The
most difficult to analyse are media where order and disorder
exist together - such as fluids, granular media, solids near phase
transition, etc. Because of that, high school physics deals only
with the chaotic case — with gases.

A good model which describes the reality quite well is the
model of ideal gases.

def. 6: An ideal gas is made up of molecules of negligible
size (as compared with the average intermolecular distances)
which behave as elastic balls (monoatomic gas) or spring-ball-
systems (polyatomic gas), and move randomly colliding with
each other and with the walls of the container. It is assumed
that there are no other forces between the molecules than the
contact forces (for instance, electrostatic interactions need to
be negligible as electrostatic forces act over a distance).
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Let n be the number density of the molecules (number
per unit volume), and f(vx) — their distribution function
over vx (the x-component of the velocity), defined so that
∆n = nf(vx)∆vx gives us the number density of such mo-
lecules for which the x-component of the velocity lies within the
interval [vx; vx + ∆vx] (here, ∆vx denotes a small velocity in-
crement). According to the Boltzmann’s distribution, f(vx) =
Ae−mv2

x/2kT (which in this form is referred to as the Maxwell’s
distribution) 3, where the factor A is such that the area under
the f(vx)-graph is unity, i.e. A = 1/

∫ ∞
−∞ e−mv2

x/2kT dvx.
The integral in the last expression can be taken using two techniques.

The first (and the simpler) technique is to change integration variable by
substituting x = vx/vT , where vT =

√
2kT/m, this allows us to get rid of

the parameter v0 in the integrand. Indeed, since v0 constant (independent
of the integration variable), dvx = vT dx and∫ ∞

−∞ e−mv2
x/2kT dvx = vT

∫ ∞
−∞ e−x2

dx.

A second trick (which we don’t discuss here) needs to applied to show that∫ ∞
−∞ e−x2

dx =
√

π, resulting in

f(vx) = e−mv2
x/2kT /vT

√
π.

fact 9: Velocity distribution of molecules in a gas is given by
the Maxwell’s distribution,

dN = N

vT
√

π
e−v2

x/v2
T dvx vT =

√
2kT/m,

where N is the total number of molecules, and vx is the x-
component of the molecules. In the isotropic 3-dimensional
case, it can be also written for the speed,

dN = 4N

v3
T

√
π

v2e−v2/v2
T dv.

In order to derive the last equation, we assumed uncorrelated motion in
x, y, and z-directions so that the individual distributions can be multi-

plied: dN =
(

N
vT

√
π

)3
e−(v2

x+v2
y+v3

z)/v2
T dvxdvydvz , and integrated over

a spherical layer in vx − vy − vz-space,
∫

dvxdvydvz = 4πv2dv.

Let us find an expression for the pressure. We do this in
two parts: first we make calculations assuming that all the mo-
lecules approach the wall with the same speed u (let the x-axis
be perpendicular to the wall; then u is the x-component of the
molecule’s velocity), and then we generalize the result to the
realistic case of different speeds. Pressure is defined as force per
unit area, p = F/A; the force is found as the momentum given
to the wall per unit time, F = 2Nmu/t, where N is the num-
ber of molecules colliding with the wall during a time period
t. The coefficient two reflects the fact that the average speed
with which the molecules depart from the wall after collision
equals to the approaching speed4, hence each molecule receives
momentum 2mu from the wall. During the time period t, only
those molecules will reach the wall which are within the near-
wall-layer of thickness ut and move towards the wall. Thus, the
total number of collisions is found as the number of molecules
within the layer of volume V = AvT t, reduced by a factor of
two (only half of the molecules move in the direction of the
wall): N = 1

2 nV ≈ Aut. Thus, the force exerted to the wall

is found as F = 2muN/t = nmu2A. Now, let us recall that in
reality, molecules can have different speeds, so that we need to
average the result, F = nm⟨u2⟩A, where angular braces denote
averaging. Finally, the pressure p = F/A = is found as

p = nm⟨u2⟩.
So, the pressure is expressed in terms of the mean square of

the x-component of the velocity. This expression can be also re-
written in terms of the average net speed

〈
v2〉

as p = 1
3 nm⟨v2⟩.

Indeed, v2 = v2
x + v2

y + v2
z (where vx ≡ u) and therefore,

⟨v2⟩ = 3⟨u2⟩ (we have taken into account that due to stat-
istical isotropy, in average all the propagation directions of the
molecules are equivalent, hence ⟨v2

x⟩ = ⟨v2
y⟩ = ⟨v2

z⟩).
Using the Maxwell’s distribution one can express the aver-

age values in terms of integrals: ⟨v2
x⟩ =

∫
v2

xf(vx)dvx. This in-
tegral can be taken (see appendix 2), resulting in ⟨v2

x⟩ = kT/m,
i.e. the average kinetic energy related to the motion along the
x-axis

⟨m

2
v2

x⟩ = 1
2

kT.

Using this expression we obtain
p = nm⟨u2⟩ = nkT.

Once we substitute n = N/V = m
µ NA/V (NA is the Avogadro

number, µ is the molar mass of the gas, m is the total mass of
the gas, and V is its volume), we obtain pV = m

µ NakT = m
µ RT,

where R = kNA is called the gas constant. This law is known
as the ideal gas law; sometimes it is convenient to express it in
terms of the gas density ρ as pµ = ρRT. Let us sum up our
results.

fact 10: Ideal gas state is described by the law
pV = νRT,

which can be also expressed as
p = nkT or pµ = ρRT.

method 1: Various estimation problems related to gases can

be done in the same way as we derived the ideal gas law, i.e.

using the molecular kinetic approach.

Exact calculations require often integration (averaging using
the Maxwell’s distribution). However, in the case of Olympiad
problems, it is typically enough to make only estimates, and
there is no need to use the Maxwell’s distribution. This is due
to two reasons: (a) taking complex integrals does not test the
knowledge of physics, (b) in many cases even seemingly exact
calculations are exact only for the so-called vacuum approx-
imation when the mean free path (the distance travelled by
a molecule between two subsequent collisions with other mo-
lecules is much larger than the characteristic dimensions of the
system), and only approximate otherwise.

pr 9. In vacuum and weightlessness, at the bottom of a
cylindrical vessel (a cup), there is a layer of solid substance
of molar mass µ. This substance sublimes slowly (evaporates
from the solid phase into gaseous phase) and pushes thereby
the vessel to the opposite direction. Estimate the terminal

3Strictly speaking, the Boltzmann’s distribution is valid for the average occupancy of a quantum-mechanical state; here we make use of the fact
that for an elastic ball in a box, the quantum-mechanical levels are evenly distributed over the values of vx.

4Strictly speaking, for a single collision, the departure speed is random and depends on the momentary speed of that wall’s molecule with which
it collides. However, when averaged over many collisions and assuming that the gas and the wall have equal temperatures, the average departure
velocity is such as if there were an elastic collision with a flat wall
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3. GASES

speed of the vessel. The mass of the vessel M , and the initial
mass of the substance m ≪ M ; the temperature of the ves-
sel is T ; the process can be assumed to be isothermal (cooling
due to evaporation and heat radiation remains negligible). The
cross-sectional area of the vessel is A.

pr 10. Natural uranium consists of mainly two isotopes,
U238 and U235, whereas the relative concentration of the latter
is 0,7%. Uranium is “enriched” (i.e. the concentration of U235

is increased) by implementing a multi-stage process, where at
each stage, evaporated chemical compound UF6 is led through
a porous wall. The porous wall can be considered to be a thin
film having microscopic holes in it (the size of the holes is smal-
ler than the mean free path of the molecules, but larger than
the dimension of the molecules How many stages is needed to
increase the U235 content to 1,4%? The molar mass of fluoride
(F) is 19 g/mol.

pr 11. [PhysCup-2012] Determine or estimate the net heat
flux density P between two parallel plates at distance L from
each other, which are at temperatures T1 and T2, respectively.
The space between the plates is filled with a monoatomic gas
of molar density n and of molar mass M . You may use the
following approximations:
(i) the gas density is so low that the mean free path λ ≫ L;
(ii) T1 ≫ T2;
(iii) when gas molecules bounce from the plates, they obtain
the temperature of the respective plates (for instance, this will
happen if they are absorbed/bound for a short time by the
molecules of the plate, and then released back into the space
between the plates);
(iv) you may neglect the black body radiation.

Note that “Estimate” means that the numeric prefactor of your
expression does not need to be accurate.

The internal energy U of a monomolecular gas (i.e.
the net kinetic energy of the molecules) can be expressed
in terms of the temperature using the above obtained result
mv̄2

x = kT . Indeed, a single atom essentially cannot rotate due
to its small dimensions5. Therefore, U is found as the product
of the energy of a single molecule with the number of molecules
N ,

U = N m
2 (v̄2

x + v̄2
y + v̄2

z).
Due to statistical isotropy v̄2

x = v̄2
y = v̄2

z = kT ; substitut-
ing N = νNA (where ν stands for the number of moles) and
NAk = R we obtain

U = 3
2 νRT .

In the case of diatomic and polyatomic molecules, the mo-
lecules obey also rotational energy Ur = 1

2 N(Ixω̄2
x+Iyω̄2

y+Izω̄2
z ,

where Ix, Iy and Iz denote momenta of inertia with respect to
different axes, and ωx, ωy andωz — the respective angular ve-
locities. Using the Boltzmann’s distribution for the rotational
motion around the x-axis, p ∝ e−Ixω2

x/2kT , we obtain an expres-
sion which is very similar to the one which we had for trans-
lational motion (just vx is substituted by ωx and m — with
Ix). Because of that, the result is also the same, Ur = 3

2 νRT .
However, one should keep in mind that if we have a diatomic

molecule (or polyatomic linear molecule, such as CO2), it can-
not rotate around the axis passing through its atoms (let it
be the z-axis). Therefore, rotation will take place only around
the x- and y-axis; the rotational energy is reduced respectively:
Ur = νRT .

Let us notice that each of the so-called degrees of freedom
( translational motion along the x-axis, rotation around the
x-axis, translational motion along the y-axis, etc) contribute
to the overall internal energy always the same amount 1

2 νRT

( 1
2 kT if we speak about the average energy of a single molecule).

Because of that, the internal energy of a gas is conveniently ex-
pressed in terms of the number of degrees of freedom i as

U = i
2 νRT.

For a monoatomic gas i = 3, for a diatomic gas (and a linear
polyatomic gas) i = 5; for all other cases i = 6. In the case of a
mixture of gases (such as air), the effective number of degrees
of freedom may turn out to be fractional.

Using the last expression we can easily derive an expression
for the internal energy of a gas by constant volume. If the
volume remains constant, there is no mechanical work done
(A =

∫
pdV = 0), hence all the heat given to the gas goes

to the increase of the internal energy, CV = dU/dT = i
2 νR.

Particularly simple expression is obtained for the molar heat
capacitance, cV = CV /ν:

cV = i
2 R.

If we are dealing with an isobaric process (at a constant pres-
sure) then the internal energy change can be, of course, calcu-
lated using the previous result, but according to the 1LTD,
part of the heat goes to the work performed by the gas,
∆A = p∆V = νR∆T . Hence, the heat given to the gas
∆Q = ∆U + ∆A = i+2

2 νR∆T , i.e. the molar heat capacit-
ance for isobaric processes

cp = i+2
2 R.

Rule “ 1
2 kT per each degree of freedom” is valid, however,

only for moderate temperatures. When temperature is large
enough then molecules will start oscillating similarly to balls
which are connected with springs, and oscillation energy needs
to be included, as well. In that case one can say that the os-
cillatory degrees of freedom are excited. For relative light gas
molecules, such as the components of air, the critical temperat-
ure at which the oscillations are excited is well above the room
temperature. Meanwhile, heavy gas molecules (e.g. Br2) oscil-
late already at the room temperatures. It should be emphas-
ized that the 1

2 kT -rule is not valid for the oscillatory degrees of
freedom. It appears that each excited oscillatory degree
of freedom contributes full kT to the heat energy of a mo-
lecule. Thus, each oscillatory degree of freedom increases the
effective number of degrees of freedom by 2, e.g. for i = 5+2 = 7
for Br2 at room temperature.

The reason why oscillatory degrees of freedom contribute twice as
much as the translational and rotational degrees of freedom lies in the
structure of quantum mechanical energy levels. For translational and ro-
tational energy, the energy level is a quadratic function of the level order
number n, En = h2n2/8L2m; here, L stands for the length of the box
where our particle is placed. Meanwhile, for oscillatory motion, energy
is a linear function of the order number, En = ~ω(n + 1

2 ), where ω is
5The reasons are quantum-mechanical, and to a certain will be discussed later.
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the natural frequency. Therefore, the average oscillation energy can be
calculated using the Boltzmann’s distribution as

Ē =
∑∞

0 ~ωne−~ωn/kT /
∑∞

0 e−~ωn/kT .

The sums can be taken to find Ē = kT .
On the other hand, at very low temperatures, even the ro-

tational degrees of freedom of polyatomic molecules may not
be excited; this means that their effective number of degrees
of freedom is 3. In order to determine if one or another degree
of freedom is excited, it is necessary to compare the energy
level difference ∆E between the ground level and the first ex-
cited level with the average energy of a degree of freedom kT :
the respective degree of freedom starts to become excited at
T ∼ E/k.

Indeed, let us consider two energy levels E0 and E1. According to
the Boltzmann’s distribution, p1/p0 = e−(E1−E0)/kT . If E1 − E0 ≫ kT

then the probability of being at the excited state is exponentially small
and hence, the related average energy increase is exponentially small, as
well.

Now it becomes also clear why the molecules of heavy gases start os-
cillating at lower temperatures than light gases. The natural frequencies
ω ≈

√
k/m of heavy molecules are lower than that of light molecules

(the stiffness of a chemical bond as a “spring” has always the same or-
der of magnitude, the main difference comes from the effective mass m).
This means that the energy level difference ∆E = ~ω is correspondingly
smaller, leading to a lower excitation temperature.

Thus, the effective number of degrees of freedom depends on
temperature; furthermore, for such a temperature range where
the effective number is changing from one value to another, the
system behaviour is not well described by an integer value of
i. Because of that, instead of i, often molar heat capacities cV

and cp are used. If the behaviour of a gas is well described
by the model of ideal gas, it is enough to give just the value
of cV as cp can then be found from the equality cp = cV + R.
Conversely, if for a certain gas cp −cV ̸= R then it does not be-
have as an ideal gas, and relationship pV = νRT does not hold
well. Meanwhile, it is well possible that for an ideal gas, 2cV /R

is not an integer: fractional values just show that the current
temperature is close to the excitation temperature of a certain
degree of freedom. Let us make an intermediate summary.

fact 11: For an ideal gas,
cV = i

2 R; cp = cV + R; ∆U = νcV ∆T,

where i is the number of excited degrees of freedom (oscillat-
ory degrees of freedom are to be added with double weight).
A certain degree of freedom is excited when kT is larger than
the energy level difference of the quantum mechanical states
corresponding to the given degree of freedom. As a rule of
thumb, near room temperature for a monoatomic gas i = 3,
for diatomic gas i = 5, and for polyatomic gases i = 6.

Thus far we used the concept of the degrees of freedom
without proper definition; let us discuss this notion in more
details.

def. 7: The number of degrees of freedom shows, how many
parameters (generalized coordinates) is needed to describe
completely the state of a system.

For instance, in order to describe a point mass in three-
dimensional space, j = 3 coordinates are needed; for N point

masses we need already j = 3N coordinates. In order to de-
scribe the spatial placement of a solid body, 6 coordinates are
needed: apart from the coordinates of a certain point of the
body (e.g. the centre of mass), orientation needs to be described
by additional 3 coordinates (two angles describing the direction
of an axis of the body, and one angle describing rotation around
that axis). In the case of a linear molecule, last coordinate, the
rotation angle, is not needed, therefore j = 5.

If a system consists of N point masses, the motion of which
is limited by certain restrictions (e.g. the distance between two
point masses is fixed with a rod, or the angle between the lines
connecting a certain point A with two neighbouring points has
a fixed value), the number of degrees of freedom can be found
using the formula j = 3N − r, where r on is the number of re-
strictions. In the case of molecules, the bonds are the chemical
bonds which also serve as the springs and can give rise to os-
cillations; in that case, r is the number of oscillatory degrees of
freedom. Knowing that for a linear molecule, the total number
of degrees of freedom j = 5, and for planar or three-dimensional
molecules j = 6, we can use this formula to find the number
of oscillatory degrees of freedom as r = 3N − j. For instance,
CO2 molecule is linear: N = 3 and j = 5, hence r = 4. Note
that in the theory of coupled oscillators, it is shown that the
number of oscillatory degrees of freedom equals to the number
of natural modes and natural frequencies.

Let us consider one problem on the topic of degrees of free-
dom.

pr 12. [EstAcadPhO-2006] Toy “Supermag” makes it pos-
sible to construct, among others, polyhedrons — e.g. tetrahed-
rons, cubes, and many irregular polyhedrons, where the edges
of the polyhedron are made of magnetic bars, which are con-
nected at the vertices with the help of steel balls. The steel
balls fix the endpoint of a steel bar to itself firmly, but the
angle between magnetic bars meeting at a steel ball can be
changed with a little effort. It appears that a tetrahedron is a
rigid construction, but a cube can be easily deformed. Prove
the following theorem: a convex polyhedron is rigid then and
only then if all the faces of the polyhedron are triangles.

In order to solve this problem, the formula j = 3N − s is
used, but one more formula is needed — the Euler’s formula
for graphs (including polyhedrons) relating the number of ver-
tices N , faces f , and edges e via equality N + f = e + 2.Euler’s
theorem is provided here without proof (which is actually not difficult and
is based on mathematical induction). In order to solve problem 12,
it is necessary to prove that if all the faces are triangular, the
number of degrees of remaining freedom j = 3N − s equals to
that of a rigid body. If the number of degrees of freedom were
larger, it would be needed to use more parameters than in the
case of a rigid body to describe its state, i.e. it cannot be rigid.

As we have learned, atoms and ions connected in molecules
with chemical bounds can oscillate as spring-block systems.
This applies not only to molecules, but also to crystal ma-
terials. Similarly to heavy gases, in the case of many crystal
materials, all the oscillatory degrees of freedom are excited. In
the case of N -ion(atom)-crystal substance, there are 3N de-
grees of freedom; almost all these degrees of freedom (except
for 6 degrees of freedom of a solid body) are oscillatory. Since
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N is very large, we can forget about that 6, so that the internal
energy can be expressed as U = 3νRT . Therefore, molar heat
capacitance cV = 3R. In the case of light ions, it may still hap-
pen that the highest-frequency natural modes have ω > kT/~
and therefore are not excited yet. In that case, the internal en-
ergy is smaller than 3νRT , and the effective number of degrees
of freedom per single ion (atom) is an increasing function of
temperature, approaching asymptotically the limit value i=6
(as all degrees of freedom are oscillatory, the number of spatial
coordinates is multiplied by two). Let us also recall that at low
temperatures it starts as a cubic function of T . Let us derive the
cV ∝ T 3 law for low temperatures via rough estimates (for a diamond,
this is valid even for room temperatures). Each excited oscillatory degree
of freedom carries energy kT ; thus we need to estimate the number of
excited oscillations, i.e. number of natural modes with ω < kT/~. Nat-
ural oscillation modes of a crystal can be considered as standing sound
waves. Sound wave frequency is expressed as ω = csκ, where cs is sound
speed, and κ = 2π/λ — a wave vector. Thus, all standing waves with
wave vector λkT/~cs and wavelength λ>hcs/kT will be excited. Let the
crystal have a cubic shape of side length L. At the free boundary of the
crystal, there can be no strain, hence for the displacement vectors of the
molecules, there must be antinodes at the boundary. Therefore, L must be
a multiple of the half-wavelength: Lκx = mxπ, where κx is the projection
of the wave vector to the x-axis, and mx is the number of nodes along
x. For the smallest excited wavelength, λs = hcs/kT and mx = 2L/λs.
Note that all those standing waves which have smaller number of nodes
are also excited. Similarly, along y- and z-axes, for exited oscillations the
number of nodes varies between 1 and 2L/λs. The number of different
standing waves is found as the number of different triplets (mx, my , mz),
which is equal to (2L/λs)3. Then, the internal energy is found as

U ≈ MkT ≈ kT (2LkT/hcs)3 ∝ T 4.

Therefore, the internal energy is proportional to T 4, and the heat capa-
citance CV = dU

dT
∝ T 3.

Now, let us turn to the problems which are not related
to the molecular kinematic approach, and instead, require the
knowledge of the ideal gas law and its internal energy. Many
Olympiad problems are based merely on those two equations;
in the case of the next problem, the only “trick” is that un-
like for ordinary isohoric, isobaric, etc. processes, it is not the
amount of gas which is conserved, but the pressure, hence the
number of moles will change according to νT = Const.

pr 13. [EstPhO-2003] An aerostat (an air balloon made of
unstretchable skin) has volume V0, is filled with hydrogen, and
hovers stably at a certain height where the external pressure is
p, and the air temperature is Tair. Due to sunlight, the aero-
stat is heated up to a temperature T1. As a result, part of the
air exits the balloon via a valve. The valve is made so that
the if the interior pressure exceeds the exterior one, the excess
gas is released; the valve never lets gas enter the balloon from
outside. Now, the sunlight is shaded by a cloud: the balloon’s
temperature drops, and volume becomes smaller. How much
ballast (which mass m) needs to be thrown out to keep the
aerostat at the same height (where the pressure is still equal to
p)? Both air and hydrogen can be treated as ideal gases, the
molar masses are µH2 and µair, respectively.

The next problem deals with a more complicated energy
transfer process; the following idea will be useful.

idea 7: If two reservoirs are connected via a narrow pipe,
narrow valve, etc, then a quasi-equilibrium is possible: while
the temperatures of the two reservoirs to the other sides of the
pipe are different, the pressures are equal. Thus, there is a
mechanical equilibrium, but no thermal equilibrium (it takes
much longer time to reach the latter).

pr 14. Consider a balloon which has thick rigid walls and
from which all the air has been pumped out. Now, the valve of
the balloon is slightly opened, and the balloon is slowly filled
with the air from outside. Find the temperature of the air
inside the balloon once the air flow has stopped (since a mech-
anical equilibrium has been reached). The room temperature
is T , the balloon walls have low heat conductance and heat ca-
pacitance so that heat flux through the walls can be neglected.

The first step towards the solution of this problem is under-
standing to what is spent the work done by external air p∆V :
how is it converted to heat and how is the external volume
change ∆V related to the volume of the cavity V . Let us also
notice that presumably the size of the valve opening is larger
than the mean free path length, so that a molecular kinetic
approach is not needed, and instead, macroscopic approach is
to be applied: a narrow (but still macroscopic) stream of air
enters the cavity thorough the valve.

Adiabatic processes
Typical reply to the question of what are adiabatic processes
tends to be that these are so fast processes with a gas that there
is essentially no heat exchange with the gas (during the given
time period, the heat transferred conductively and radiatively
to the gas remains much smaller than the internal energy of
the gas).

However, this is only half of the truth, and actually the less
important half. In order to understand this, let us consider the
following simple problem. Thermally isolated vessel is divided
into two halves via a wall. Let one of the halves contain a gas
at a pressure p, and let the other one be empty (i.e. contain
vacuum at a negligibly small pressure). The wall separating
the two halves is removed instantaneously; what is the pres-
sure of the gas inside the vessel upon achieving mechanical and
thermal equilibrium?

Since the wall is removed instantaneously, the gas cannot
perform any mechanical work (the wall does not move in the
direction of the force). There is no thermal exchange to the
environment and so according to the 1LTD the internal en-
ergy remains constant, hence the temperature does not change.
Meanwhile, the volume is increased twice and due to the ideal
gas law, this means that the pressure is decreased twice. So, we
dealing with an isothermal process, and not with an adiabatic
one!

As a matter of fact, the main requirement for having an
adiabatic process is that the process needs to be sufficiently
slow — the characteristic time of the process needs to be much
longer than the period of natural oscillation of the system. In
the case of gases, the natural oscillation modes are standing
waves; the period of the slowest mode is cs/2L, where L is the
vessel length and the factor two accounts for the fact that the

— page 9 —



3. GASES

wavelength of the longest standing wave has wavelength equal
to 2L; cs denotes the speed of sound. Thus, v/L ≪ cs/2L,
hence v ≪ cs, where v is the speed of the container walls (or
of a piston).

def. 8: Adiabatic process is a process by which the system
parameters change so slowly that the characteristic time of
changing is much longer than the period of the slowest mode
of natural oscillations; also, there should be no dissipative pro-
cesses (where mechanical energy is converted to heat), e.g. fric-
tion. In the case of gases, this means that the speed of the con-
tainer walls needs to be much smaller than the speed of sound,
and also there should be no external heat supply.

Adiabatic processes in such a wider-than-thermodynamical
sense play important role also in quantum mechanics, electro-
dynamics, etc.

In the course of analytical mechanics it is shown that for
adiabatic processes on periodically oscillating systems, the so-
called adiabatic invariant is conserved; this is the surface area
of the loop drawn by the oscillator in the phase plane (the
curve in x − px-plane

∮
pxdx, where x is the coordinate and px

— the corresponding momentum), c.f. the booklet of mechan-
ics. While a general proof is complicated, a problem of the
mechanics booklet dealt with a particle bouncing back and
forth between two slowly moving plates; it was shown that
Lv = Const, v being the particle’s speed and L — the distance
between the walls.

Now, let us consider one-dimensional gas: there are many
particles bouncing along the x-axis between the plates. From
the molecular kinetic theory, the pressure of such a gas p =
nmv̄2. The number density of the particles is, of course, in-
versely proportional to the “volume ”, which is in the one-
dimensional case just the distance between the plates L, i.e.
n ∝ 1/L. Due to the adiabatic invariant, the speed of each
of the molecules is inversely proportional to L and hence, the
average speed follows the same law, v̄ ∝ 1/L. Thus, p ∝ 1/L3,
or alternatively, pL3 = Const. This is our adiabatic law for the
one-dimensional gas: pV γ = Const, with V = L and γ = 3.

What is even more important, is that in quantum mech-
anics, the surface area in phase space is related to the quasi-
classical quantization rule, for n-th quantum-mechanical en-
ergy level,

∮
pxdx = n~. Now, if the potential changes slowly

in time, the adiabatic invariant is conserved, hence the system
will remain at the same quantum-mechanical energy level (with
the same order number) as it was at the beginning (exceptions
are possible only in the case of a “separatrix-crossing”, e.g. if
the “potential well” becomes so narrow that the given bound
state disappears, and the particle formerly bound to the well
becomes free).

idea 8: During adiabatic processes, particles remain at their
initial quantum-mechanical levels. When combining this ob-
servation with the Boltzmann’s law, it is often possible to find
the new temperature.

pr 15. Expansion of our Universe can be considered as an
adiabatic processes for the photons of the microwave back-
ground radiation: the wavelength of the photons grows pro-
portionally to the linear size of the Universe. How many times

will change the temperature of the radiation, if the linear size of
the universe grows two times? What is the adiabatic exponent
for a photon gas?

For the adiabatic processes with gases, it is also re-
quired that the heat exchange rate of the given gas is negligibly
small (as compared with the internal energy change): ∆Q = 0.
If we recall the adiabatic motion of a particle between two
walls, we see that the no-heat-exchange requirement is very
much consistent with that adiabatic process: the particle did
not receive any external energy apart from the energy received
from the moving wall (heat flux corresponds to an external en-
ergy source for the kinetic energy of the molecules), and there
were no energy losses due to fiction or other processes. So, the
adiabatic process with a gas can be arbitrarily slow, in prin-
ciple, but in practice, for too slow processes the heat exchange
can no longer be ignored.

Before we derive the adiabatic law for gases, let us note
that at Olympiads, this derivation is typically not needed, it
suffices just to no the law.

To begin with, we apply the 1LTD to an adiabatic process
on one mole of gas, dU = pdV , where dU = cV dT , i.e.

cV dT = −pdV .

Note that even though the volume is not constant, the internal
energy change is expressed in terms of cV . This is a standard
method: with constant volume, there is no mechanical work
done and hence, all the provided heat cV dT goes to the change
of the internal energy dU .

idea 9: Internal energy change can be calculated as
dU = cV dT.

We want to derive relationship between the pressure and
volume, so we need to eliminate here the temperature; to that
end, we use the ideal gas law, RT = pV , hence

RdT = pdV + V dp.

Here we applied the differentiation rule d(pV ) = pdV + V dp.
Now we can easily eliminate dT from these two equations to
obtain

pdV (cV + R) + cV V dp = 0.

Let us notice that cV + R = cp, and introduce the adiabatic
index defined as

γ = cp/cV .

This allows us to rewrite the last equation as
γ dV

V + dp
p = 0.

If we integrate this equality, the first term yields
∫

γ dV
V =

γ ln V = ln V γ , and the second one —
∫ dp

p = ln p, so that
ln V γ + ln p = ln pV γ = Const, hence

pV γ = Const.
Now, let us return to the one-dimensional gas discussed be-

fore; it has one degree of freedom, thus cV = 1
2 R and cp = 3

2 R

so that γ = 3, which is in a complete agreement with our res-
ult for the adiabatic invariant. Let us make an intermediate
summary.

fact 12: Adiabatic law, which is valid simultaneously with
the ideal gas law pV/T = Const, states that

pV γ = Const; kus; γ = cp/cV .

Combining this with the gas law we have also equalities
TV γ−1 = Const; and; T γ ∝ pγ−1.
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idea 10: For adiabatic processes, the work done can be cal-
culated as the change of internal energy (since there is no heat
exchange):

∆A = ν i
2 R∆T =

∫
pdV .

For real-life problems when the applicable assumptions are
not explicitly stated, it is important to understand, when the
heat exchange rate can be neglected (then the process is adia-
batic), and when the heat exchange is so fast that the process is
essentially isothermal. Here it is useful to compare character-
istic time scales of thermal relaxation time τth (the time during
which the temperature differences decrease by a factor of e),
and the characteristic time of the process itself (e.g. the time
during which the system is brought from its initial state to the
final state). It is useful to know that the thermal relaxation
time depends on the system size (linear dimension) L, being
proportional to L2; in the case of air under normal conditions,
for L ≈ 1 cm, τth ≈ 1 s.

Next we proceed to the discussion of atmospheric processes.

idea 11: When air masses are in vertical motion, typically
during day time, but also during cyclonal activity and strong
winds, the vertical motion of air incurs adiabatic expansion.
This results in the so-called adiabatic atmosphere, where the
temperature falls with the height h,

T γ ∝ pγ−1, p = p0 − ρgh;
here the expression for p is valid for moderate height differences
when the variation of the air density ρ can be neglected.

Indeed, air masses are very large and hence, even though the
air may rise slowly, the thermal relaxation time is even slower,
so that the process is adiabatic. During daytime, the vertical
motion of air is caused by sunlight heating the ground, which
in its term, heats the air via thermal conductivity (note that
as air is transparent, it doesn’t absorb light, and hence, direct
heating by sunlight is negligible). The heated air has smal-
ler density than the colder air at higher altitudes, and starts
rising. At the ground level, void cannot be created, so there
must be also descending air masses. So, air moves up and
down, resulting in a fairly good vertical mixing, and adiabatic
atmosphere. What does it mean in terms of temperature drop
at high altitudes, we’ll learn through the following problem.

pr 16. What is the temperature at the top of a hill of height
H = 200 m if at the bottom of the valley t0 = 20 ◦C? You can
assume that when air masses move along the slope of the hill,
air expansion and/or contraction can be considered to be adia-
batic. The air pressure at the valley level p0 = 105 Pa, air
density ρ = 1,29 kg/m3 and adiabatic index γ = 1, 4.

This problem can be solved very fast if we make use of the fact
that here, the relative pressure change is very small.

idea 12: In the case of equalities involving products, e.g.
aαbβ = Const, if the relative changes of variables are small
(∆a ≪ a, ∆b ≪ b) then it is convenient to use approximate
calculation based on logarithmic differentiation,

0 = d ln(aαbβ) = α
da

a
+ β

db

b
⇒ α

∆a

a
= −β

∆b

b
.

If the hill height would be very large, so that air density dif-
ference between the top and bottom of the mountain would be

significant, it would be necessary to use here the Boltzmann’s
distribution ρ ∝ e−µgh/RT . While for µgh ≪ RT , this is ex-
pression can be simplified using linear term of the Taylor’s
expansion ex ≈ 1 + x, the same approximate result can be
obtained (arguably) more easily using the following idea.

idea 13: If the height differences are small and there is no
need to apply the Boltzmann’s distribution, the air pressure
change can be found as the air column pressure ∆p = ρgh,
where ρ can be considered in the first approximation to be
independent of height.

Using the result of this problem, it becomes also clear, why
mountain peaks are snowy — for instance 3 km would corres-
pond to the temperature difference of 30 degrees. In reality,
the temperature difference remains somewhat lower since the
air which ascends along the mountain slopes is being heated due
to heat conductance from the mountain surface (see above).

During calm night weather, the adiabatic atmosphere may
not be observed. This is because the Earth’s surface gives away
heat via radiation and cools down; lower air masses are also
cooled via heat conduction. Let us note that heat radiation
of the air itself is negligible: being transparent, it doesn’t ab-
sorb radiation; due to the 2LTD, absorption and radiation are
symmetric phenomena and therefore clean air cannot radiate.
Lower cold air layers have higher density and therefore, a very
stable air stratification is formed: there is almost no vertical
air motion. Such a phenomenon is called “inversion”. In the
case of inversion, all the waste gases remain near the surface,
giving rise to high air pollution.

Bernoulli equation, 1
2 ρv2 + ρgh + p = Const (where ρ is

the density, v — speed, p — pressure, g — free fall acceler-
ation, and h — height) is a well-known equality expressing
the fact that in the case of a stationary flow, the energy flux
entering any volume must be equal to the energy flux exit-
ing that volume: otherwise, the total amount of energy inside
that volume would start growing, contradicting the assump-
tion of stationarity. Bernoulli equation, however, is valid only
in the case of incompressible flows. As we have seen above,
atmospheric air flows are typically adiabatic, in which case the
energy balance equation needs to take into account the change
of internal energy of the gas, and the work done by expansion.

idea 14: For problems set on stationary gas flow, two con-
servation laws are to be used. First, along streamlines

v2

2
+ gh + cpT = const,

where cp = Cp/M is the specific heat of the gas per unit mass
by constant pressure (Cp denotes the molar specific heat, and
M — the molar mass). This equality reflects energy conser-
vation. Alternatively, if the flow speed is much smaller than
the sonic speed and density variations along streamlines remain
small, ∆ρ

ρ ≪ 1, the original Bernoulli law
1
2

ρv2 + ρgh + p = const
can be also used.
Second,

ρvA = const,
where A is the cross-sectional surface area of a fictitious tube
formed by streamlines; this reflects mass conservation as ρv
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is equal to the mass flux density (mass passing a unit cross-
sectional area per unit time).

It should be emphasized that in the case of gas flows when ρ

is not constant, v2

2 +gh+cpT = const holds exactly; meanwhile,
the Bernoulli law is valid only at the limit ∆ρ

ρ ≪ 1.
The fact that the Bernoulli law can be used at the limit

∆ρ
ρ ≪ 1 is actually non-trivial. Indeed, the Bernoulli law is

derived from energy balance: work done by pressure is conver-
ted into kinetic and/or potential energy. However, when gas
is compressible, there is also a conversion into internal energy
due to compression.

Consider a displacement of a certain amount of gas inside a
fictitious tube made from streamlines as shown in figure: let
us assume that before displacement, this volume of gas occu-
pied the region shaded into blue and grey. As the result of
displacement, now it occupies the region shaded into grey and
red. There is no change in the state of the grey region, but
gas from blue region has been moved into the red region. The
change in kinetic energy is m

2 (v2
r − v2

b ), where vb and vr stand
for the gas speeds at the blue and red positions, respectively.
Energy balance is written as

W = m

2
(v2

r − v2
b ) + ∆U,

where ∆U is the change of the internal energy, and the work
done by external pressure

W = pV − (p + ∆p)(V + ∆V ).
Now, consider a longer displacement of gas — such that the
gas of the blue region has covered the whole distance from blue
to red, and occupies now the volume shaded into red. Dur-
ing that displacement, the process on the parcel was adiabatic,
so ∆U = −

∫
pdV ; assuming ∆p

p ≪ 1 (which is equivalent
to requiring ∆ρ

ρ ≪ 1), the integral can be approximated as
∆U = −p∆V . Returning to the energy balance equation, we
can write

m

2
(v2

r − v2
b ) = V ∆p + ∆V ∆p,

which gives us the Bernoulli law if we neglect the quadratically
small term ∆V ∆p and assume that the densities at the blue
and red positions are approximately equal, m

V ≈ m
V +∆V . This

is valid if the relative change in the flow speed is much larger
than the relative change in density, which is true if the flow
speed is much smaller than the sonic speed.

When we derived here the Bernoulli law, we used a trick
which can be also formulated as an idea.

idea 15: If a column of liquid or gas, a rod or a rope (and so
on) moves parallel to itself so that the new state and old state
mostly overlap, and there are only small regions where the state
is has been changed (e.g. the red and blue regions in the figure
above), the change of the total energy (momentum, angular
momentum, etc.) can be calculated by considering only those
regions where the state has been changed.

pr 17. Prove that for a stationary gas flow, along stream-
lines v2

2 + gh + cpT = const.

pr 18. [IPhO-2012] In the fig. below, a cross-section of an
aircraft wing is depicted together with streamlines of the air
flow around the wing, as seen in the wing’s reference frame.
Assume that (a) the air flow is purely two-dimensional (i.e.
that the velocity vectors of air lie in the figure plane); (b)
the streamline pattern is independent of the aircraft speed; (c)
there is no wind; (d) the dynamic pressure is much smaller
than the atmospheric pressure p0 = 1.0 × 105 Pa. You can use
a ruler to take measurements from the fig. on the answer sheet.

a) If the aircraft’s ground speed is v0 = 100 m/s, what is the
speed of the air vP at the point P (marked in fig.) with respect
to the ground?
b) In the case of high relative humidity, as the ground speed of
the aircraft increases over a critical value vcrit, a stream of wa-
ter droplets is created behind the wing. The droplets emerge
at a certain point Q. Mark the point Q in fig. on the answer
sheet. Explain qualitatively (using formulae and as few text as
possible) how you determined its position.
c) Estimate the critical speed vcrit using the following data:
relative humidity of the air is r = 90%, specific heat of air at
constant pressure cp = 1.00 × 103 J/kg · K, pressure of satur-
ated water vapour: psa = 2.31 kPa at the temperature of the
unperturbed air Ta = 293 K and psb = 2.46 kPa at Tb = 294 K.

Idea 14 is also useful when deriving sound speed cs in a gas.
Then, however, we need one more idea.

idea 16: In order to find the propagation speed of a pulse in
homogeneous medium, for instance gas or stretched rope, it is
convenient to use a moving reference frame where the pulse is
at rest.

Let us consider a sound wave which propagates in the direc-
tion of x-axis; then, the air density ρ = ρ(x − cst). Following
the idea 16, we consider a frame which moves with speed cs,
with coordinate axis x′ = x − cst. In that frame, the density
perturbation remains constant in time, ρ = ρ(x′). This means
that we can use idea 14, so that we obtain two equations:

(ρ0 + ∆ρ)(v + cs) = ρ0cs,
1
2

(v + cs)2 + cpT = 1
2

c2
s + cpT0,

where v ≪ cs is the speed of gas in laboratory frame. In sound
wave, the density perturbations are typically small so that we
can assume ∆ρ ≪ ρ. Upon opening the braces and neglecting
quadratically small terms (e.g. v∆ρ and v2), we obtain

ρ0v + cs∆ρ = 0, csv + cp∆T = 0.

If the wavelength is long enough (much longer than the mean
free path length of the gas molecules), the gas flow is adiabatic,
so that we can relate ∆T to ∆ρ via adiabatic law Tρ1−γ =
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const. Using the idea 12, we obtain ∆T
T0

+(1−γ) ∆ρ
ρ0

= 0, hence
∆T = (γ − 1) T0

ρ0
∆ρ. With this, our equations can be rewritten

as
ρ0v + cs∆ρ = 0, ρ0csv + cp(γ − 1)T0

ρ0
∆ρ = 0,

where cp(γ − 1) = M−1Cp
Cp−CV

CV
= M−1Cp

R
CV

= γ R
M . This

is a set of two linear equations with two unknowns, v and ∆ρ

which can have non-zero solutions only if the determinant is
zero (the equations are linearly dependent), i.e.

c2
s = γ

RT0

M
.

When calculating cs, we have ignored one important fact:
in the case of straight streamlines (what we have in the case of
planar wavefronts/one-dimensional wave propagation), apart
from energy and mass conservation, we have also the conserva-
tion of linear momentum of the gas.

pr 19. Show that in the case of gas flow along straight
streamlines, due to Newton’s II law for the gas parcels,

ρv2 + p = const.

It should be emphasized that this last law is valid only in the
case of straight streamlines: otherwise, the pressure force by
which the walls of the fictitious tube (made from streamlines)
act on the gas parcels would also contribute to the acceleration
along streamlines.

When we calculated cs, we used three equations: en-
ergy conservation law, 1

2 v2 + cpT = const, mass conservation
ρv = const, and adiabatic law ρ1−γT = const. We could have
substituted the adiabatic law with the momentum conserva-
tion law ρv2 + p = const, and still we would have obtained the
same result. This means that if the amplitude of the density
perturbations is small, the four equation are linearly depend-
ent, and the adiabatic law can be derived from the remaining
three: Thus, as long as the amplitude of the wave is small,
the sound propagation is adiabatic. On the other hand, for
large amplitudes this is no longer the case: the three conserva-
tion laws (know as the Rankine-Hugoniot conditions) may (and
will) be in contradiction with the adiabatic law. Therefore, in
the case of large-amplitude shock waves, the process on gas is
not adiabatic, and part of mechanical energy is converted into
heat.

pr 20. In the case of a shock wave, a high-pressure region
propagates in gas with a speed which is somewhat larger than
the sound speed. Consider a shock wave in which air density
grows exactly two times; how many times is such a shock wave
faster than the sound speed?

Interface between liquid and vapours
The liquid (and crystal) particles (atoms, molecules, ions) are
bound to each other via chemical bonds — forces which de-
pend on the distance between particles in a complicated way.
By origin, these forces have electrostatic nature: the inter-
play of quantum-mechanical laws and electrostatic interactions
between orbital electrons and atomic nuclei results in the force
between particles being a complex function of the positions of
interacting particles. At small distances between the atomic
nuclei, the force becomes repulsive (positive charges of nuclei

repel), at moderate distances the force is attractive (this keeps
the particles together in the liquid or crystal phase), and at
large distances the force decays faster than the electrostatic
law of r−2. Attraction at moderate distances means that the
potential energy (with respect to an infinite distance) for a typ-
ical near-neighbour-pair is negative; let the average potential
energy per particle be −U0. For particles inside the liquid (or
crystal) phase, the number of near neighbours is larger than for
the particles at the surface. Respectively, the average poten-
tial energy of the inter-particle forces per particle at the surface
is also smaller by modulus than U0; let us denote the energy
difference by ∆U0. Now we can draw two conclusions.

First, increasing the surface area of a liquid will increase
the number of particles at the surface, and hence, the overall
energy of molecular forces. Naturally, the number of particles
adjacent to the surface is proportional to the surface area A,
and so is the overall energy W associated with the particles be-
ing at the surface instead of being inside the bulk of the liquid:
W = σA, where the coefficient σ characterizes the molecular
forces of the liquid, and is called the surface tension. This
phenomenon will be discussed in the next section.

Second, in order to pull out a particle from the liquid phase,
it needs to obtain energy U0 (this energy is analogous to the
work function in the Einstein’s equation of photoelectric ef-
fect). Thus far we have learned that in thermodynamical sys-
tems, particles can be in higher- and lower-energy-states, which
means that the liquid molecules can obtain also, due to random
interactions with other molecules, energy exceeding U0, and as
a result, “jump out” of the liquid phase. This process (mo-
lecules jumping out of the liquid) gives rise to evaporation: the
number of molecules in liquid phase will decrease. However,
there is also the reverse process, condensation at the liquid
surface. Indeed, if the gaseous phase above the liquid sur-
face contains the molecules of the liquid, the vapour molecules
(which are in a random motion) can hit the liquid surface and
get “stuck” to it.

For a molecule, the probability of having an additional en-
ergy exceeding U0 is proportional to e−U0/kT ; the evaporation
rate is proportional to that probability and hence, increases
very rapidly with the temperature. Condensation rate, on
the other hand, is less sensitive to the temperature (is propor-
tional to the speed of the molecules, i.e.

√
T ), and depends

mostly on the concentration of the vapour molecules in the
gaseous phase. Obviously, if the evaporation rate exceeds the
condensation rate, the amount of liquid is decreasing, and vice
versa. If we take a certain amount of liquid and seal it tightly
into a bottle, the two processes reach an equilibrium: the con-
centration of the vapour molecules in the gaseous phase will
reach such a value that the evaporation rate equals to the con-
densation rate.

def. 9: Vapour with such a concentration which leads to the
condensation rate being equal to the evaporation rate at the
given temperature is called the saturation vapour.

Most often, the amount of vapours is measured as the partial
pressure caused by the given type of molecules in the gaseous
phase. This method is valid owing to the Dalton’s law.

fact 13: Dalton’s law states that pressure is an additive
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quantity: the total pressure exerted by a gas equals to the
sum of partial pressures: p = PA + PB + . . ., where pA is the
pressure due to the molecules of type A, pA — that of molecules
of type B, etc.

This law follows directly from the principles of molecular kin-
etic theory: pressure is the momentum of molecules transferred
to the container walls per unit time and unit surface area, and
according to the laws of mechanics, momentum is an additive
quantity (the momentum of an entire system is the sum of the
momenta of all its parts).

Returning to the vapours, the saturation vapour is typically
characterised via its pressure, the saturation vapour pressure.

def. 10: The relative humidity is defined as the ratio of the
vapour pressure to the saturation vapour pressure at the given
temperature of the gas.

There is another process which is very similar to evapora-
tion: sublimation. In the case of sublimation, the only dif-
ference is that the molecules go straight from solid phase to
gaseous phase; examples for sublimation include water at tem-
peratures below 0 ◦C, and iodine at room temperatures. In the
case of sublimation, the notions of saturation pressure, vapour
pressure, and relative humidity remain intact.

The following problem tests understanding of the concept
of saturation pressure.

pr 21. In vacuum and weightlessness, at the bottom of a cyl-
indrical vessel (a cup), there is a layer of solid substance. This
substance sublimes slowly (evaporates from the solid phase into
gaseous phase) and pushes thereby the vessel to the opposite
direction. The mass of the vessel is M , and the initial mass of
the substance m ≪ M . The cross-sectional area of the vessel
is A, and the pressure of saturated vapours of the substance
at the temperature T is p0. What is the acceleration of the
vessel? Provide answer for two cases: (a) the mean free path
length λ of the molecules at the saturation pressure is much
smaller than the length of the vessel, and (b) much larger than
that.

If the current vapour pressure is smaller than the saturation
vapour pressure (i.e. relative humidity is smaller than 100%),
evaporation at a liquid surface dominates over condensation,
and the mass of liquid is slowly decreasing. On the other hand,
if the relative humidity is larger than r = 100%, condensation
dominates over evaporation. However, unlike evaporation, con-
densation can take place not only at the free liquid surface, but
also start forming droplets. Still, the vapour molecules cannot
start forming a droplet at an empty space as in the case of
a very small droplet (of the size of few molecules), the liquid
phase is not yet formed, and molecular attraction forces are
not strong enough to keep molecules together (the binding en-
ergy is smaller than that of a liquid phase, U0). Therefore,
in order to start forming a droplet, a condensation centre is
needed: it may be dust particle or tiny salt crystal hovering in
air. So, around each such condensation centre, a tiny droplet
is formed; this is a mist. If there is a sufficiently large number
of condensation centres, the tiny droplets “suck away” all the
excess vapour, leading to r = 100%. If the number of con-

densation centres is smaller, each of the droplets will need to
absorb the vapours from a larger volume, so the process will
take longer time. In the case of extremely clean air, when there
are only very few condensation centres, for a certain period of
time r > 100% is possible, such a gas is called an oversaturated
vapour.

Now, let us discuss in more details evaporation at r < 100%.
In the case of water vapours in air, air is most often relatively
dry, with r ranging typically from 40% to 80%. This is the
case because free water surface forms only a small fraction
of all the surfaces: solar heating reduces r by increasing the
saturation pressure, but the vapour pressure remains almost
constant since there no vapour sources (in the form of liquid
water) are available. Even relatively close to water surfaces, r

will remain moderate: there is not enough time for establishing
a thermal equilibrium, evaporation is relatively slow and mov-
ing air brings new dry air masses into contact with the water
surface.

However, at a narrow layer near water surface, the air moves
slowly due to friction against the water surface; let the thick-
ness of this (almost) stagnant layer of air be δ (note that δ

depends on the wind speed: strong wind makes the stagnant
layer narrower. The air molecules in the stagnant layer pre-
vent the water vapour molecules leaving into the bulk of the
air: water molecules hit often the air molecules and move ran-
domly back and forth; as a result, their departure speed from
the water surface is slow as compared with the thermal speed.
If the mean free path λ of the vapour molecules is much smaller
than the thickness of that surface layer (which is normally the
case) then we can consider separately a thin layer of air which
is directly above the water surface, with the thickness of few λ

(this layer is the lowest part of the stagnant layer). Within that
layer, let us consider two processes: first, molecules jumping
from the water into the thin layer and then returning to the
liquid phase after performing few collisions with air molecules;
second, vapour molecules leaving the stagnant layer of thick-
ness δ. Since λ ≪ δ, the characteristic time scale of the first
process is much smaller than that of the second process. If one
process is much faster than the other, a quasi-equilibrium is
reached for the faster process. Therefore, inside the thin layer
of thickness λ, thermal quasi-equilibrium is reached between
the water molecules in the liquid phase and vapour phase: the
water molecules jump out from the liquid phase almost as often
as the vapour molecules hit the surface and get stuck into the
liquid. By the definition of the saturation pressure, this means
that inside the thin layer, the vapour pressure equals to the
saturation pressure (at the water surface temperature).

If there were no collisions with the air molecules, i.e. if the
mean free path of the molecules were very large and those mo-
lecules which jump out of the surface would never return, the
evaporation rate could be derived from the saturation vapour
pressure. Indeed the full saturation pressure can be divided
into two components: the momentum per unit time and unit
area, (a) exchanged by those molecules which jump out of the
water, with those molecules which remain in the liquid-phase,
and (b) transferred by those vapour molecules which hit the
water surface and get “stuck” into it, to the liquid water. At
equilibrium, both processes have equal intensities, hence both
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contribute half of the saturation pressure. If the second com-
ponent were missing, the vapour pressure would be reduced to
the half of the full saturation pressure, and the evaporation
intensity (number of molecules leaving per unit time and unit
area) could be expressed in terms of the saturation pressure,
temperature, and molar mass using the kinetic theory of gases.

In reality, however, as long as we are not dealing with sub-
limation in vacuum, the vapour molecules cannot leave freely
the boundary layer, and many molecules end up colliding again
with the water surface, and condensing at it. Then, the effect-
ive evaporation rate is defined by the interplay of two processes:
molecules (a) jumping out of the water surface, and (b) diffus-
ing through the boundary layer. As discussed earlier, directly
above the water surface, the water and vapours are at equi-
librium, i.e. r = 100%. At the top of the stagnant layer, air
motion brings fresh air with relative humidity r equal to that
of the bulk of the air masses. The thickness of the stagnant
layer depends mainly on the wind speed; narrower layer means
higher vapour concentration gradient, and hence, larger flux
of vapour molecules, i.e. larger evaporation speed. Therefore,
moist things dry faster if the relative humidity of air is low,
and if there is a strong wind.

idea 17: If the dependence between two physical quantities y

and x is given as a graph where y is plotted versus x [y = f(x)],
and you are asked to find, which value of x (or f) is taken, and
from theoretical considerations one can derive another func-
tional dependence between f and x, for instance y = ax + b,
then the solution can be found as the intersection point of two
graphs, y = f(x) and y = ax + b.

Thus, it suffices to draw a line y = ax + b onto the (provided
to you) graph y = f(x), and read out the intersection point co-
ordinates. If the theoretical dependence is not linear, plotting
efforts are increased: either you redraw the graph y = f(x)
using other coordinates — such that the theoretical depend-
ence would be given by a straight line — or plot onto the given
graph y = f(x) the curve corresponding to the theoretical de-
pendence. In generic case, there is no need for the theoretical
dependence to be a linear function; however, linear depend-
ences are not too rare. For instance, in the case of electrical
circuits, Kirchoff’s laws ensure linearity, c.f. idea ?? from the
booklet of electrical circuits.

pr 22. [EstPhO-1997] One method for finding relative hu-
midity is based on taking the readings of a dry and a wet
thermometer. The wet thermometer has a wet piece of cloth
wrapped around its sensor. For the method to yield an ac-
curate result, a wind must blow onto the wet sensor (you can
create it using a fan). Throughout this problem, you can use
the graph of the pressure of saturated water vapours as a func-
tion of temperature.

When wind blows onto the wet sensor, there will be two pro-
cesses influencing the sensor temperature: first, wind removes
the high-humidity air from the neighbourhood of the wet cloth
surface so that the water can evaporate; second, it increases
the heat flux from the warm air towards the colder sensor by
reducing the thickness of the stagnant air layer where the tem-
perature drop is localized. For question a) you may neglect

the effect of the heat flux (i.e. assume that the heat conduct-
ivity of air is very small). In what follows, assume that the air
temperature T0 = 20 ◦C.
a) Find the temperature difference between the wet and dry
thermometers if the relative humidity r = 90%.
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b) If we assume that the wind blows with a fixed speed, then
the conductive heat flux Qc (measured in watts) is propor-
tional to the difference between the temperature of the air T0
and that of the wet cloth T , Qc = a(T0 − T ). The coefficient
of proportionality a depends on the shape and size of the wet
cloth, as well as on the wind speed. Apart from the heat flux
due to conductivity, there is also heat flux due to evaporation:
evaporating molecules take away heat according to the latent
heat of evaporation. This evaporation heat flux Qe is propor-
tional to the evaporation rate, which in its turn is proportional
to the difference of the saturation pressure (at the temperat-
ure of the wet cloth), ps(T ), and the pressure of vapours in
the surrounding air, pa. Thus, Qe = b[ps(T ) − pa], where the
coefficient b depends on the same things as the coefficient a.
However, it appears that the ratio a/b is a quantity which can
be assumed to be constant for a wide range of conditions, as-
suming that the saturation pressure is much smaller than the
atmospheric pressure. It does depend slowly on the air pres-
sure and temperature, but for any reasonable temperatures and
air pressures at the sea level it can be taken to be equal to
a/b = 65 Pa/K. Taken into account what has been mentioned
above, what would be the reading of the wet thermometer if
the air is absolutely dry (i.e. r = 0)?
c) Derive as simple as possible expression for finding the dif-
ference between the readings of the wet and dry thermometers
within the relative accuracy of 10% which could be applied for
T0 = 20 ◦C and for the humidity range 80% < r < 100%.
d) A laundry is drying so that there is no direct sunlight falling
onto it. In one case, the humidity is 95%, in the other case —
80%; all the other conditions are exactly the same. How many
times faster will dry the laundry in the second case?

fact 14: Liquid will start boiling if the condition ps(T ) > patm
is satisfied.

Conversely, if ps(T ) < patm, the external pressure will not
allow expansion of a bubble: larger external pressure would al-
ways compress the bubble back to its initial tiny size (defined
by the impurity size, or the number of non-soluble molecules
of some other gas inside it).

Only extremely clean liquids can be almost free of evapora-
tion centres, in which case it is possible to have what is called
overheated liquids: while ps(T ) is slightly larger than patm, due
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to the absence of evaporation centres inside the liquid, evap-
oration can take place only at the surface. Even though this
process is now relatively fast (no wind is needed to accelerate
evaporation as the vapours can now freely push away the air),
there is no evaporation from the bulk in the form of bubbles, i.e.
there is no boiling. This is very similar to the oversaturated va-
pours discussed earlier. Furthermore, under similar conditions
(of very clean liquids) it is possible to have overcooled liquids
which stay in the liquid phase below the melting point. For
instance, a very clean water can stay liquid at few degrees be-
low 0 ◦C. Both for overheated and overcooled liquids, shaking
can initiate a very fast phase transition: for overheated liquid,
the excess heat is released via latent heat during partial evap-
oration, and in the case of overcooled liquid, part of the liquid
solidifies releasing latent heat and raising the temperature to
the melting point value.

It should be noted that overcooling can happen also with
rain droplets, which leads to the phenomenon known as glaze
frost: as soon as a droplet hits a solid surface (road, electrical
wires, etc), part of the water solidifies at that solid surface.

120 140 200180160
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pr 23. Geysers can be considered as large underground
reservoirs which are filled with ground water and are being
heated by hot walls. Such a reservoir is connected with the
earth surface via a narrow and deep channel, which in the gey-
ser’s rest state (inactivity period) is filled with relatively cold
water (the channel’s walls are cold and do not heat the water
inside the channel). The geyser becomes active when the wa-
ter in the reservoir starts boiling; during the activity period,
the channel connecting the reservoir with the ground surface
is filled with water vapours. The fresh water supply rate of
the reservoir is so slow that the inflow can be neglected dur-
ing the (relatively very short) activity period; meanwhile, it is
so fast that the entire reservoir and the entire channel (up to
the ground surface) becomes filled with the water during the
(relatively very long) inactivity period.

Let the height difference between the endpoints of the chan-
nel be h = 90 m. The latent heat of evaporation for water
λ = 2.26 × 106 J/kg; its specific heat c = 4.2 × 103 J/kg · K.
The dependence of the saturated water vapour pressure on
temperature is depicted in the graph. Find how large frac-
tion of the water in the reservoir is lost during a single activity
period.

If we have an interface between two liquids, the facts 13 and
14 need to be combined: into the bubbles at the interface of

two liquids, the molecules of both liquids can enter in the va-
pour phase. According to the Dalton’s law, the pressure inside
the bubble will be equal to p1s +p2s, where p1s and p2s are the
saturation pressures of the first and second liquid at the given
temperature, respectively.

fact 15: At the interface of two liquids, boiling can start at
considerably lower temperatures than in both liquids, separ-
ately: boiling will start when the condition p1s + p2s > patm is
satisfied.

pr 24. [IPhO-1989] Consider two liquids A and B insol-
uble in each other. The pressures pi (i = A, B) of their sat-
urated vapours obey, to a good approximation, the formula
ln(pi/p0) = ai/T + bi, where p0 denotes the normal atmo-
spheric pressure, T — the absolute temperature of the vapour,
and ai and bi (i = A, B) — certain constants depending on the
liquid. The values of the ratio pi/p0, i = A, B, for the liquids
A and B at the temperature 40◦C and 90◦C are given in the
table below.

T (◦C) pA/p0 pB/p0
40 0,248 0,07278
90 1,476 0,6918

a) Determine the boiling temperatures of the liquids A and B

under the pressure p0.
The liquids A and B were poured into a vessel in which the
layers shown in figure were formed. The surface of the liquid
B has been covered with a thin layer of a non-volatile liquid
C, which is insoluble in the liquids A and B and vice versa,
thereby preventing any free evaporation from the upper surface
of the liquid B, The ratio of molecular masses of the liquids A

and B (in the gaseous phase) is g = MA/MB = 8

The masses of the liquids A and B were initially the same, each
equal to m = 100g. The heights of the layers of the liquids in
the vessel and the densities of the liquids are small enough to
make the assumption that the pressure in any point in the ves-
sel is practically equal to the normal atmospheric pressure p0.
The system of liquids in the vessel is slowly, but continuously
and uniformly, heated. It was established that the temperature
t of the liquids changed with time τ as shown schematically in
the figure. Determine the temperatures t1 and t2 correspond-
ing to the horizontal parts of the diagram and the masses of
the liquids A and B at the time τ1. The temperatures should
be rounded to the nearest degree (in ◦C) and the masses of the
liquids should be determined to one-tenth of gram.
REMARK: Assume that the vapours of the liquids, to a good
approximation,
(1) obey the Dalton law stating that the pressure of a mixture
of gases is equal to the sum of the partial pressures of the gases
forming the mixture and
(2) can be treated as perfect gases up to the pressures corres-
ponding to the saturated vapours.
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Surface tension
As we saw in the previous chapter, the molecules of a substance
in the liquid phase are being attracted by the other liquid mo-
lecules and therefore have a certain negative potential energy
with respect to infinity. Notice that those liquid molecules
which are directly at the liquid-gas interface are being attrac-
ted by other molecules only from the side of the liquid phase.
Therefore, for the molecules directly at the surface, as com-
pared with the molecules in the bulk of the liquid, the number
of attracting neighbours is smaller and respectively, the negat-
ive potential energy is also smaller by modulus. This missing
negative energy can be interpreted as a positive energy of the
surface, which is proportional to the number of molecules at
the surface, which is in its turn proportional to the surface
area of the liquid,

U = Sσ,

where the coefficient of proportionality σ is called the surface
tension. At room temperature, it takes typically values from
17 mN/m (diethyl ether) to 73 mN/m (water); and 480 mN/m
for mercury. In the case of water, very small concentrations of
substances known as surfactants can lower the surface tension
two- or three-fold.

Now, let us consider a rectangular shape a×b of a liquid sur-
face, and a process where we increase the side length a by ∆a.
By doing so we increase the surface area by b∆a, and hence,
the surface energy by σb∆a. As the energy was increased, some
work must have been done. In order to increase the side length
a, we needed to pull one edge of length b by ∆a. Let us assume
that in order to do so, a force F was needed. Then, from the
energy balance we can equate the work done F∆a with the
energy increase σb∆a; hence,

F = σa,

i.e. σ is the force per unit length. To sum up, similarly to the
tension in rope, we can say that if we make an imaginary cut
line of length L on the surface, the two halves of the surface
pull each with force F = σL.

Note that surface tension exists not only at a free liquid
surface, i.e. liquid-air interface, but also at liquid-liquid in-
terfaces between two insoluble liquids, liquid-solid interfaces,
solid-gas interfaces, and solid-solid interfaces. However, un-
less we have nano-scale (or smaller) objects in which case the
surface-area-to-bulk-volume ratio (and along with it, the rel-
ative importance of the surface energy) is anomalously large,
surface tension doesn’t have noticeable effects at solid-solid and
solid-air interfaces due to the fact that the size and shape of
these surfaces is fixed by the shape of the solid bodies. As an
exception, the energy of a solid-air interfaces becomes import-
ant if it is adjacent to a solid-liquid and solid-air interface. Let
us consider this case in more details.

Let us consider the contact line of three substances, a gas
(e.g. air), a liquid (e.g. water), and a solid (e.g. a glass where
the water is kept). Thus we have liquid-gas, solid-gas, and
solid-liquid interfaces; let the respective surface tensions be
σl-g, σs-g and σs-l. We study the equilibrium for the position of
the contact line of the three substances. Solid surface cannot
be deformed, so this contact line can move only along the solid
surface. Now, suppose that the length of the contact line is L

and it moved towards the liquid phase from its initial position
by a small distance |AB| = a, see figure depicting a cross-
section of the system. Then the solid-gas surface energy was
increased by σs-gaL, and the solid-liquid surface energy was
decreased by σs-gaL. Suppose that the liquid-air and solid-
liquid surfaces form angle α, see figure. Note that the figure is
drawn assuming that the overall volume of the liquid is so large
that the displaced liquid volume ABC flowing rightwards of the
point P does not incur any significant changes in the liquid sur-
face shape in that region. Then, the displacement of contact
line will reduce the liquid-air surface energy by σl-gaL cos α.
Indeed, from the right triangle ABC, the liquid-gas surface
length is decreased by |AD| = |AB| cos α (we ignore the length
difference |CD|−|CB| which has second-order smallness in the
small parameter |AB|/|AC|).

A
B

D

C

Now we can conclude using the energy balance that it is en-
ergetically favourable for the contact line to move rightwards if
σl-g cos α + σs-l > σs-g, and leftwards, if the opposite inequality
holds; the equilibrium is possible only if

σl-g cos α + σs-l = σs-g.

Now we can express for the so-called contact angle α

cos α = σs-g − σs-l

σl-g
.

In the case of normal liquids and surfaces, the contact angle
is larger than 0 and smaller than π; cases with α < π/2 are
referred to as hydrophilic or wetting, and cases with α > π/2
— hydrophobic or non-wetting. In the case of perfect wetting,
cos α = 1. In the case of even smaller values of σl-g we would
obtain cos α > 1, which is clearly impossible; instead, inequal-
ity σl-g + σs-l < σs-g means that the gas-solid surface tension
σs-g is so large and the surface tensions of the liquid is so small
that it is energetically useful for a drop of liquid to disperse
over the whole solid surface so that it will be covered com-
pletely with a thin layer of liquid. If such a liquid is kept in
a vessel with vertical walls, it would be even energetically fa-
vourable for the liquid to “climb” up along the walls: in the
case of extremely thin liquid layer, gravitational potential en-
ergy would be negligible. However, the flow rate of the liquid
in an extremely thin layer will be extremely slow due to viscous
drag. Because of that, such behaviour can be observed only if
there is no viscous drag, in the case of superfluidity (helium at
very low temperatures).

If there were interfaces with σl-g + σs-g ≤ σs-l, it would be
energetically favourable to keep a narrow air gap between the
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liquid and solid: liquid would not be sticking to the surface,
and liquid droplets would be able to move essentially without a
drag along the surface. While there are no such surfaces, there
are interfaces for which cos α is fairly close to −1. For instance,
the contact angle of mercury on most surfaces is around 140 ◦.

pr 25. For some natural materials (e.g. lotus leafs), and for
materials with modern nano-technological coatings, the con-
tact angle of liquids is increased due to the micro-structure of
the surface: there are microscopical “whiskers” which keep the
droplets on the tips of the whiskers and reduce thereby the
contact area between the liquid and the solid material. If the
apparent contact area of a droplet with such a surface is A,
and the real contact area due to the microscopic whiskers is
rA with r = 0.006, what is the contact angle? Assume that
without “whiskers”, the contact angle would be α0 = 110 ◦.

Note that the energy minimum condition can be also in-
terpreted as the force balance condition for the line where
the three phases meet (point A in figure): forces σl-g, σs-l,
and σs-g (per unit length) pull the liquid molecules at the
three-phase-contact-line along the liquid-gas, solid-liquid, and
solid-gas interfaces, respectively. Hence, then the equality
σl-g cos α + σs-l = σs-g represents the equilibrium condition for
the horizontal direction (along which the line could move if the
area covered by the liquid were to contract or expand).

Let us sum up what we have learned.

fact 16: Interfaces between phases carry energy; each inter-
face is characterized by the surface tension coefficient σ which
gives the energy per unit area. As a direct consequence, σ gives
also the force per unit length of a fictitious cut of the interface
(known as the surface tension or capillary force).

Now, let us study the capillary pressure which is the gauge
pressure due to spherical liquid-air interface of radius r, such
as one would have in the case of a bubble inside a liquid, or a
small droplet hovering in the air. Let us divide the bubble into
two halves by a plane passing through its centre, and consider
the force balance for one of the halves. To begin with, we need
a new idea.

idea 18: It is often useful to consider a force balance condi-
tion for fictitiously separated part of a liquid involving gravity
force, surface tension force, and force due to hydrostatic pres-
sure.

Let us consider, for instance, an air
bubble inside a liquid, and let us cut it
fictitiously into two equal halves by a flat
surface. The body for which we write the
force balance consists of the air inside the
half-bubble, and the hemispherical liquid-
air interface around it. The forces acting on this body are: the
capillary force across the cut line pulling towards the other
half, F1 = 2πσr; the force due to the hydrostatic pressure pin
inside the bubble, F2 = πr2pin, exerted by the other half of the
bubble and pushing the two halves apart from each other; the
force F3 due to the hydrostatic pressure pout outside the sphere
acting in the same direction as the capillary force. Note that
pout acts onto a curved surface so that the calculation of the
resultant force would require integration poutx̂ · dS⃗, where x̂ is

a unit vector along the axis of the hemisphere, and dS⃗ is an
infinitesimal surface element (its modulus being equal to the
corresponding surface area, and pointing parallel to the sur-
face normal). However, if such an hemisphere were surrounded
both from the curved and flat sides by the same hydrostatic
pressure (cf. a half of a watermelon subject to the air pressure
in atmosphere), the body would obviously remain still at rest,
i.e. the pressure forces to both sides would be equal. There-
fore F3 = πr2pout. And so, the equilibrium condition for the
hemisphere is written as πr2pout + 2πσr = πr2pin, hence

pin − pout = 2σ/r.

In the case of a cylindrical surface, we can use a completely
similar approach to obtain pin − pout = σ/r.

F F

x

However, cylindrical geometry can
be analysed also using a different
approach: consider the force bal-
ance for a very small surface ele-
ment (in figure, α ≪ 1) in the perpendicular direction to the
surface (the x-axis in figure). The surface tension force F ,
tangent to the surface, is applied to the edges of the surface
element, yielding Fx = − 1

2 σl sin α ≈ − 1
2 σlα (l is the length of

the surface element perpendicularly to the figure plane). The
area of the surface element ∆A = lrα, and hence, the force
balance is written as (pin − pout)lRα = 2Fx = σlα, yielding
immediately pin − pout = σ/r. Notice also that in the figure
above, the liquid-gas interface can be thought to be a rope of
tension T , in which case we obtain the normal force per unit
length of the rope n = T/R.

Finally, the last paragraph illustrates a very important and
universal method in physics, differential calculus approach.
Differential calculus has many flavours: for instance, in math-
ematics, we speak most often about taking derivatives and in-
tegrals, and solving differential equations. In physics, it is a
very useful skill to know how to show that one or another
physical quantity is a certain integral (cf. idea ?? from the
electrical circuits booklet). Let us try to give a specific recipe
— summary about what was done in the previous paragraph.

idea 19: Consider (infinitesimally) small volumes (line seg-
ments, etc.) and write down applicable force balances and/or
conservation laws for these volumes to derive either a rela-
tionship between physical quantities, or differential equations
describing a physical quantity as a function of other quantities.
Make use of the smallness of these quantities: drop anything
which has higher order of smallness (e.g. squared small quant-
ities).

Let us also sum up the capillary pressure results.

fact 17: The gauge pressure due to capillary forces across
a curved interface is ∆p = 2σ/r in spherical geometry, and
∆p = σ/r in cylindrical geometry.

It appears that these expressions can be generalized to arbit-
rary shapes of the interface; here we just provide the result,

pin − pout = σ(r−1
1 + r−1

2 ),
where r1 and r2 are the curvature radii of two curves at their
crossing point P ; the two curves are formed as the intersection
lines of the air-liquid interface with two planes, assuming that
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all the three surfaces are mutually perpendicular at the point
P . It can be shown that while the individual curvatures r1
and r2 depend on the orientation of the two plains, the sum
σ(r−1

1 + r−1
2 ) remains invariant when the planes are rotated

around the normal drawn through the point P to the air-liquid
interface.

In particular, the volume of a meniscus, the mass of a
droplet falling from a water tube, etc. can be found using the
idea 18, i.e. from the force balance condition for the surface ten-
sion force and the gravity force. The following problem serves
as an illustration here.

pr 26. [EstPhO-1995] Measuring cylinder has volume V =
100 ml and height h = 20 cm. There are marker lines drawn on
the cylinder after each 1ml. Suppose the cylinder is used for
measuring water volume, and the reading is taken according to
the lowest point of the curved water surface. How large mistake
is made due to the fact that the water surface is curved, and
not flat? Surface tension coefficient for water σ = 0.073 N/m;
Assume that water wets perfectly the walls of the cylinder.

pr 27. [EstAcadPhO-2003] Two coaxial
rings of radius R = 10 cm are placed to a dis-
tance L from each other. There is a soap film
connecting the two rings as shown in figure. De-
rive a differential equation describing the shape r(z) of the film,
where r is the radial distance of the film from the symmetry
axis, as the function of the distance z along the axis. Show
that cosh x is one of its solutions. When the distance between
rings is slowly increased, at a certain critical distance L0, the
soap film breaks. Find L0.

It is tempting to apply the idea 18 to the droplets falling
from a tap, straw, or syringe, to relate the mass of a droplet to
the internal diameter of the tap.

pr 28. Consider droplets falling from a syringe as the A a
syringe is kept vertically an pointing downwards; it is pressed
slowly so that liquid drops are falling from the tip of its needle
(the needle’s tip is flat, i.e. is cut perpendicularly to its axis).
The surface tension of the liquid is σ, its density is ρ, free
fall acceleration is g, and internal diameter of the needle d

(d ≪
√

σ/ρg) Find the mass m of a falling droplet (provide
a correction to your answer by taking into account the small
pressure force due to the gauge pressure inside the droplet).

This approach is, indeed, valid if the internal diameter d

of the tap/syringe is small. However, if that is not the case,
the problem becomes much more complicated. Based on the
static force balance for horizontal layers of a growing droplet, a
differential equation can be composed to determine the shape
of the droplet. When liquid is being injected into the droplet,
it is growing, and its shape is changing; at a certain moment,
maximal size is achieved: with larger droplet volumes, for the
given diameter of the tap, there are no solutions of the differ-
ential equation. This is the moment when the droplet falls. In
the figure below, the shapes of falling droplets are depicted for
different syringe (tap) radii r (indicated in dimensionless units,
δ = r/λ, where λ =

√
σ/ρg is the characteristic length scale at

which capillary and hydrostatic pressures have the same order
of magnitude, σ/λ = ρgλ).

One can spot two issues which can invalidate the solution of
the problem 28 for δ & 0.5: (a) at the droplet’s upper rim
(where it is connected to the tap), the droplet walls are no
longer vertical (hence, the force balance needs to include the
cosine of the angle between a vertical line and the surface tan-
gent); (b) the pressure force due to the gauge pressure inside
the droplet needs to be calculated more precisely (curvature
radii and hence, the gauge pressure change along the height of
the droplet). Furthermore, it is not clear, which part of the
droplet separates from the tap when the droplet starts falling:
it is apparently somewhat less than the whole volume depicted
in the figure. The figure above indicates the relative correc-
tion to the droplet’s mass ε due the above mentioned effects
(for δ = 0.5 and δ = 1, it is assumed that what separates
as a falling droplet is the part beneath the narrowest part of
the droplet). Parameter κ shows the relative difference of the
gauge pressures at the bottom and at the top of the droplet;
red line shows the level of zero gauge pressure.

The case δ = 3.218 (also shown in figure) yields the largest
droplet (with all the volume beneath the rim of the tap be-
ing taken into account); it is also the droplet which is hanging
from a horizontal ceiling when water vapours condense on it.
When the tap radius is further increased, the droplets become
even flatter, and at δ ≈ 3.83, the droplet’s height becomes zero.
When the tap radius is larger than 3.83λ, the tap can no longer
contain water: due to what is known as the Rayleigh-Taylor in-
stability, water flows out.

idea 20: Equilibrium states of a system can be found as its
minimal total energy state; this is valid not only for mech-
anical systems, but also for systems involving thermodynamic
(electromagnetic etc.) phenomena.

pr 29. [EstPhO-1995] Liquid is poured onto a horizontal
totally non-wetting surface where it forms a pool (a layer of
liquid). Find the thickness of the layer if the density of the
liquid is ρ and the surface tension coefficient is σ. What would
be the thickness if it were a partially wetting liquid, with the
angle between the air-liquid and liquid-solid interfaces being
equal to α (0 < α < π)?

pr 30. Find the height of the meniscus in the case of prob-
lem 26, i.e. the height difference between the highest and lowest
points of the air-liquid interface. Use the data of problem 26;
the liquid density is ρ.

Finally, regarding instabilities due to surface tension: any
liquid tries to take the shape of minimal energy, which in the
case of weightlessness is a sphere. Because of that, any other
shapes, such as cylindrical or flat (soap films) are unstable.
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In the case of a cylindrical shape, the instability evolves fairly
fast; consider the following problem.

pr 31. [Seagull-2014] Due to instability (know as
the Plateau-Rayleigh instability), a tap water stream
breaks into droplets at a certain height. This pro-
cess can be modelled by the instability of a long water
cylinder in weightlessness. Let the diameter of the
cylinder be d = 1 mm; estimate the time period T

during which the amplitude of the most unstable per-
turbations will increase by a factor of e ≈ 2.718. The
surface-tension of water γ = 72 g/s2, and the density
ρ = 1 g/cm3.

Due to the same reason, falling droplets don’t have the
shape of a droplet, because a sharp tip would imply a huge
capillary pressure beneath the tip, and would push the fluid
immediately towards the regions of smaller pressure (larger
curvature radius). Instead, the falling droplets take a shape
which (due to air drag) is similar to the shape of small droplets
lying on a hydrophobic surface: slightly ellipsoidal. Similarly,
thin films are unstable, but in the case of very thin films (soap
films), the characteristic time for the growth of instabilities is
very large. Soap films are therefore fairly stable, and can be
met often in problems; in that case, don’t forget the factor “2”
for pressures, forces and energies reflecting the fact that a film
has two interfaces: inner and outer ones!

4 Entropy and Carnot cycle
The classical theory of thermodynamics is built around the
concept of reversible processes.

def. 11: Reversible processes are processes for which the sys-
tem under consideration is always at a thermodynamical quasi-
equilibrium (those parts of the system which are in a thermal
contact must have almost the same temperature), and there
should be no dissipation (i.e. conversion of mechanical energy
into heat) inside the system.

So, the system can have two or more thermally isolated parts
of different temperatures, but each of such parts should be
thermally isolated (there should be no heat flux between them).
As soon as heat is allowed to flow from one part to another,
the temperatures of these parts must be almost equal: in that
case, the direction of the heat flow can be reversed by chan-
ging the temperatures only by a very small amount. For a
perfectly reversible process, the temperature difference should
be infinitely small, so that the temperature change required for
a process reversal would be infinitely small. However, such a
process would be also infinitely slow, because the heat flow rate
between the bodies would be also infinitely small. Thus, real
processes can be reasonably close to being reversible, but never
perfectly reversible. Notice that for a reversed process, all the
quantities (exchanged heat, work) obtain opposite signs.

As mentioned before, the best definition of temperature is
based on statistical thermodynamics; this, however, is based
on quantum mechanics, and in pre-quantum-mechanical era,
a different definition, the Kelvin’s one was used. Since we are
already equipped with the statistical definition of temperature,

there is strictly speaking no need to discuss the Kelvin’s one:
in the case of positive temperatures, these two are identical.
However, discussion of the Kelvin’s temperature scale serves
us as a useful exercise, and it provides additional insight to
thermodynamics.

The Kelvin’s definition of temperature is based on the
Carnot’ cycle which will be discussed later in more details;
here it is enough to know its definition.

def. 12: Carnot’ cycle is a reversible process with a gas which
has four stages:
(i) the gas expands isothermally (i.e. at a constant temperat-
ure) while receiving slowly heat Q1 from a heat reservoir6 at a
temperature T1,
(ii) it expands adiabatically (i.e. slowly without receiving or
giving away any heat) and is thereby cooled (cf. fact 12) down
to a temperature T2;
(iii) the gas is brought to a thermal contact with another heat
reservoir of temperature T2; the gas gives away heat Q2 to the
reservoir and contracts therefore isothermally;
(iv) the gas is compressed adiabatically until it reaches the
temperature T1.

Note that thus far we don’t have quantitative definitions of
temperature, but we know that the temperatures T1 and T2
are different, T1 > T2: based on the fact 2 we know that if
the reservoirs were brought into contact, there would be a heat
flow from the first one to the second one.

Since the pressure of the gas falls when cooling down (see
Section 3), the net mechanical work performed by the gas dur-
ing the whole cycle is positive (contribution of the expansion
stage A1 =

∫
exp pdV > 0 dominates over that of the contrac-

tion stage, A2 =
∫

contr pdV < 0). Hence, due to the 1LTD,
Q1 = Q2 + A1 + A2 > Q2. So, the system works as a heat en-
gine: the heat difference goes to mechanical work W = Q1−Q2;
the ratio η ≡ W

Q1
= 1 − Q2

Q1
is called the efficiency of the heat

engine.

def. 13: Heat engine is a device which converts heat energy
into a mechanical work using a temperature difference between
the heating and cooling bodies; heat pump makes use of mech-
anical work to “pump” heat energy from a body with lower
temperature to a body with higher temperature. Ideal heat
engine is based on Carnot’ cycle; ideal heat pump makes use of
the reversed Carnot cycle (all the stages are reversed: contrac-
tion is substituted with expansion, cooling is substituted with
heating, etc).

pr 32. Show that for a Carnot’ cycle, the efficiency can
depend only on the temperatures of the heating and cooling
bodies and does not depend on which gas is used as the work-
ing gas.

The solution here is based on the 2LTD, which we formulate
as an idea.

idea 21: The 2LTD can be used to prove by contradiction
impossibility or nonexistence of various things. To that end,
it is necessary to show that when assuming that the opposite
is true, one can construct a scheme by which energy is trans-

6heat reservoir — so large thermally isolated body that receiving or giving away some heat will not cause any noticeable changes in its temperature.
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ferred from a body of lower temperature to a body with a higher
temperature while no net work is done. These constructions
usually make use of ideal heat engines and/or heat pumps.

The solution of problem 32 can be directly used to show
more generic (and very useful) statement, which we formulate
as a fact.

fact 18: Any reversible heat engine (not necessarily based on
Carnot’ cycle) which takes heat from a heat bath at a single
fixed temperature T1, and gives away heat to another heat bath
at another fixed temperature T2, must have (and does have) ex-
actly the same efficiency as a Carnot’ cycle, ηC = 1 − T2

T1
. For

non-ideal (non-reversible) heat engines, the efficiency can be
only smaller than ηC and never larger than that.

This efficiency expression follows directly from the following
temperature definition. According to the Problem 32, the ratio
Q2/Q1 is a quantity which depends only on the temperatures
of the heat reservoirs. This fact can be used to quantify the
temperatures by defining the ratio of the temperatures of two
bodies as

T1/T2 = Q1/Q2,

where Q1 and Q2 are the heat amounts received and given
away, respectively, by a fictitious Carnot’ cycle using these two
bodies as the heating and cooling heat reservoirs. This is the
Kelvin’s temperature definition; the temperature unit 1 K is
defined by postulating that the water’s triple point7 temper-
ature is T0 = 273.16 K. This value for T0 is chosen so that
at the atmospheric pressure, the difference of the boiling and
melting temperatures of water would be equal to 100 K. Note
that using this definition, the Carnot’ cycle efficiency can be
rewritten as ηC = 1 − Q2

Q1
= 1 − T2

T1
.

pr 33. Show that fact 18 is a consequence of the fact 2.

As mentioned, in statistical thermodynamics it is shown
that with the statistical definition of temperature (from the
Boltzmann’s law) T̃ , in the case of a Carnot cycle Q1/Q2 =
T̃1/T̃2. This means that the Kelvin’s definition and the defin-
ition from statistical mechanics are identical; equality of units
is achieved if the constant k in the Boltzmann’s law is taken
equal to kB ≈ 1.38 × 10−23 J/K.

pr 34. [IPhO-1992] A manufacturer advertises a special
paint in the following way: “This paint will reflect more than
90% of all incoming radiation (both visible light and infrared)
but it will radiate at all frequencies (visible light and infrared)
as a black body, thus removing lots of heat from the satellite.
Thus the paint will help keep the satellite as cool as possible.”
Can such paint exist? Why or why not?

A consequence of this problem is that radiation and ab-
sorption properties of a material must be identical throughout
the entire spectrum. It can be similarly shown that a partially
reflecting material must have equal transmittance from both
sides. It may seem that dark window glasses are more trans-
parent when looking from inside of a darkly lit room, but this
is a mere illusion: when looking from outside, a small fraction
of reflected abundant outside light can easily dominate over

the transmitted part of the light coming from inside, but the
opposite is not true. The effect can be enhanced by overlaying
an absorbing and reflecting layers and turning the reflecting
layer outside. Then, while total transmittance is equal from
both sides, the reflectance from outside is larger because from
outside, reflected light does not pass through the absorbing
layer.

idea 22: The fact (No. 18) that all reversible heat engines
have the same efficiency ηC = 1 − T2

T1
can be used to solve a

series of problems.

First of all, this idea applies to all the problems which deal with
heat engines if these engines involve heat baths with exactly
two different temperatures. In particular, one should keep in
mind that devices based on the thermoelectric effect (see fact
20) can theoretically be reversible (of course, ohmic dissipation
in such devices is irreversible and needs thus to be excluded
from energy balance). In some cases, it is possible to solve a
problem (derive an equation) by making a thought experiment
with a suitably designed hypothetical heat engine, see the next
problem.

pr 35. Derive the so-called Clausius-Clapeyron equality re-
lating the temperature derivative of the saturation pressures of
a substance, dps

dT , to the latent heat of evaporation λ, temper-
ature T , saturation pressure ps, and molar mass µ.
By how much will change the pressure of saturated vapours of
water if the temperature is decreased from T0 = 100.0 ◦C down
to T1 = 99.9 ◦C? Atmospheric pressure P0 = 1.0 × 105 Pa,
latent heat of evaporation for water L = 2260 kJ/kg. Hint:
consider Carnot cycle where work is being done by water va-
pours, and both cooling and heating reservoirs are made of
water, at temperatures T0 and T1, respectively.

pr 36. Note that the Clausius-Clapeyron equality can be
written as a Boltzmann’s law, pS = p0e−U/kBT ; express U in
terms of the parameters listed in problem 35, and interpret it
physically.

def. 14: Classical (unrelated to quantum mechanics) entropy
S is defined only via increments (similarly to potential energy):

∆S = ∆Q/T,

where ∆Q is the heat given to the system, and T — the tem-
perature of the system.

Conclusion: adiabatic process is an isoentropic process.
While in classical thermodynamics, only entropy increments are

defined, in statistical thermodynamics which is based on quantum mech-
anics, absolute values of entropy are well-defined; roughly speaking, it
is S = kB ln N , where N is the number of thermally excited quantum-
mechanical states; more precisely S = −kB ⟨ln pi⟩i, where pi is the prob-
ability of the i-the quantum-mechanical state, and angular braces denote
averaging over all the possible states. Using mathematical statistics, one
can show that this definition yields ∆S = ∆Q/T , in agreement with the
classical definition.

It is quite easy to see that for a closed system undergoing re-
versible processes, the entropy is conserved. Indeed, since heat

7Triple point of a substance — such a combination of temperature and pressure that the solid, liquid and gaseous states are all in thermal
equilibrium with each other.
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exchange between its different parts takes place at the same
temperature then by exchanging a certain amount of heat, the
two parts obtain equal by modulus and opposite entropy incre-
ments. However, in the case of irreversible processes, according
to the 2LTD (idea 2) that part of the system which gives away
heat (−∆Q < 0) has larger temperature than that part which
receives the heat, T1 > T2. Hence, the total entropy change for
the entire system ∆S = − ∆Q

T1
+ ∆Q

T2
> 0 is positive.

fact 19: The entropy of a closed system remains constant
in reversible processes and grows in irreversible ones.

Being equipped with the statistical definition of entropy, we can say
that if a system evolves by itself, the total number of excited quantum-
mechanical states can only grow. This can be formally shown using math-
ematical statistics. The number of excited states can be also considered as
a parameter describing the degree of order: more occupied states implies
less order. So, the degree of order of a closed system is can only increase.
Yo can use this as an excuse if your room becomes messy.

Finally, notice that the facts 19 and 18 are also often re-
ferred to as the 2LTD, which is OK since these are equivalent
to fact 2: an entropy reduction would directly mean that heat
has been transferred from a lower temperature body to a higher
temperature one.

We have shown already equivalence between the fact 2 and
19. A hypothetical heat engine with η > ηC is referred to as
perpetuum mobile of second kind, and it is as impossible as the
perpetuum mobile of the first kind (the one which violates en-
ergy conservation law). However, people tend to trust the laws
of statistics less than the other laws of nature (else, who would
buy lottery tickets!). This has resulted in a large number of
failed attempts at creating perpetuum mobile of second kind,
but also in really interesting paradoxes. Perhaps the most fam-
ous one is the Maxwell’s demon: a nano-scaled guy who sits at
a gate between two parts of a vessel and who opens the gate
when a fast molecule is approaching, and keeps the gate closed
otherwise. Apparently, the temperature at the other side of
the vessel would start rising, violating 2LTD. The resolution of
the paradox is that the guy needs to obtain information about
approaching molecules and needs to probe these by sending, for
instance, photons. However, photons scattered from molecules
would contribute to an increase of entropy.

Now, let us consider the forward and reversed Carnot’ cycles
in more details.

idea 23: The processes involving Carnot’ cycle are typically
most conveniently studied using a S−T -diagram, because then,
the process has a rectangular shape.

While we have already derived the efficiency of a Carnot’
cycle starting from the Kelvin’s definition of temperature, let
us do it, once again, starting from the definition of entropy
and using the S − T -diagram. Let the S-axis be horizontal,

and length of the rectangle — ∆S. According to the defini-
tion of entropy, the heat received from the heating reservoir
∆Q1 =

∫ B

A
TdS = T1∆S is the surface area of the large

rectangle; similarly, the heat given to the cooling reservoir
∆Q2 =

∫ D

C
TdS = T2∆S is the surface area of the dark-grey

rectangle. According to the energy conservation law, the work
done ∆W =

∮
ABCD

TdS = ∆Q1 − ∆Q2 = ∆S(T1 − T2) is
the surface area of the light grey rectangle. According to the
definition of efficiency,

ηC = ∆W

∆Q1
= T1 − T2

T1
= 1 − T2

T1
.

Reversed Carnot’ cycle has a counter-clock-wise motion in
the S − T -diagram: all contractions become expansions (and
vice versa), heat flow direction is reversed, and mechanical work
becomes negative, i.e. a work needs to be done to keep the
process going on. Such a reversed heat engine can be used
for two purposes: for heat pumps and fridges. In a fridge,
a working gas takes heat from the interior of the fridge at the
inside-temperature T2, flows through the ribs at the back of the
fridge and gives there more heat away at the ribs’ temperature
T1 > T2; the electrical engine of the fridge keeps the process
going on. The fridge efficiency (often called the coefficient of
performance, or COP) is characterized by the ratio of the heat
Q2 which is taken away from the inside, and work W done by
the engine (consumed electrical power),

ηfridge = Q2

W
= T2

T1 − T2
.

From this expression we can deduce that the efficiency of a
fridge can be both larger and smaller than one, but it is very
difficult to achieve extremely low temperatures, because the
efficiency goes down together with the temperature inside the
fridge.

Heat pump can be considered as a fridge, which has its hot
ribs inside our living rooms, and which takes heat from the
colder heat reservoirs outside the house (air or ground). Now,
what is useful to us is the heat Q1 received by our living room,
so that the efficiency of a heat pump

ηHP = Q1

W
= T1

T1 − T2
,

which is always larger than one: it works always more efficiently
than an electrical radiator.

Finally, let us discuss the thermoelectric effect. To begin
with, let us recall problem 36: for a molecule to be able to
leave the liquid phase, a certain energy U needs to be supplied.
This means that effectively, the liquid phase molecules obey po-
tential energy −U with respect to vapour phase molecules; this
potential energy is referred to as the chemical potential, and is
equal to the change of total energy when one particle is ad-
ded to a system (final energy minus the particle’s and system’s
initial energies). Similarly to molecules in liquid phase, elec-
trons in metals (semiconductors, dielectrics) are also described
by chemical potential, often referred to as the Fermi level EF .
The Fermi level of a material depends on temperature; if the
temperature of a wire changes along its length, the Fermi level
will also change along its length. As a result, electrons move to-
wards lower Fermi levels (smaller potential energy), creating a
surplus of charges and an electric field. Finally, an equilibrium
is reached: electrostatic potential compensates Fermi level dif-
ference. So, at equilibrium, there is a changing potential along
the wire. Let us summarize.
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fact 20: If a wire is being heated from its one end, and cooled
at the other end so that the temperatures of its endpoints are
Th and Tc, respectively, then there will be a voltage

V = S(Th − Tc)
between the endpoints, where the Seebeck coefficient S takes
different for different materials. This is known as the Seebeck
effect.

A thermocouple is a device made of wires of two different
materials which are selected so that the difference of Seebeck
coefficients would be as large as possible. A wire of material A

is connected at its two endpoints, the junctions, to the wires of
material B; if the junctions are kept at different temperature,
an electromotive force is created at the output terminals of the
thermocouple. Thermocouples which are used for generation
of electrical energy are called thermoelectric generators. Ther-
mocouples take and release heat at the junctions, and perform
electrical work, so they operate as heat engines. If we were to
reverse such a heat engine, we would need to supply a current
into it from an external source. Then we would expect that
one of the junctions would release heat, and the other would
absorb heat; this is, indeed, what will happen, and is referred
to as the Peltier effect. The direction of current defines, which
of the junctions will absorb heat.

For majority of metals, S takes values remaining less than
10µV/K, and for certain metal alloys up to 30µV/K (70µV/K
for bismuth). What matters in the case of a thermocouple, is
the difference of Seebeck coefficients of the two wire materials,
and in the case of chromel and constantan pair, the difference
at the room temperature is 62µV/K. For semiconductor ma-
terials, S can reach much higher values.

Now we can ask, how close to being reversible is the thermo-
electric effect. For a system to be reversible, all its parts need
to have reached a state very close to a thermal equilibrium.
In the case of a thermocouple, however, we have a wire which
connects cold and warm junctions: the temperature difference
creates a heat flux through the wire, which is very irreversible.
For the process to be reversible, the irreversible heat flux

Φir = κA

l
(Th − Tc)

(where κ is the heat conductivity, A — cross-sectional area,
and l — length) needs to be small as compared with the re-
versible heat flux which is spent on producing the electrical
power,

Φr = P

ηC
= V 2

R

Th

Th − Tc
= S2(Th − Tc)Th

ρl/A
.

So, the process can be considered to be reversible if
Φr

Φir
= S2Th

κρ
≫ 1.

This dimensionless parameter is called the merit factor and
denoted by

ZT ≡ S2T

κρ
;

currently the materials with highest merit factor reach values
ZT ≈ 2.5, but theoretically there is no upper limit for ZT . It
appears that in the case of ZT ≈ 2.5, the maximal efficiency
of a thermocouple is 30% of the Carnot’ cycle efficiency. It is a
challenge for material sciences to create materials with higher
merit factors which could be used for making compact thermo-
electric generators.

pr 37. A thermocouple is being used as a battery: one
of its solder joints is at the room temperature T1 = 20 ◦C,
the other is kept inside a glass of water with ice, at temper-
ature T2 = 0 ◦C. The output leads are connected to a res-
istor R = 10Ω, connected in series with an ammeter which
shows that current I = 10 mA. How much ice is melted during
t = 10 h if the glass with ice has very good thermal insula-
tion and room temperature remains constant? Latent heat of
melting for ice λ = 330 kJ/kg. Assume the energy transfer
processes in the thermocouple to be reversible.

appendix 1: Motivation of the Boltzmann’s law
The reason why an energy level occupation probability vanishes

exponentially with energy lies in the fact that in the case of a

heat reservoir which is supposed to consist of a large number of

subsystems, the number of quantum-mechanical states grows

exponentially with the total energy Etot. Let us consider sim-

plifyingly a body which has several equispaced energy levels,

E0, E1 = E0 + E , . . .En = E0 + nE . Further, let the heat

reservoir be made of a large number N ≫ n identical particles,

each of which has two energy levels, 0 (ground level) and E
(the excited state), and let the total number of particles at the

excited state be M (with M, N − M ≫ n). Now, the body is

brought to a contact with the reservoir; let us assume that its

energy becomes equal to nE . Due to the energy conservation

law, this will decrease the number of excited particles inside

the heat reservoir by n. Thus, the number of excited particles

is M − n; the number of di�erent states of heat reservoir sat-

isfying this condition equals to the number of di�erent ways of

selecting M − n particles from the set of N particles, given by(
N

M − n

)
= N !

(M − n)!(N − M + n)!
.

For the ground level of the body, the number of the heat reser-

voir states is similarly given by(
N

M

)
= N !

M !(N − M)!
.

Since all these states are equally probable, the ratio of prob-

abilities for the n-th excited state and the ground state of the

body is given by the ratio of the number of states,
pn

p0
= N !

(M − n)!(N − M + n)!
M !(N − M)!

N !
=

(M − n + 1)(M − n + 2) . . . M

(N − M + 1)(N − M + 2) . . . (N − M + n)
≈

(
M

N − M

)n

.

Here, M
N−M is a number which characterizes the state of the

heat reservoir; we can introduce the parameter β = − 1
E ln( N

M −
1), which leads us to the Boltzmann's law

pn

p0
= e−βEn .

This �proof� is probably not too satisfying for a mathematically

oriented reader, because we made very limiting assumptions for

the particles of the heat reservoir. For a more generic proof, one

can introduce the energy level density g(E) of the �particles�

making up the heat reservoir, express the energy level density

of the entire reservoir as the N -th convolution of g(E) with

itself, calculate it in the Fourier space (because the Fourier

transform of a convolution is just the product of the Fourier

transforms), take the inverse Fourier transform and estimate it

asymptotically (for N → ∞) using the saddle point method �

these techniques are well beyond the scope of this booklet.
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Revision problems

pr 38. [EstPhO-2007] Certain room is being heated using a
heating device the output power P (T ) of which depends on the
room temperature T as shown in figure. If the outside temper-
ature is T1 then the room temperature will reach value T2 (see
figure). Which room temperature will be reached if the outside
temperature is T3? (find the solution graphically using the fig-
ure). The heat exchange loss rate of the room is proportional
to the difference of the inside and outside temperatures.

T

P T( )

0 T
1

T
2

T
3

pr 39. [EstPhO-2000] The nominal voltage of a light bulb is
V0 = 26 V and nominal current I0 = 0.12 A. Cold tungsten fil-
ament of this light bulb has resistance R0 = 24 Ω. Estimate the
length l and the diameter d of this filament. Also, at which tem-
perature T is this filament supposed to emit light (when work-
ing in nominal regime)? The resistivity of tungsten at room
temperature ρ0 = 5.3 × 10−8 Ω · m. For metals, the resistivity
can be taken to be proportional to the temperature in Kelvins.
Treat tungsten as a perfectly grey body which absorbs k = 0.3
of the incident radiation at any wavelength. Stefan-Boltzmann
constant σ = 5.67 × 10−8 W/(m2 · K4). Neglect thermal ex-
pansion of the filament.

pr 40. [EstPhO-2006] Due to cold weather, heating sys-
tem was broken and temperature in a room started decreasing.
A fan heater was quickly bought and switched on. During all
that period, the room temperature changed in time as shown in
graph. Which room temperature will be reached in long term?
Outside temperature remained constant. Note that due to cer-
tain construction elements, the heat exchange rate between the
room and outside environment was a nonlinear function of the
temperature difference.
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pr 41. In a thermally isolated cylinder,
a piston can move without friction up and
down. The cylinder is divided into two com-
partments by a freely moving weightless wall
which conducts slowly heat, see figure. Ini-
tially the gas temperatures are equal, and
the volume of hydrogen is 3 times smaller than that of helium.
Helium receives a certain amount of heat, because of which the
piston moves up by d1 = 5 cm. After waiting for some longer
period of time, an additional displacement of the piston was ob-
served. By how much and in what direction the piston moved
additionally? Gases can be considered to be ideal. Molar heat
capacitance at constant pressure is CP H2 = 7/2R for hydrogen,
and CP He = 5/2R for helium.

pr 42. [EstFin-2006] According to the wide-spread belief,
it is useful to keep window open when drying laundry even if
the relative humidity outside is 100%, because the temperat-
ure of the incoming air rises and thereby the relative humidity
drops. Let us analyse, do these arguments hold, when heating
is switched off.
Suppose that inside a room, the volume of air V1 = 20 m3

from inside at the temperature t1 = 25 ◦C is mixed with the
volume of air V2 = 10 m3 from outside at the temperature
t2 = 1 ◦C. The specific heat of the air (by fixed pressure)
cp = 1005 J/(kg · K) can be assumed to be constant for the
given temperature range; the heat exchange with the medium
can be neglected. For the time being, you may neglect the
possibility of (partial) condensation of the vapour.
a) Prove that the total volume of the air will not change i.e.
that the volume of the mixed air V = V1 + V2.
b) What is the temperature of the mixed air T?

1,0

1,5

2,0

0 5 10 15 20 25

t (0C)

c) The graph below shows the dependence of the saturated
vapour density for water as a function of temperature. Before
mixing, both the interior and exterior air had relative humidity
of r0 = 100%. What is the relative humidity r of the mixed air
(if it happens to increase then assume that an oversaturated
vapour with r > 100% is formed)?
d) If you happened to obtain r > 100% then the oversatur-
ated vapour breaks down into a fog which contains tiny water
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droplets. In that case, what is the mass m of the condensed
water (i.e. the total mass of the water droplets)? Air dens-
ity ρ0 = 1.189 kg/m3; latent heat of vaporization for water
q = 2500 kJ/kg.

pr 43. [IPhO-1999] A cylindrical vessel, with its axis ver-
tical, contains a molecular gas at thermodynamic equilibrium.
The upper base of the cylinder can be displaced freely and is
made out of a glass plate; let’s assume that there is no gas
leakage and that the friction between glass plate and cylinder
walls is just sufficient to damp oscillations but doesn’t involve
any significant loss of energy with respect to the other energies
involved. Initially the gas temperature is equal to that of the
surrounding environment. The gas can be considered as perfect
within a good approximation. Let’s assume that the cylinder
walls (including the bases) have a very low thermal conductiv-
ity and capacity, and therefore the heat transfer between gas
and environment is very slow, and can be neglected in the solu-
tion of this problem. Through the glass plate we send into
the cylinder the light emitted by a constant power laser; this
radiation is easily transmitted by air and glass but is com-
pletely absorbed by the gas inside the vessel. By absorbing
this radiation the molecules reach excited states, where they
quickly emit infrared radiation returning in steps to the mo-
lecular ground state; this infrared radiation, however, is further
absorbed by other molecules and is reflected by the vessel walls,
including the glass plate. The energy absorbed from the laser
is therefore transferred in a very short time into thermal move-
ment (molecular chaos) and thereafter stays in the gas for a
sufficiently long time. We observe that the glass plate moves
upwards; after a certain irradiation time we switch the laser off
and we measure this displacement.
a) Using the data below and - if necessary - those on the
sheet with physical constants, compute the temperature and
the pressure of the gas after the irradiation.
b) Compute the mechanical work carried out by the gas as a
consequence of the radiation absorption.
c) Compute the radiant energy absorbed during the irradi-
ation.
d)Compute the power emitted by the laser that is absorbed by
the gas, and the corresponding number of photons (and thus
of elementary absorption processes) per unit time.
e) Compute the efficiency of the conversion process of optical
energy into a change of mechanical potential energy of the glass
plate.
Thereafter the cylinder axis is slowly rotated by 90 ◦, bringing
it into a horizontal direction. The heat exchanges between gas
and vessel can still be neglected.
f) State whether the pressure and/or the temperature of the
gas change as a consequence of such a rotation, and - if that is
the case what is its/their new value.

Data: Room pressure: p0 = 101.3 kPa; Room temperature:
T0 = 20.0 ◦C; Inner diameter of the cylinder: 2r = 100 mm;
Mass of the glass plate: m = 800 g; Quantity of gas within the
vessel: n = 0.100 mol; Molar specific heat at constant volume
of the gas: cV = 20.8 J/(mol · K); Emission wavelength of the
laser: l = 514 nm; Irradiation time: : ∆t = 10.0 s; Displace-
ment of the movable plate after irradiation: ∆s = 30.0 mm.

pr 44. [EstPhO-1998] A tire is being pumped using a
hand pump. A manometer shows that the excess pressure
(the difference between the pressures inside and outside) is
p1 = 2 × 105 Pa, the air pressure p0 = 1 × 105 Pa. Find the
temperature of the air which enters the tire through the valve.
The pump has two valves. One of them lets gas into the pump
from the atmosphere; it opens as soon as the pressure inside the
pump becomes lower than p0, and closes as soon as it becomes
larger than p0. The other lets gas from the pump into the tire;
it opens as soon as the pressure inside the pump becomes lar-
ger than the pressure inside the tire, and closes as soon as this
inequality no longer holds. Room temperature T0 = 20 ◦C

pr 45. [EstPhO-2002] The main components of a car engine
are: a cylinder, a piston which moves inside it, and a valve for
letting gases in and out of the cylinder.

piston

cylinder
valve

The working cycle of the engine consists of the following stages:
I. Gas entry: the piston moves from the rightmost position to
left; fresh air comes in through the valve and fills the cylinder.
II. Pressure increase: the valve closes, and the piston moves
back to the rightmost position; the air is compressed adiabat-
ically.
III. Work: Fuel is injected into the cylinder, and is ignited. You
may assume that the fuel burns instantaneously. Gas starts ex-
panding and pushes the piston to the leftmost position.
IV. Gas disposal: valve is opened, piston moves to right and
the gas is pushed out from the cylinder. The process starts
periodically repeating.
a) Depict the entire cycle in p − V -diagram.
b) Find the efficiency η.
Data. Adiabatic index for air γ = 1.4. The compression factor
is defined as the ratio of the largest and smallest volumes of
the cylinder, k = Vl/Vs; here k = 10. Neglect friction when
the piston moves. The number of fuel molecules is much smal-
ler than the number of air molecules inside the cylinder. The
air is to be considered as an ideal gas, one mole of which has
internal energy equal to U = cV T , where cV is its molar heat
capacitance by constant volume.
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pr 46. [EstPhO-2002] Archive storage rooms need to main-
tain constant temperature T0 = 15 ◦C throughout the year.
Find the annual electricity expenses needed to maintain that
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temperature if the heat exchange rate throughout the walls
of the building P = C∆T , where C = 200 W/K and ∆T is
the temperature difference inside the storage room and outside
the building. In order to regulate the temperature inside the
room, heat pump is used; the heat pump can also operate as
an air conditioner. If the device is used as an air conditioner
(for cooling the room), the efficiency ηc = 10 (usually referred
to as coefficient of performance, COP; this is the ratio of the
cooling power to the consumed electrical power); if used as an
heat pump (for heating), the efficiency ηh = 6 (COP; the heat-
ing power and electrical energy consumption rate ratio). The
attached N − T -graph depicts how many hours in year (N)
the outside air temperature was higher than T . The electrical
energy cost is c = 0.1 EUR/kWh.

pr 47. [EstPhO-2001] Using the assumptions and numer-
ical data of problem 3, and the density of tungsten at room
temperature ρ = 19 250 kg/m3, answer the following questions.
a) A smaller-than-nominal direct voltage U0 = 3 V is applied
to the leads of the halogen bulb. How long does it take for the
tungsten filament to reach temperature T1 = 40 ◦C starting
from the room temperature Tr = 20 ◦C?

b) Accidentally, a too large DC voltage U1 = 120 V is applied
to the leads of the lamp. How long does it take to reach the
melting temperature T2 = 3410 ◦C of the tungsten? Heat losses
can be neglected, as well as the temperature dependence of the
tungsten’s density and specific heat; use the graph depicting
the resistivity of tungsten as a function of temperature.

pr 48. [EstFin-2005] a) Consider a simplified model of the
air ventilation system of a house using a passive heat exchanger.
The exchanger consists of a metal plate of length x and width
y and thickness d dividing the air channel into two halves, one
for incoming cold air, and another for outgoing warm air. Both
channels have constant thickness h, air flow velocity is v see
Figure. Thermal conductance of the metal is σ (the heat flux
through a unit area of the plate per unit time, assuming that
the temperature drops by one degree per unit thickness of the
plate). Specific heat capacity of the air by constant pressure is
cp, air density is ρ (neglect its temperature dependence). You
may assume that the air is turbulently mixed in the channel,
so that the incoming and outgoing air temperatures Tin and
Tout depend only on the coordinate x (the x-axes is taken par-
allel to the flow velocity), i.e. Tin ≡ Tin(x) and Tout ≡ Tout(x).
Assuming that the inside and outside temperatures are T0 and

T1, respectively, what is the temperature T2 of the incoming
air at the entrance to the room?

metal plate cold air

warm air

b) Attached is a plot of the heat exchange rate P of the wire of
an electric heater as a function of temperature (assuming the
room temperature is T0 = 20 ◦C). The operating temperature
of the wire is T1 = 800◦C. The heater is switched off; find the
time after which the temperature of the wire will drop down to
T2 = 100◦C. The heat capacitance of the wire is C = 10 J/K.

P(W )

T(oC)200 400 600

100

200

300

pr 49. [EstFin-2004] Consider a passive cooling system de-
picted in figure. Cold air (at normal conditions: p0 = 105 Pa,
T0 = 293 K) flows over the heat sink of a chip of power dissip-
ation P = 100 W, into a vertical pipe of length L = 1 m and
cross-sectional area S = 25 cm2. After passing the pipe, air
enters the ambient room. Assume that the air inside the pipe
becomes well mixed; neglect the viscous and turbulent friction
of air inside the pipe and heat sink. Air can be considered as
an ideal gas with adiabatic exponent γ = 1.4 and molar mass
µ = 29 g/mol; gas constant R = 8.31 J/(K · mol)

a) Express heat capacitance at constant pressure cp via quant-
ities γ and R.
b) Find a relationship between the outflowing air density ρ and
temperature T (the relationship may contain also the paramet-
ers defined above).
c) Find a relationship between the air flow velocity in the pipe
v and outflowing air density ρ (the relationship may contain
also the parameters defined above).
d) Express the power dissipation P in terms of the air flow ve-
locity v, the outflowing air temperature T , and density ρ (the
relationship may contain also the parameters defined above).
e) What is the temperature T of the outflowing air? In your
calculations, you may use approximation T − T0 ≪ T0.
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pr 50. [EstPhO-2000] Glycerol is stored in a tightly closed
vessel of volume V = 1 l; inside glycerol, there is an air bubble
of volume w = 1 ml. At temperature T0 = 20 ◦C, the pressure
inside the vessel is p0 = 1 atm. The linear expansion coeffi-
cient of the vessel material is very small and the vessel walls
are thick. The volumetric expansion coefficient of the glycerol
α = 5.1 × 10−4 K−1. Air can be treated as an ideal gas.
a) Find the dependence of the pressure inside the bottle as a
function of temperature.
b) At which temperature and for which physical reason the
obtained equality will no longer be valid?

pr 51. [EstPhO-2003] Juice bottle is being pasteurised at
temperature t1 = 80 ◦C so that a light cap lies freely on the
bottle rim (excess gas can exit freely from the bottle, but out-
side air cannot come in). Then the cap is tightly fixed so that
air can no longer enter and exit from the bottle; the cap is so
rigid that its deformation due to excess pressure can be neg-
lected. The bottle is cooled down to the room temperature
t2 = 20 ◦C. What is the pressure under the bottle cap? As-
sume that the physical properties of the juice are identical to
that of water; the pressure of saturated water vapours is de-
picted as a function of temperature in a graph. Atmospheric
pressure P0 = 1.01 × 105 Pa.
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pr 52. [IPhO-1987] Moist air is streaming adiabatically
across a mountain range as indicated in the figure. Equal atmo-
spheric pressures of p0 = 100 kPa are measured at meteorolo-
gical stations M0 and M3 and a pressure of p2 = 70 kPa at sta-
tion M2. The temperature of the air at M0 is t0 = +20◦C. As
the air is ascending, cloud formation sets in at p1 = 84,5 KPa.
Consider a quantity of moist air ascending the mountain with a
mass of 2000 kg over each square meter. This moist air reaches
the mountain ridge (station M2) after 1500 seconds. During
that rise an amount of m = 2,45 g of water per kilogram of air
is precipitated as rain.

M

M

M

M

a) Determine temperature T1 at M1 where the cloud ceiling
forms

b) What is the height h1 (at M1) above station M0 of the cloud
ceiling assuming a linear decrease of atmospheric density?
c) What temperature T2 is measured at the ridge of the moun-
tain range?
d) Determine the height of the water column (precipitation
level) precipitated by the air stream in 3 hours, assuming a
homogeneous rainfall between points M1 and M2.
e) What temperature T3 is measured in the back of the moun-
tain range at station M3? Discuss the state of the atmosphere
at station M3 in comparison with that at station M0.
Hints and Data. The atmosphere is to be dealt with as an
ideal gas. Influences of the water vapour on the specific heat
capacity and the atmospheric density are to be neglected; the
same applies to the temperature dependence of the specific lat-
ent heat of vaporisation. The temperatures are to be determ-
ined to an accuracy of 1 K, the height of the cloud ceiling to an
accuracy of 10 m, and the precipitation level to an accuracy of
1 mm. Specific heat capacity of the atmosphere in the pertain-
ing temperature range: cp = 1005 J/(kg · K). Air density for at
the station M0 (i.e. for p0 and T0) is ρ0 = 1,189 Kg/m3. Specific
latent heat of vaporisation of the water within the volume of the
cloud: qV = 2500 kJ/kg; free fall acceleration g = 9,81 m/s2.
Adiabatic index for both wet and dry air γ = cp/cV = 1,4.

pr 53. In a science fiction novel, the following situation is
described. There is an emergency on a spaceship, and an as-
tronaut got by an accident to a distance of L = 100 m from the
spaceship. He has a cup with solidified water (ice) and uses the
sublimation (evaporation) of ice to return to the spaceship. Es-
timate, how realistic is this method. You may assume that the
sublimation takes place at a constant temperature T = 272 K,
by which the pressure of saturated vapours is P = 550 Pa. Es-
timate the dimensions of the cup and the mass of the water by
yourself.

pr 54. [EstFin-2009] Lord Rayleigh had in 1891 a lecture
about taking photos of physical processes. Among others, he
showed a photo of a soap film, which is falling apart (see figure).
Instead of a flash, he used an electric spark (well, nowadays the
flashes are also based on electric sparks). Estimate, how pre-
cise must have been the timing, i.e. estimate the time for a
soap film to fall apart. Let the thickness of the soap film be
h = 1µm, the ring diameter D = 10 cm and the surface tension
σ = 0.025 N/m.
Hint: you may use a model, according
to which the already broken part of the
soap film gathers into a single front and
moves all together towards the still pre-
served part of the film.

pr 55. Consider two soap bubbles which have “stuck” to-
gether. Now three soap film parts can be distinguished: one
separates the interior of the first bubble from the outside air —
this has curvature radius R; second separates the interior of the
second bubble from the outside air — this has curvature radius
2R; third separates the interiors of the two bubbles. Find the
surface area of the third soap film part.
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pr 56. [EstFin-2013] Sun-rays are focused with a lens of
diameter d = 10 cm and focal length of f = 7 cm to the
black side of a thin plate. One side of the plate is perfectly
black, and the other side is perfectly white. Angular dia-
meter of the Sun is α = 32′ and its intensity on the surface
of the Earth is I = 1000 W/m2, Stefan-Boltzmann constant
σ = 5.670 × 10−8 W/(m2K4). (i) Find the temperature of the
heated point of the plate. (ii) Using thermodynamic argu-
ments, estimate the maximal diameter-to-focal-length ratio of
a lens.

pr 57. [EstFin-2008] There is wet wood burning in a fire-
place on the ground. Seven meters above ground, the smoke
is at a temperature of t7 = 40 ◦C. Disregard the exchange
of heat with the surrounding air and assume that the atmo-
spheric pressure at the ground is constant in time and equal to
p0 = 1000 hPa; the air temperature t0 = 20 ◦C is independent
of height 8. Assume that the smoke represents an ideal gas
of a molar mass µ = 29 g/mol (i.e. equal to the molar mass
of the air), and of a molar specific heat at constant volume
CV = 2.5R; universal gas constant R = 8.31 J/kg · K. How
high will the smoke column rise?

pr 58. [IPhO-2014] A bubble of radius r = 5.00 cm is a
soap film of thickness h = 10.0µm containing a diatomic ideal
gas. It is placed in vacuum. The soap film has surface tension
σ = 4.00 × 10−2 N/m and density ρ = 1.10 g/cm3.
a) Find a formula for the molar heat capacity of the gas in the
bubble, for a process in which the gas is heated so slowly that
the bubble remains in mechanical equilibrium. Evaluate your
answer.
b) Find a formula for the frequency ω of small radial oscilla-
tions of the bubble and evaluate it under the assumption that
the heat capacity of the soap film is much greater than the heat
capacity of the gas in the bubble. Assume that the interior of
the bubble reaches thermal equilibrium much faster than the
period of oscillations; also, the total mass of the gas is much
smaller than the mass of the soap film. Neglect the possibility
of soap film’s evaporation.

pr 59. [APhO-2014] Let us consider the so-called Hadley
circulation: this is a large-scale circulation of air masses, which
rise at a certain geographical latitude (close to the equator)
from lower atmospheric layers (from near-surface regions) to
higher altitudes. During this rising phase the air cools adiabat-
ically which leads to a condensation of air vapours, cloud form-
ation and rain. The cool air moves at higher atmospheric layers
in north-south direction (while radiating heat slowly away into
space) until it reaches higher geographical latitudes, where it
descends to Earth’s surface while heating adiabatically. Fi-
nally, the warm air moves along Earth’s surface to its starting
point while being heated by surface (which is hot due to sun-
light).

Let us model the Hadley circu-
lation simplifyingly as a heat
engine shown in the schematic
below. For simplicity, let us as-
sume that when air moves from
A to B, it expands adiabatic-
ally, and when it moves from
D to E, it contracts adiabat-
ically. Further, let us assume
that the processes with air when it moves from B to D, and
from E to A are isothermal; on segment E-A it receives heat
from the surface, on segment B-C — receives heat from vapour
condensation, and on segment C-D — gives heat away due to
radiation.
a) Given that atmospheric pressure at a vertical level owes its
origin to the weight of the air above that level, and knowing
that pA = 1000 hPa and pD = 225 hPa, order the pressures pA,
pB , pC , pD, pE , respectively at the points A, B, C, D, E by a
series of inequalities.
b) Let the temperature next to the surface and at the top of the
atmosphere be TH and TC respectively. Given that the pres-
sure difference between points A and E is 20 hPa, calculate TC

for TH = 300 K. Note that the ratio of molar gas constant
(R) to molar heat capacity at constant pressure (cp) for air is
κ = 2/7.
c) Calculate the pressure pB .
d) For an air mass moving once around the winter Hadley cir-
culation, using the molar gas constant, R, and the quantities
defined above, obtain expressions for the net work done per
unit mole Wnet ignoring surface friction and for the heat loss
per unit mole Qloss at the top of the atmosphere.
e) What is the value of the ideal thermodynamic efficiency εi

for the winter Hadley circulation?
f) Prove that the actual thermodynamic efficiency ε for the
winter Hadley circulation is always smaller than εi.
g) Which of the following statements best explains why ε is less
than the ideal value? Tick the correct answer(s). There can be
more than one correct answer.
(I) We have ignored work done against surface friction.
(II) Condensation occurs at a temperature lower than the tem-
perature of the heat source.
(III) There is irreversible evaporation of water at the surface.
(IV) The ideal efficiency is applicable only when there is no
phase change of water

pr 60. [EstFin-2008] A microcalorimeter is a thin circu-
lar silicon nitride membrane, thermally isolated from the sur-
roundings, except that it is thermally connected to the wafer
by four thin and narrow thermal bridges (see Figure). The mi-
crocalorimeter is equipped with a small heater in the middle
of the membrane and a similar structure on the edge of the
membrane working as a thermometer. This micro calorimeter
is used to study the thermal properties of nanoscale Ti disks
(light tiny dots in Fig). The thermal power of the heater de-
pends sinusoidally on time, P = P0 cos(ωt) (negative power

8Actually, during day time, this is not the case: air temperature decreases with height. However, during evening and night, due to heat radiation,
the lower layers of air cool more rapidly than upper layers, and it may easily happen that the temperature is roughly independent of height.
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implies a withdrawal of heat). The circular frequency ω is
sufficiently low, so that for any moment of time t, the temper-
ature of the microcalorimeter T (t) can be considered constant
across its entire surface, and the temperature profile along the
thermal bridges can be considered linear. The wafer, to which
the bridges are connected, is large and thick enough, so that its
temperature T0 can be considered to be constant all the time.
Each of the four bridges have length L and cross sectional area
of S; the thermal conductance of them is κ. Thermal conduct-
ance is defined as the heat flux (measured in Watts) per surface
area, assuming that the temperature drop is 1 ◦C per 1 m. The
heat capacity of the microcalorimeter (with Ti-disks) is C.

a) Find the thermal resistance R between the microcalorimeter
and the wafer (i.e. the ratio of the temperature difference and
heat flux).
For questions (ii) and (iii), use quantity R, without substitut-
ing it via the answer of question (a).
b) Write down the heat balance equation for the microcalor-
imeter and find the temperature of the microcalorimeter as
a function of time T (t) [you may seek it in the form T =
T0 + ∆T sin(ωt + ϕ)].
c) In order to study the thermal properties of the Ti-nanodisks,
the amplitude of the sinusoidal oscillations of T (t) should
change by as large as possible value, as a response to a small
change of C (which is caused by the Ti-disks). Find the optimal
circular frequency ω0.
d) We have assumed that the temperature profile along the
bridges is linear, i.e. their heat capacity can be neglected. For
high frequencies ω & ωc, this is not the case. Estimate the crit-
ical frequency ωc in terms of κ, l, specific heat c and density ρ

of the bridge material.

pr 61. [EstFin-2010] In order to study the thermal prop-
erties of a thermos bottle, let us model it as two concentric
spherical vessels, with radii R1 = 7 cm and R2 = 10 cm. The
gap between the walls of the vessels contains vacuum (hence,
the heat conductivity can be neglected).
a) Find the radiative heat flux (i.e. transmitted heat per unit
time) between the walls of the bottle, assuming that the am-
bient temperature is T2 = 293 K and the inner sphere is filled
with liquid nitrogen at the boiling temperature T1 = 77 K.
The emissivities of all the surfaces are equal to that of stain-
less steel: ε = 0.1. Remark: The emitted heat flux per
unit area is given Stefan-Boltzmann’s law P = εσT 4, where
σ = 5.67 × 10−8 W/m2K4 (assuming that ε is independent of
the wavelength.

b) Estimate, how long time does it take for a full evaporiza-
tion of the liquid nitrogen (the vapour escapes through an over
pressure valve). For the liquid nitrogen, density ρ = 810 g/l
and latent heat of vaporization λ = 199 kJ/kg). NB! If you
were unable to find P (for question a), express the evaporiza-
tion time symbolically (i.e. using the symbol P ).

pr 62. [EstFin-2011] Let us study how a vacuum can be cre-
ated inside a bulb by pumping. Let the volume of the bulb be
V , and the pump consist in a piston moving inside a cylinder
of volume αV , where α ≪ 1. The pumping cycles starts with
piston being pulled up; when the pressure inside the cylinder
becomes smaller than inside the bulb, a valve VA (connecting
the cylinder and the bulb) opens and remains open as long as
the piston moves up. When piston is released, it starts moving
down, at that moment, the valve VA closes. As long as the
valve VA is open, the pressures of the bulb and the cylinder
can be considered as equal to each other. When the piston
moves down, the pressure in the cylinder increases adiabatic-
ally until becoming equal to the outside pressure p0 = 105 Pa;
at that moment, another valve VB opens letting the gas out
of the cylinder. When the piston reaches the bottommost po-
sition, there is no residual air left inside the cylinder. Now,
the piston is ready for being lift up: the valve VB closes and
VA opens, marking the beginning of the next pumping cycle.
The air inside the bulb can be considered isothermal, with the
temperature being equal to the surrounding temperature T0.
The adiabatic exponent of air γ = cp/cV = 1.4.
a) How many pumping cycles N needs to be done to reduce
the pressure inside bulb from p = p0 down to p = βp0, where
β ≪ 1?
b) What is the net mechanical work done during such a pump-
ing (covering all the N cycles)?
c) What is the temperature of the air released from the cylinder
to the surroundings at the end of the pumping process (when
the pressure inside the bulb has become equal to βp0)?
d) According to the above described pumping scheme, there is
a considerable loss of mechanical work during the period when
the piston is released and moves down. Such a loss can be
avoided if there is another pump, which moves in an opposite
phase: the force due to outside air pressure pushing the piston
down can be transmitted to the other pump for lifting the pis-
ton up. What is the net mechanical work done when such a
pumping scheme is used?

pr 63. [EstFin-2011] Consider a heat sink in the form of a
copper plate of a constant thickness (much smaller than the
diameter d of the plate). An electronic component is fixed to
the plate, and a temperature sensor is fixed to the plate at
some distance from that component. You may assume that
the heat flux (i.e. power per unit area) from the plate to the
surrounding air is proportional to the difference of the plate
temperature at the given point (the coefficient of proportion-
ality is constant over the entire plate, including the site of the
electronic component).
a) The electronic component has been dissipating energy with
a constant power of P = 35 W for a long time, and the aver-
age plate temperature has stabilized at the value T0 = 49 ◦C.
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Now, the component is switched off, and the average plate tem-
perature starts dropping; it takes τ = 10 s to reach the value
T1 = 48 ◦C. Determine the heat capacity C (units J/◦C) of
the plate. The capacities of the electronic component and the
temperature sensor are negligible.
b) Now, the electronic component has been switched off for
a long time; at the moment t = 0, a certain amount of heat
Q is dissipated at it during a very short time. In the Figure
and Table, the temperature is given as a function of time, as
recorded by the sensor. Determine the dissipated heat amount
Q.

t (s) 0 20 30 100 200 300
T (◦C) 20.0 20.0 20.4 32.9 41.6 42.2
t (s) 400 600 800 1000 1200 1400
T (◦C) 39.9 33.4 27.9 24.4 22.3 21.2

pr 64. [Seagull-2016] What would be the temperature in the
middle of a celestial body of the size of our Moon in Kelvins
if the following assumptions can be made. The celestial body
consists of an homogeneous solid material of average density
ρ = 3 g

cm3 and heat conductivity k = 3 W/m · K, and has the
shape of a sphere of radius R = 2000 km. It radiates heat
as a perfectly black body, i.e. the heat flux density at its sur-
face w = σT 4, where σ = 5.67 × 10−8 J/s · m2 · K4 and T is
its surface temperature. There is no external heat flux fall-
ing onto the surface of this celestial body. Due to nuclear
decay of various isotopes (mostly uranium-238 and its decay
products), the power density released in the crust material
P = 7 × 10−12 W/kg.

pr 65. [EstFin-2011] Calculate the thermal efficiency of
an ideal-gas cycle consisting of two isotherms at temperatures
T1 and T2, and two isochores joining them. (An isochore is
a constant-volume process.) The engine is constructed so that
the heat released during the cooling isochore is used for feeding
the heating isochore

pr 66. [EstFin-2014] Consider a cube of side length a =
1 cm, made of aluminium (density ρ = 2.7 g/cm3, molar mass
MA = 23 g/mol). The heat capacitance of one mole of alu-
minium is given as a function of temperature in the graph be-
low. The speed of light c = 3 × 108 m/s, universal gas constant
R = 8.31 J/(kg · K). The initial temperature of the cube is
T0 = 300 K.
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a) What is the total heat energy of such a cube at the initial
temperature T0?

b) Now, the cube has 5 faces painted in white (reflects all rel-
evant wavelengths) and one face painted in black (absorbs all
these waves). The cube is surrounded by vacuum at a very
low temperature (near absolute zero); there is no gravity field.
Initially, the cube is at rest; as it cools down due to heat ra-
diation, it starts slowly moving. Estimate its terminal speed
v1.

c) At very low temperatures, the heat capacitance of aluminium
is proportional to T 3, where T is its temperature. Which func-
tional dependence f(t) describes the temperature as a function
of time [T = A · f(Bt), where A and B are constants] for such
very low temperatures under the assumptions of the previous
question?

d) Now, the cube has 5 faces covered with a thermal insulation
layer (you may neglect heat transfer through these faces). One
face is left uncovered. The cube is surrounded by hydrogen at-
mosphere at a very low temperature (molar mass of hydrogen
molecules MH = 2 g/mol). The cube starts cooling down due
to heat transfer to the surrounding gas; you may neglect the
heat radiation. Initially, the cube is at rest; as it cools down,
it starts slowly moving. Estimate the order of magnitude of its
terminal speed v2. Assume that the surrounding gas is sparse,
so that the mean free path of the molecules is much larger than
a. Assume that v2 ≪ cs where cs is the speed sound in the
atmosphere surrounding the cube.

pr 67. [PhysCup] As compared to ordinary light bulbs, light
emitting diodes (LED) provide very high lighting efficiency.
The reason is that the spectral energy distribution of ordinary
lamps is close to black body radiation, in which case one can
say that the photons are in thermal equilibrium with the black
body. Then, the total energy radiated by a black body per
unit area, unit time, and unit frequency interval is given by
Planck’s law

I = 2πh

c2
ν3

ehν/kT − 1
,

where ν is the frequency, h = 6.626 × 10−34 J · s — the Planck
constant, c = 2.997 × 108 m/s — the speed of light, k =
1.38 × 10−23 J · K−1 — the Boltzmann constant, and T — the
temperature; note that∫ ∞

0
Idν = σT 4,

where σ = 5.678 × 10−8 W · m−2 · K−4 is the Stefan-Boltzmann
constant. With a black body radiation, a lot of energy is wasted
by radiating non-visible light. Meanwhile, LED-s can be con-
structed so that they radiate almost only visible light.

9P. Santhanam et al, Thermoelectrically Pumped Light-Emitting Diodes Operating above Unity Efficiency, Phys. Rev. Lett. 108, 097403 (2012)

— page 30 —



4. ENTROPY AND CARNOT CYCLE

In recent experiments 9, it has been reported that such LED-s
have been constructed which have efficiency higher that 100%.
Here the efficiency is defined as the ratio of the radiated light
energy to the consumed electrical energy.

Based on reasonable approximations, find what is the theoret-
ically highest possible efficiency of a LED assuming that:
(a) the LED has a heat sink which is kept at the room tem-
perature T0 = 293 K (via a fast enough heat exchange with the
surrounding medium);
(b) the LED emits light at wavelengths smaller than λ0 =
700 nm
(b) the surface area of the light-emitting part of the LED is
S = 1 mm2;
(c) the light emission power of the LED is P = 1 µW.

pr 68. [EstOpen-2010] A liquid rocket engine is schematic-
ally shown in the figure below. Burning products are formed
inside the combustion chamber at a high pressure and tem-
perature, and expand adiabatically while leaving the chamber
through the nozzle. If the nozzle is correctly constructed (the
neck diameter needs to correspond to the burning rate), ex-
haust gases continue adiabatic expansion after passing through
the throat, up to the exit from the nozzle. As a result, a major
part of the heat energy is converted into kinetic energy of the
exhaust gases at the exit of the nozzle. The temperature of the
exhaust gases inside the combustion chamber is T0; at the exit,
the cross-sectional area of the nozzle is S, temperature of the
exhaust gases is T1, and pressure is p1. Find the thrust force
F assuming that T0 ≫ T1, the effect of atmospheric pressure
on the thrust can be neglected, and the kinetic energy of the
gases inside the combustion chamber is negligible (as compared
to the thermal energy). The heat capacitance of one mole of
the exhaust gases by constant volume is cV = 5

2 R, where R is
the universal gas constant.

pr 69. During a day time, air masses in atmosphere are usu-
ally in a turbulent (random) motion, up and down, which leads
to what is referred to as adiabatic atmosphere: when a parcel
of air (a fictitious volume) is raising up, it is expanding and
cooling adiabatically; in adiabatic atmosphere, the surround-
ing air is in mechanical and thermodynamical equilibrium with
the raising air parcel (has exactly the same pressure and tem-
perature). Find, how depends air temperature T on height h

in adiabatic atmosphere. At the ground level (h = 0), T = T0;
express your answer in terms of the adiabatic index of air γ,
molar mass µ, universal gas constant R, and free fall accelera-
tion g.

pr 70. [IPhO-2006] At the bottom of a 1000 m high sky-
scraper, the outside temperature is Tbot = 30 ◦C. The ob-

jective is to estimate the outside temperature Ttop at the top.
Consider a thin slab of air (ideal nitrogen gas with adiabatic
coefficient γ = 7/5) rising slowly to height z where the pres-
sure is lower, and assume that this slab expands adiabatically
so that its temperature drops to the temperature of the sur-
rounding air.
a) How is the fractional change in temperature dT/T related
to dp/p, the fractional change in pressure?
b) Express the pressure difference dp in terms of dz, the change
in height.
c) What is the resulting temperature at the top of the building?
Data: Boltzmann constant: kB = 1.38 × 1023 J · K−1, Mass of
a nitrogen molecule: m = 4.65 × 10−26 kg, Gravitational accel-
eration: g = 9.80 m · s−2.

pr 71. [IPhO-2006] An egg, taken directly from the fridge
at temperatureT0 = 4◦C, is dropped into a pot with water that
is kept boiling at temperature T1.
a) How large is the amount of energy U that is needed to get
the egg coagulated?
b) How large is the heat flow J that is flowing into the egg?
c) How large is the heat power P transferred to the egg?
d) For how long do you need to cook the egg so that it is
hard-boiled?
Hint: You may use the simplified form of Fouriers Law J =
κ∆T/∆r, where ∆T is the temperature difference associated
with ∆r, the typical length scale of the problem. The heat flow
J is in units of W · m−2.
Data: Mass density of the egg: µ = 10 × 103 kg · m−3, specific
heat capacity of the egg: C = 4.2 J · K−1g−1, radius of the egg:
R = 2.5 cm, coagulation temperature of albumen (egg protein):
Tc = 65 ◦C, heat transport coefficient: κ = 0.64 W · K−1m−1

(assumed to be the same for liquid and solid albumen)

pr 72. [EstPhO-2000] A tightly closed vessel with thick and
solid walls is filled with glycerin. Inside the glycerin, there is a
bubble of air of volume w = 1 ml. At temperature T0 = 20 ◦C,
the pressure in the vessel is p0 = 1 atm. The total volume of
the vessel V = 1 l linear thermal expansion coefficient of the
vessel is negligibly small. The volumetric thermal expansion
coefficient of glycerin α = 5.1 × 10−4 K−1. Express the pres-
sure inside the vessel as a function of temperature; at which
temperatures and why your expression becomes invalid?

pr 73. [WoPhO-2012] Tornado is a violent vortex (rotating
column) of air connecting the base of cumulonimbus10 cloud
and the ground. A distinct feature of the tornado is its funnel-
like core or condensation funnel (Region II) which is made of
small water droplets that condense as they are sucked into the
core as shown in Fig. 1(b). This region is defined by the core
radius rC(z) which generally increases with altitude forming
the signature funnel-shape of the tornado. Region I is the re-
gion outside tornado core. In our simplified model, region I and
II have different velocity distribution profile as we will explore
later.

10Cumulonimbus cloud is a towering vertical cloud that is very tall, dense, and involved in thunderstorms and other rainy weather.
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In what follows, you may use the following data:
gravitational acceleration g = 9.8 m/s2,
air density ρair = 1.2 kg/m3,
molar mass of dry air Mair = 0.029 kg/mol,
universal gas constant R = 8.314 J/(mol · K),
pressure at point A (see figure) P0 = 1.0 × 105 Pa,
temperature at point A (see figure) T0 = 15 ◦C,
heat capacity ratio of air Cp/Cv = 1.4.

A) The calm weather. We will investigate the atmospheric
pressure of the troposphere (the lowest part of the atmosphere)
where most of the weather phenomena including tornado oc-
curs. Let us start from a calm weather location at point A far
away from the tornado.
i) Assuming ideal gas law, constant gravity acceleration and a
constant temperature T0. Show that the atmospheric pressure
as a function of altitude z is P (z) = P0e−αz; express α in terms
of the constants listed above.
ii) For simplicity we neglect the dependence of air density, ρair
on z. Derive the pressure as a function of altitude, P (z).
iii) Using your result in (ii) calculate the pressure at point B

on the base of the cumulonimbus! (use h = 1 km)

B)The shape. Inside the tornado’s core the water vapour con-
denses into liquid droplets as the air spirals into the core form-
ing condensation funnel. The water vapour condenses when the
temperature drops below dew point. The temperature drop is
caused by a pressure drop so the points where the water va-
pour starts to condense lay on a surface of equal pressure, called
isobar boundary layer shown as red boundary in figure. This
is the boundary between region I and II. For now we only con-
sider region I. Consider a point G (see figure) very close to the
ground (z ≈ 0) located at radial distance r = rG from the axis
(point C). At that point, the wind speed vG can be treated
as the ground rotation speed of the tornado. We further make
the following assumptions: the tornado is stationary (only has
rotation and no translation); the radial velocity of the wind is
much smaller than the tangential speed v = v(r) which will be
assumed to be independent of altitude z (depends only on r);
turbulence very close to the ground can be ignored; air mass

density (ρair) can be assumed to be constant.
i) Show that in both region I and II,

dP

dr
= ρair

v2

r
.

ii) In region I, calculate the wind velocity v as a function of r,
in terms of vG and rG.
iii) Estimate the air speed vG.
iv) Derive the shape of the condensation funnel, i.e. find the
function rC(z), where rC denotes the radial distance of a point
C at the boundary layer (see figure). Sketch this tornado shape
in dimensionless quantities z/h vs. r/rG, where h is the height
defined in figure.
v) Most tornadoes look like funnel (the radius is larger at higher
altitude) while some are more uniform in diameter, like a pipe.
Which type has the higher ground rotation speed vG?

C) The core. Now we will consider both region I and II.
i) In region II (r < rC) the tornado core behaves as rigid body,
derive expression for the (tangential) speed v(r) in this region.
ii) Calculate the pressure at the center of the tornado (point
D, at the same altitude as point G).
iii) Estimate the temperature TD at the center of the tornado.
iv) Based on your finding in (iii) suggest, what could be a pos-
sible source of tornado’s tremendous energy.

D) Windows. The differential pressure near a tornado is
thought to cause poorly ventilated houses to “explode” even
though the tornado is only passing at a distance. Therefore
some people suggest that the windows have to be opened to let
the pressure in the house equilibrates with outside. Then, how-
ever, wind and debris and can freely enter the house. Consider
a house with all windows and openings closed with a at roof of
dimension (width × length × thickness) 15 m × 15 m × 0.1 m
and mass density ρroof = 800 kg/m3. The tornado is coming
fast and passing at a distance d = 2rG away from the house.
i) What is the lift-force-to-weight ratio for the roof?
ii) Shall you open or close the windows?

pr 74. [IPhO-2004] A rubber balloon filled with helium
gas goes up high into the sky where the pressure and tem-
perature decrease with height. In the following questions, as-
sume that the shape of the balloon remains spherical regard-
less of the payload, and neglect the payload volume. Also
assume that the temperature of the helium gas inside of the
balloon is always the same as that of the ambient air, and
treat all gases as ideal gases. The universal gas constant is
R = 8.31 J/(mol · K) and the molar masses of helium and air
are MH = 4.00 × 10−3 kg/mol and MA = 28.9 × 10−3 kg/mol,
respectively. The gravitational acceleration is g = 9.8 m/s2.

A-i) Let the pressure of the ambient air be P and the temper-
ature be T . The pressure inside of the balloon is higher than
that of outside due to the surface tension of the balloon. The
balloon contains n moles of helium gas and the pressure inside
is P + ∆P . Find the buoyant force FB acting on the balloon
as a function of P and ∆P .
ii) On a particular summer day in Korea, the air temperature
T at the height z from the sea level was found to be T (z) =
T0(1 − z/z0) in the range of 0 < z < 15 km with z0 = 49 km
and T0 = 303 K. The pressure and density at the sea level
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were P0 = 1 atm = 1.01 × 105 Pa and ρ0 = 1.16 kg/m3, re-
spectively. For this height range, the pressure takes the form
P (z) = P0(1 − z/z0)η. Express η in terms of z0, ρ0, P0, and
g, and find its numerical value to the two significant digits.
Treat the gravitational acceleration as a constant, independent
of height.

B) When a rubber balloon of spherical shape with un-stretched
radius 0r is inflated to a sphere of radius r0 (r ≥ r0), the balloon
surface contains extra elastic energy due to the stretching. In
a simplistic theory, the elastic energy at constant temperature
T can be expressed by

U = 4πr2
0κRT (2λ2 + λ−4 − 3,

whereλ ≡ r/r0 (≥ 1) is the size-inflation ratio and κ is a con-
stant in units of mol/m2.
i) Express ∆P in terms of parameters given in Eq. above, and
sketch ∆P as a function of λ = r/r0.
ii) The constant κ can be determined from the amount of
the gas needed to inflate the balloon. At T0 = 303 K and
P0 = 1 atm, an un-stretched balloon (λ = 1) contains n0 = 12.5
moles. It takes n = 3.6n0 = 45 moles in total to inflate the
balloon to λ = 1.5 at the same T0 and P0. Express the bal-
loon parameter a, defined as a = κ/κ0, in terms of n, n0, and
λ, where κ0 = r0P0/4RT0. Evaluate a to the two significant
digits.

C) A balloon is prepared as in (C-ii) at the sea level (inflated
to λ = 1.5 with n = 3,6 = 45 moles of helium gas at T0 = 303 K
and P0 = 1 atm). The total mass including gas, balloon itself,
and other payloads is MT = 1.12 kg. Now let the balloon rise
from the sea level.
i) Suppose that the balloon eventually stops at the height zf

where the buoyant force balances the total weight. Find zf and
the inflation ratio λf at that height. Give the answers in two
significant digits. Assume there are no drift effect and no gas
leakage during the upward flight.

pr 75. [IPhO-1992] This is a continuation of the prob-
lem 6; here we repeat the numerical data: the satellite is a
sphere of radius 1 m all points of which have the same tem-
perature. The satellite is near Earth, but is not shaded by
it; The surface temperature of the Sun T⊙ = 6000 K, and its
radius R⊙ = 6.96 × 108 m, The distance between the Earth
and the Sun L = 1.5 × 1011 m Stefan-Boltzmann constant
σ = 5.67 × 10−8 W · m−2 · K−4.

The blackbody radiation spectrum u(T, f) of a body at tem-
perature T obeys Planck’s radiation law

u(T, f)df = A
η3dη

eη − 1
where udf is the energy density of the electromagnetic radi-
ation in a frequency interval (f, f + df), and η = hf/kT ; con-
stant A can be expressed in terms of fundamental constants c

(the speed of light), k (Boltzmann’s constant), and h (Planck’s
constant): A = 8πk4

c3h3 . The blackbody spectrum, integrated over
all frequencies f and directions of emission, gives the total radi-
ated power per unit area P =

∫
u(T, f)df = σT 4 as expressed

in the Stefan-Boltzmann law given above. The figure shows
the normalized spectrum u(T, f)/AT 4 as a function of η.
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In many applications it is necessary to keep the satellite as
cool as possible. To cool the satellite, engineers use a reflect-
ive coating that reflects light above a cut-off frequency but
does not prevent heat radiation at lower frequency from escap-
ing. Assume that this (sharp) cut-off frequency corresponds to
hf/k = 1200 K.

Estimate now, what is the temperature of the satellite.

Hint: exact calculation is not required; because of that, in-
stead of precise and complicated integrations use approximate
calculations where possible. The value of the following integral
is known: ∫

0
∞ η3dη

eη − 1
= π4

15
.

Function η3/(eη − 1) maximum is near η ≈ 2.82. For small
values of η, approximation eη ≈ 1 + η can be used.

pr 76. [IPhO-200011] Ideal heat engine receives heat from
body A and gives it away to body B; both bodies have equal
heat capacitance C. Initial temperature of body A was T1 and
that of body B — T2. What is the maximal amount of work
which can be done by such a heat engine?

pr 77. Both solder joints of a thermocouple exchange heat
with the surrounding air at the rate Pe = κ∆T , where ∆T is
the difference between the temperature of a solder joint and
that of the air; the constant κ = 30 µW/K. The thermo-
couple sensitivity α is defined as the proportionality coefficient
between the thermocouple voltage and the temperature differ-
ence between the solder joints; in this case, α = 50 µV/K. The
thermocouple is fed with electric current I = 10 mA; find the
temperature of the colder solder joint if the air temperature
ta = 20◦C. Assume the energy transfer processes in the ther-
mocouple to be reversible.

pr 78. [EstPhO-2010] A disc of radius r = 1 cm is made
from dry ice (carbon dioxide in solid phase), and is pressed
against a plate which is made from a material of high heat
conductivity. The disc is pressed against the plate with force
F = 100 N, which is applied to the centre of the disc and is
almost (but not exactly) perpendicular to the plate. When the
plate temperature is low, the friction force between the disk
and plate keeps the disk at rest. However, when the plate tem-
perature rises above a critical value T0, the friction force disap-
pears almost completely, and the disc starts sliding along the
plate. Find T0. Air pressure is 101 kPa, triple point pressure

11Voted out by the International Board from the final text
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of carbon dioxide is pt = 5.1 × 105 kPa, saturation pressure of
carbon dioxide is plotted against temperature in figure below.

pr 79. [EstPhO-2009] Room is being heated by an electrical
radiator of power P = 1 kW. Outside temperature is t0 = 0 ◦C,
the room temperature has been stabilized at t1 = 20 ◦C. A
ventilation window is opened, supplying now a fresh air at the
volume rate v = 20 l/s. What will be the new room temperat-
ure? Air can be considered to be an ideal bimolecular gas.

pr 80. [IPhO-1997] On a given day, the air is dry and
has a density ρ = 1.250 kg/m3. The next day the humid-
ity has increased and the air is 2% by mass water vapour.
The pressure and temperature are the same as the day before.
What is the air density ρ′ now? Mean molar mass of dry air:
Ma = 28.8 g/mol; molar mass of water: Mw = 18 g/mol. As-
sume ideal-gas behaviour.

pr 81. [IPhO-2010] Chimney. Gaseous products of burn-
ing are released into the atmosphere of temperature Tair
through a high chimney of cross-section A and height h (see
figure a). The solid matter is burned in the furnace which is
at temperature Tsmoke. The volume of gases produced per unit
time in the furnace is B. Assume that:

⋄ the velocity of the gases in the furnace is negligibly small;

⋄ the average molar mass of the gases produced in the fur-
nace (smoke) equals to that of the air, and these gases can
be treated as ideal;

⋄ chimney is not very high (not higher than a hundred
meters);

⋄ smoke temperature can be assumed to be constant through-
out the entire length of the chimney.

a) What is the minimal height of the chimney needed for an
efficient withdrawal of the gases? Express answer in terms of
B, A, Tair, g = 9.81 m/s2, and ∆T ≡ Tsmoke − Tair. In all
subsequent tasks assume that this minimal height is the height
of the chimney.
b) Assume that two chimneys are built to serve exactly the
same purpose. Their cross sections are identical, but are de-
signed to work in different parts of the world: one in cold re-
gions, designed to work at an average atmospheric temperature
of −30 ◦C and the other in warm regions, designed to work at
an average atmospheric temperature of 30 ◦C. The temperat-
ure of the furnace is 400 ◦C. It was calculated that the height
of the chimney designed to work in cold regions is 100 m. How
high is the other chimney?
c) How does the velocity of the gases vary along the height of
the chimney? Make a sketch/graph assuming that the chimney
cross-section does not change along the height.
d) How does the pressure of the gases vary along the height of
the chimney?

Solar power plant. The chimney operation principle can be
used to construct a particular kind of solar power plant, solar
chimney. The idea is illustrated in figure b. The Sun heats the
air underneath the collector of area S with an open periphery
to allow the undisturbed inflow of air. As the heated air rises
through the chimney (red arrows), new cold air enters the col-
lector from its surrounding (blue arrows) enabling a continuous
flow of air through the power plant. The flow of air through
the chimney powers a turbine, resulting in the production of
electrical energy. The energy of solar radiation per unit time
per unit of horizontal area of the collector is G. Assume that
all that energy can be used to heat the air in the collector (the
mass heat capacity of the air is c, and one can neglect its de-
pendence on the air temperature). We define the efficiency of
the solar chimney as the ratio of the kinetic energy of the gas
flow and the solar energy absorbed in heating of the air prior
to its entry into the chimney.

e) What is the efficiency of the solar chimney power plant?
f) Make a graph showing how the efficiency of the chimney
changes with its height.

The prototype chimney built in Manzanares, Spain, had a
height of 195 m, and a radius 5 m. The collector is circular
with diameter of 244 m. The specific heat of the air under
typical operational conditions of the prototype solar chimney
is 1012 J/kg · K, the density of the hot air is about 0.9 kg/m3,
and the typical temperature of the atmosphere Tair = 295 K.
In Manzanares, the solar power per unit of horizontal surface
is typically 150 W/m2 during a sunny day.

g) What is the efficiency of the prototype power plant? Write
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down the numerical estimate.
h) How much power could be produced in the prototype power
plant?
i) How much energy could the power plant produce during a
typical sunny day?
j) How large is the rise in the air temperature as it enters the
chimney (warm air) from the surrounding (cold air)? Write the
general formula and evaluate it for the prototype chimney.
k) What is the mass flow rate of air through the system?

pr 82. Air (a mixture of oxygen and nitrogen) is stored
in a closed container equipped with a piston on one end at
a temperature of T = 77.4 K. The total amount of the gas
mixture occupies volume V0 = 1.00 l and its initial pressure is
p0 = 0.500 atm. With the help of the piston the gas mixture
is slowly compressed at constant temperature. Using plausible
assumptions, plot the pressure of the system as a function of
its volume until one tenth of the initial volume, if the ratio
of the number of moles of oxygen to the number of moles of
nitrogen is nO2 : nN2 = 21 : 79. Find the pressure and volume
at distinctive points of these isothermal curves.
You can use the following data: boiling point of liquid nitro-
gen at p1 = 1.00 atm: TN2 = 77.4 K; boiling point of liquid
oxygen at p1 = 1.00 atm: TO2 = 90.2 K; heat of vaporization
of oxygen: λO2 = 213 J/g (can be assumed to be constant for
TN2 ≤ T ≤ TO2). Neglect solubility of gaseous nitrogen in
liquid oxygen and vice versa.

pr 83. [WoPhOSR-2013] Thermal atmospheric escape is a
process in which small gas molecules reach speeds high enough
to escape the gravitational field of the Earth and reach outer
space. This process, known as Jeans escape, is believed to have
been responsible for the loss of water from Venus and Mars at-
mospheres, due to their lower escape velocity.

In what follows we assume that the distribution of the mo-
lecules of the atmosphere is given by the Maxwellian distribu-
tion. Thus at any temperature there can always be some mo-
lecules whose velocity is greater than the escape velocity. A mo-
lecule located in the lower part of the atmosphere would not be
able to escape to outer space even though its velocity is greater
than the limit velocity because it would soon collide with other
molecules, losing a big part of its energy. In order to escape,
these molecules need to be at a certain height: such that density
is so low that their probability of colliding is negligible. The re-
gion in the atmosphere where this condition is satisfied is called
exosphere and its lower boundary, which separates the dense
zone from the exosphere, is called exobase. You may assume
that the temperature near the exobase is roughly T = 1000 K;
universal gas constant R = 8.31 J/K · mol, free fall acceleration
g ≈ 9.5 m/s2, Avogadro number NA = 6.02 × 1023 1/mol.

a) Exobase height. Exobase is defined as the height above which
a radially outward moving particle will suffer less than one
backscattering collision on average. This means that the mean
free path has to be equal to the scale height H, which is defined
as such an height increment which leads to the atmosphere’s
density dropping e times. What is the average molar mass of
the Earth’s atmosphere at the exobase if H = 60 km?

b) The mean free path λ is the average distance covered by a
moving particle in a gas between two consecutive collisions and
this can be expressed by the following equality:

λ = (σn)−1,

where σ is the effective cross sectional area; σ = 0.2 nm2 for
the collisions of an hydrogen atom with the air molecules (with
molecular composition corresponding to exobase), and n is the
number of molecules per unit volume. We know that at an
altitude of h0 = 250 km, the pressure is p0 = 21µPa, and tem-
perature can be assumed to be constant between the exobase
and the reference height h0. Determine the mean free path for
the hydrogen atoms at the altitude h0.
c) Determine the exobase height hEB.
d) Atmospheric escape. Particles in the exobase with enough
outwards velocity will escape gravitational attraction. Assum-
ing a Maxwellian distribution, determine the probability that a
hydrogen atom has a velocity greater than the escape velocity
in the exobase.
e) Determine the hydrogen atoms flux (number of particle per
unit area and per unit time) that will escape the atmosphere,
knowing that the concentration of hydrogen atoms in the exo-
base is nH = 1 × 1011 m−3. You may assume that the hydrogen
is in a monoatomic state: when atmospheric molecules reach
a certain height lower than hEB, they split into atoms due to
solar radiation.
The following calculations will show hat thermal atmospheric
escape cannot be the single processes that explains why some
gases are present in the atmosphere and some others are not.
f) Knowing that the current average molar mass of the at-
mosphere is MAtm = 29 gr/mol, atmospheric pressure P0 =
1 × 105 Pa, and a fraction of χH = SI5.5e − 7 of the atmo-
spheric molecules are hydrogen molecules, estimate the number
NH of hydrogen atoms in the Earth’s atmosphere. Neglect the
presence of other hydrogen-containing molecules.
g) Let us make a robust model and assume that the concentra-
tion of hydrogen atoms in the exobase remains constant over
time. Find out how much time would it take for half of the
hydrogen atoms to escape the Earth’s atmosphere.
h) Now let us consider helium atoms; currently, their concen-
tration in the exobase is nHe = 2.5 × 1012 m−3, and they make
χHe = 5 × 10−6 of the atmospheric molecules. Let us use now
a more realistic model and assume that their concentration in
exobase is proportional to their concentration in the lower at-
mosphere.
i) Suggest a reason, why there is currently still some hydrogen
in the Earth’s atmosphere.

pr 84. [IPhO-2012] Let us model the formation of a star as
follows. A spherical cloud of sparse interstellar gas, initially at
rest, starts to collapse due to its own gravity. The initial radius
of the ball is r0 and the mass — m. The temperature of the
surroundings (much sparser than the gas) and the initial tem-
perature of the gas is uniformly T0. The gas may be assumed
to be ideal. The average molar mass of the gas is µ and its
adiabatic index is γ> 4

3 . Assume that G mµ
r0

≫ RT0, where R

is the gas constant and G — the gravity constant.
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a) During much of the collapse, the gas is so transparent that
any heat generated is immediately radiated away, i.e. the ball
stays in a thermodynamic equilibrium with its surroundings.
How many times (n) does the pressure increase while the ra-
dius is halved (r1 = 0.5r0)? Assume that the gas density stays
uniform.
b) At some radius r3 ≪ r0, the gas becomes dense enough to
be opaque to the heat radiation. Calculate the amount of heat
Q radiated away during the collapse from the radius r0 down
to r3. Assume that the gas density stays uniform12

c) For radii smaller than r3 you may neglect heat radiation.
Determine how the temperature T of the ball depends on its
radius r< r3.
d) Eventually we cannot neglect the effect of the pressure on
the dynamics of the gas and the collapse stops at r = r4 (with
r4 ≪ r3). However, the radiation can still be neglected and
the temperature is not yet high enough to ignite nuclear fu-
sion. The pressure of such a protostar is not uniform anymore,
but rough estimates with inaccurate numerical prefactors can
still be done. Estimate the final radius r4 and the respective
temperature T4.

pr 85. [APhO-2010]13 Sonoluminescence is a phenomenon
when strong sound waves put small bubbles inside a liquid (e.g.
water) into oscillatory motion; collapsing bubbles may heat the
entrapped gas so much that it will emit black body radiation
in visible range of wavelengths.
Throughout the problem, you may use the following model.
All times t, the bubble of radius R = R(t) is spherical and
its centre remains stationary in the water of density ρ0 =
1.0 × 103 kg/m3. The entrapped gas density ρ pressure P ,
and temperature T are always uniform inside the bubble as
its size diminishes. The liquid containing the bubble is as-
sumed to be isotropic, nonviscous, incompressible, and very
much larger in extent than the bubble. This means that we
can consider a fictitious water sphere of radius r ≫ R centred
around the bubble, and it will contract isotropically during
the contraction of the bubble. Heat exchange between the
gas and the surrounding water can be neglected. All effects
due to gravity and surface tension are neglected so that for
any t, the pressure inside the liquid is a function of r only:
P = P (r) for r > R. You may assume that the ambient pres-
sure P0 = P (r → ∞) = 1.01 × 105 Pa and the water temperat-
ure T0 = 300 K remain constant in time. Initially, the bubble
has radius Ri = 7R0, entrapped gas temperature T = T0,
and the surrounding water is motionless (i.e. dR

dt = 0); here
R0 = 5.00µm denotes the equilibrium radius of the bubble at
which the entrapped gas would have pressure P0 with T = T0.
The ratio of specific heat at constant pressure to that at con-
stant volume for the gas is γ = 5/3.
You may find it useful to know that the kinetic energy of the
surrounding water can be expressed in terms of the bubble’s

shrinking speed Ṙ as
Ek = 2πρ0R3Ṙ2.

a) Find the minimal radius Rm and maximal temperature Tm

of the bubble during the shrinking process.
b) Find the radius Rf of the bubble at the moment tf when
the bubble’s shrinking speed is maximal.
c) Most of the heat radiation is emitted between t = tf and
the moment tm when the minimal radius is reached. Estimate
the total duration of the radiation period.
d) For our model to remain valid, the heat loss Q due to ra-
diation must be much smaller than the internal energy of the
gas U ; let us require that Q ≤ 1

5 U . This means that if we
consider the entrapped gas as a sphere of radius R emitting
thermal radiation at emissivity a, the emissivity should be not
too large, a ≤ a0. Estimate the value of a0. Stefan-Boltzmann
constant σ = 5.678 × 10−8 W · m−2 · K−4.

pr 86. [APhO-2007] a) For a metal at thermal equilibrium,
the average energy of the conduction electrons makes a certain
contribution to the specific heat. According to the classical
physics the conduction electrons in metals constitute free elec-
tron gas trapped into the volume of the metal, and this gas
can be considered to be ideal. Find the average contribution
of each electron to the specific heat at constant volume (cV )
using the classical model.
b) Experimentally it has been shown that the specific heat
of the conduction electrons at constant volume in metals de-
pends on temperature, and the experimental value at room
temperature is about two orders of magnitude lower than its
classical counterpart. This is because the electrons obey the
quantum statistics rather than classical statistics. According
to the quantum theory, for a metallic material the density of
states of conduction electrons (the number of electronic states
per unit volume and per unit energy) is proportional to the
square root of electron energy E, then the number of states
dE within energy range for a metal of volume V can be writ-
ten as

dS = CV
√

EdE,

where C is the normalization constant, determined by the total
number of electrons of the system. The probability that the
state of energy E is occupied by electron is called the Fermi
distribution,

f(E) =
[
1 + exp

(
E − EF

kBT

)]−1

,

where kB = 1.381 × 10−23 J/K is the Boltzmann constant
and T is the absolute temperature, while EF is called Fermi
level. Usually at room temperature EF is about several eVs
for metallic materials (1 eV = 1.602 × 10−19 J) and therefore
kBT ≪ EF , in which case the Fermi distribution behaves as
shown in figure by red curve; you are allowed to approximate
it by a piece-wise linear function as depicted by blue line. Ad-
ditionally, you may neglect the dependence of Fermi level on

12This is valid as long as the gravitational energy dominates over the heat energy; in the original IPhO problem, the students needed to conclude
this by themselves, based on the dynamics of the gas cloud. It should be emphasized that such a model with a ballistic contraction stage deviates from
the standard model of protostar collapse in which case a gas cloud contracts due to radiative cooling while maintaining a quasi-equilibrium between
gravitational and pressure forces.

13Subtasks are cut from this version: you have a freedom of bypassing unnecessarily long mathematical calculations, but you need to demonstrate
more independence.
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temperature so that its value can be expressed in terms of the
total number of electrons by putting T = 0.

Express the average contribution of each electron to the spe-
cific heat at constant volume in terms of kB , EF , and T using
the quantum mechanical model. Give a qualitative explanation
for the deviation of the classical result from that of quantum
theory.

pr 87. [EstFin-2014]14 Let us consider a system of N

independent magnetic dipoles (spins) in a magnetic field B

and temperature T . Each spin has two states: spin up, and
spin down; the x-component of its dipole moment takes values
+µB ≡ e~

2m and −µB , respectively (x is a fixed axis).

a) What is the average value of the total energy Es of the spin
system as a function of B and T?

b) At the high temperature limit T ≫ αBm
k , what is the heat

capacity C of such a spin system?

pr 88. [EstOpen-2001] In order to store ν = 1 mol of ideal
gas at temperatur T0, a vessel made of steel (density ρ) is
used. Assume that the vessel’s walls are much thinner than the
vessel’s linear dimensions. According to the specification, the
mechanical stress in the walls (force per cross-sectional area)
must be everywhere (and for any direction) not larger than σ0.
What is the minimal mass of the vessel?

appendix 2: Finding mean kinetic energy from
Maxwell’s law Using substitution rule,∫ ∞

−∞ e−v2
x/v2

0 dvx = v0
∫ ∞

−∞ e−x2
dx.

Integration is essentially taking a sum, and we know that a

derivative of a sum is the sum of the derivatives. Hence, we

can take derivative from the both sides of this equality by v0;

left-hand-side yields
d

dv0

∫ ∞
−∞ e−v2

x/v2
0 dvx =

∫ ∞
−∞

d
dv0

e−v2
x/v2

0 dvx =

2v−3
0

∫ ∞
−∞ v2

xe−v2
x/v2

0 dvx,

and the right-hand-side yields
d

dv0
v0

∫ ∞
−∞ e−x2

dx =
∫ ∞

−∞ e−x2
dx.

This means that∫ ∞
−∞ v2

xe−v2
x/v2

0 dvx = 1
2 v3

0
∫ ∞

−∞ e−x2
dx.

Let us recall that f(vx) = e−v2
x/v2

0 /
∫ ∞

−∞ e−v2
x/v2

0 dvx. So we can

rewrite the expression for the root-mean-square velocity as

v̄2
x =

∫ ∞
−∞ v2

xe−v2
x/v2

0 dvx/
∫ ∞

−∞ e−v2
x/v2

0 dvx = 1
2 v2

0 .

Now, if we substitute back v0 =
√

2kBT/m (which corresponds

to the Maxwell's distribution), we obtain �nally

v̄2
x = kBT.

Hints
1. Express the constant heating power as P = dQ

dt and sub-
stitute dQ = Cp dT ; this allows you to find Cp as a func-
tion of time t; eliminate t using the provided dependence
T = T (t).

2. Some hints are already given after the problem; determ-
ine the net heating power at the average ice-heating-
temperature T2 ≈ 72 ◦C by comparing the tangents of the
T (t)-curve at T = T1 (c.f. the fact 6) and T = T2.

3. In average, electrical heating power equals to the cooling
power due to heat loss. The temperature oscillations are
small, hence (according to the idea 2) the cooling power
is almost constant; meanwhile, heating power oscillates
between a maximal value U2

1 /R and zero according to a
rectangular waveform. Here, the filament’s resistance R

can be expressed in terms of the filament’s length l and
cross-sectional area S (the value of the latter is not given
but we may hope that it will cancel out from the final an-
swer). Now we can express the thermal power drawn to
(from) the filament for both of the half-periods, and find
the temperature oscillations amplitude from the 1LTD.

4. Based on the fact 6, determine how many percents has in-
creased the thermal flux to the environment, and use this
to conclude, how many percents has increased the heat
production rate inside the house.

5. Follow the idea 3; the thermal resistance of the copper
plate is calculated in the same way as an electrical resist-
ance, RT = ρd/s.

22. Recall the idea 7: for dynamical processes, at first, a mech-
anical equilibrium is reached, which means the equality
of pressures; the other equilibria (e.g. thermal) will be
reached later (if ever within a reasonable time frame). In
particular, this means that if there is evaporation from
a water surface, and because of that, close to the water
surface, there is an higher concentration of water vapours,
then there must be a lower concentration of air molecules.
Indeed, while due to mechanical equilibrium, the total
pressure must remain equal to the atmospheric one, it also
equals to the sum of the vapour pressure and air pressure
13. Equivalently can be said that the air pressure equals
to the atmospheric pressure minus the vapour pressure.

If the saturation pressure ps(T ) becomes larger than the
atmospheric pressure patm then mechanical equilibrium is
no longer possible: as we learned earlier, very close to
the water surface, there is thermal quasi-equilibrium and
r = 100% and hence, in that layer, the vapour pressure
pv = ps(T ). The total pressure p in that layer is sum of
the vapour pressure and air pressure, hence p ≥ pv > patm.
Therefore, the vapours at the liquid surface will have larger
pressure than the atmospheric one, and the surrounding
air will be pushed away. Furthermore, if there were a small
bubble inside the liquid, it would also have higher pressure
of vapours inside than the pressure of the surroundings,
hence the bubble would start growing. It should be noted
that there are always either microscopic bubbles or other

14Text here is somewhat modified
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impurities inside the liquid which can serve as evaporation
centres.

25. Apply the same approach what was used to derive expres-
sion for the contact angle in terms of surface tensions, but
keep in mind that solid-liquid contact area is now smaller.

26. We have a meniscus as shown in figure, and separate a
fraction of water (depicted in grey) by a fictitious hori-
zontal plane passing the flat bottom of the meniscus, and
consider the force balance for the grey volume. At the
separation plane inside the liquid, the hydrostatic pressure
equals to the atmospheric one. Indeed, at the bottom of
the meniscus, through the flat water-air interface, there is
no capillary pressure, hence the hydrostatic gauge pressure
must be zero; inside the liquid, the hydrostatic pressure is
a function of height only, so the pressure remains equal
to the atmospheric one through the horizontal plane. So,
the volume depicted by grey in the figure is surrounded by
atmospheric pressure, i.e. there is no extra net force acting
on it due to pressure.

29. Notice that the volume of the water is fixed: if the layer
thickness were small, the gravitational energy would be
small, but the surface energy would be large (the opposite
also holds). Express the total energy for a fixed amount
of liquid.

30. Use the fact 17 and idea 19 to conclude that the shape of
the cross-section of the meniscus is identical to the cross-
section of the pool of liquid laying on the desk (cf. problem
29). Indeed, the surface curvature depends only on the
surface tension and gauge pressure, which can be matched
in the case of the meniscus and a pool as shown in figure.

32. Assuming the opposite, consider two heat engines with dif-
ferent efficiencies. The Carnot’ cycle is reversible, so we’ll
use the engine of higher efficiency as a heat pump (with
reversed Carnot’ cycle): it takes heat from a body of lower
temperature and gives it to a body of higher temperature;
a net mechanical work needs to be done to operate the
heat pump. Show that if the work done by the heat en-
gine of lower efficiency is used to propel the heat pump of
higher efficiency, the net effect of the entire system would
be in violation to 2LTD.

46. For the cooling period, during the number of days ∆N

for which the temperature stayed in the (small) range
between T and T + ∆T , the heat loss is Pc = (T −
T0)C∆N · 3600s /h. (T − T0)∆N is a horizontal narrow
rectangular region between the graph and the vertical line
T = T0, hence the total heat loss is related to the area
between the graph and the line T = T0.

Answers
1. 4PT 3/aT 4

0

2. m = Q/(L + c∆T ) ≈ 28 g (Q = 500 W · 37 s)

3. ∆T = U2
1 T

8ρeρcl2 ≈ 34 K

4. P ′ = P t2−t1
t1−t0

≈ 53 ◦C

5. ∆T = Pρd/s ≈ 11.7 K; Q = (T1 − T2)S/
∫

ρdx ≈ 18 mW

6. T = T⊙
√

R⊙/2L ≈ 290 K

7. N + 1

8. Tmin = (I/σ)1/4, Tmax = (
√

3I/σ)1/4

9. v ≈ m
M

√
RT
µ

10. N ≈ 162

11. Φ ≈ 3
2 nRT1

√
RT2
M

13. ∆m = ( 1
Tair

− 1
T1

) p0V0
R (µair − µH)

14. T = 1.4T0.

15. is reduced by 2 times; γ = 4
3

16. ∆T = ρ0T0g∆h
p0

γ−1
γ = 2.1 celsius

18. a) vP ≈ 23 m/s; b) where the distance between the lines
is the smallest; c) vcrit ≈ 23 m/s,

20.
√

2.5

21. (a) a = p0S
M ; (b) a = p0S

2M

22. a) ∆T ≈ 1.5 ◦C

b) ∆T ≈ 6.5 ◦C

c) ∆T = 12.1(1 − r)

d) ≈ 4

23. κ = T −T100 ◦C
λ c = 0.154

24. a) TA = 350 K TB = 100 K

b) t1 ≈ 67 ◦C t2 = 100 ◦C mA

mB
≈ 22

25. 175 ◦

26. ∆V = 2π
ρ

√
V π
h = 0.58 ml

27. 13.3 cm

29. h =
√

2σ
ρg (1 + cos α)

30. h =
√

σ
ρg

35. dps

dT = ps
λµ

RT 2 ; ∆P = T0−T1
T 2

0

P0µL
R ≈ 350 Pa

36. U = L/µNA — exit work, negative potential energy of a
molecule in the liquid phase.

37. m = I2RtT2
(T1−T2)λ ≈ 1.5 g

38. T3 ≈ 1.4T3 ≈ 3.5T1

39. T = V0
I0R0

T0 = 2650 K

d = 3
√

4V0I0ρ0
π2R0kσT 4 = 1.5 × 10−5 m

l = R0d2π
4ρ0

= 0.0566 m

41. d2 = 1
11 d1

42. b) T = V1+V2
V1
T1

+ V2
T2

≈ 16.5 ◦C; c) r ≈ 1.22; d) m ≈ 7.5 g.
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43. a) T2 = T0 + ∆s(p0πr2+mg)
nR = 322 K

p = p0 + mg
πr2 = 102.32 kPa

b) W = (mg + p0πr2)∆s = 24.1 J

c) Q = ∆(p0πr2 + mg)
(

cV

R + 1
)

= 84 J

d) P =
(

cV

R + 1
) ∆s

∆t (p0πr2 + mg) = 8.4 W

ṅ = P λ
hc = 2.2 × 1019 s−1

e) η = 1(
1+ p0πr2

mg

)
(1+ cV

R )
= 2.8 × 10−3

f) T3 = T2

(
p0
p

) γ−1
γ = 321 K

44. T1 = 3
γ−1

γ T0 ≈ 400 K

45. η = 1 − k1−γ = 0.602

46. a = 290 EUR

47. a) ρ20ρelcl2(T1 − Tr)/U2
0 = 25 ms

b) ρ20cl2U−2
0

∫
ρeldT = 1.5 ms

48. a) T2 = xσT0+ρhcpvdT1
xσ+ρhcpvd .

b) t = −C
∫ T2

T1
dT

P (T ) ≈ 120 s

49. a) cp = γ
γ−1 R

b) ρ = p0M
RT

c) ∆ρgL = ρ0v2 (2∆ρgL = ρ0v2 is also OK, cf. Mechanics
Pr. 29.)

d) T = T0

[
1 + 1

gL

(
P gL
Sp0

γ−1
γ

) 2
3
]

≈ 322 K

50. a) p = p0 w
w−V α(T −T0)

T
T0

b) Tmax = T0 + w
V α = 22.0 ◦C

51. p ≈ 45 kPa

52. a) T1 = T0

(
p1
p0

)1− 1
γ = 279 K

b) h1 = 2
gρ0

p0−p1

1+ p1
p0

T0
T1

= 1410 m

c) T2 = T1

(
p2
p1

)1− 1
γ + qV m

cp
= 271 K

d) h = 35 mm

e) T3 = T2

(
p3
p2

)1− 1
γ = 300 K

53. L = 1
2

m2

MpS
RT
µ +

(
t − 1

pS

√
2RT

µ

)
m
M

√
RT
2µ

t ≈ 160 s

54. t ∼ 1
100 s

56. T =
√

d
αf

√
I
σ ; D/F > 2

57. 1900 m.

58. a) C = 4R; b) ω = r−1
√

8σ/ρh

59. a) pE > pA > pD > pB > pC ; b) 195 K; c) 220 hPa; d)
Wnet = R(TH − TC) ln(pE/pA), Qloss = RTC ln(pD/pC);
e) εi = 0.35; g) II & III.

60. a) R = L/4κS;

b) T = T0 +
P0 cos

(
ωt+arcsin(Cω/

√
C2ω2+R−2)

)
√

C2ω2+R−2
;

c) ω = 1/
√

2CR;
d) ωc ≈ κ/cρL2.

61. a)P = Qdi − Qdo = εσ4πR2
1(T 4

2 −T 4
1 )

1+(1−ε)R2
1/R2

2
≈ 1.78 W;

b) τ = 4
3 πρR3λµ/P ≈ 36 h.

62. a) N = − ln β
α ;

b) A ≈ Np0V α = p0V | ln β|;
c) T = T0β

1
γ −1;

d) A = 2p0V .

63. a) C ≈ P τ
T0−T1

= 350 J/◦C;
b) Q = CTc ≈ 46 kJ.

64. 4689 K

65. 1 − T1
T2

.

66. a) Q = qν ≈ 546 J;
b) v = Q

3ρa3c ≈ 0.22 mm/s (an approximate answer, e.g.
v ≈ 0.67 mm/s. is also OK);
c) T = A · e−Bt.;
d) v ∼ Q

ρa3

√
MH

RT ≈ 180 m/s.

67. 135%.

68. F = 7Sp1T0/T1.

69. T = T0 − (1 − γ−1) µg
R

70. a) dT
T = (1 − γ−1) dp

p ; b) dp = − mgp
kBT dz; c) Ttop = 20.6 ◦C.

71. a) U = µ 4
3 πR3C(Tc − T0) = 16 768 J;

b) J = κ(T1 − T0)/R = 2458 W · m−2;
c) P = 4πR2J = 19.3 W; d) τ = U/P = 869 s (these are
estimates, so different numerical factors are acceptable).

72. p = p0
T
T0

w0
w0−V α(T −T0) ; invalid if T > 22 ◦C.

73. Ai) α = gMair/RT0; Aii) P = P0 − ρgz; Aiii) 88 kPa
Bii) v = vGrG/r; Biii) 141 m/s;
Biv) r = rG/

√
1 − 2gz/v2

G; Bv) Pipe-like ones.
Ci) v = vGr/rG; Cii) 76 kPa;
Ciii) between 5 ◦C (at G) and −7 ◦C (neglecting latent
heat of condensation); Civ) heat released by condensation;
Di) 3.8; Dii) a close call.

74. Ai) FB = MAng P
P +∆P ; Aii) γ = ρ0z0g/P0 = 5.5;

Bi) ∆P = 4κRT
r0

(
λ−1 − λ−7)

; Bii) a = 0.110;
Ci) zf = 11 km, λf = 2.1.

75. T⊙ =
√

R⊙2L ≈ 289 K

76. Wmax = C(
√

T1 −
√

T2)2

77. T2 = T0κ
κ+Iα ≈ 288 K

78. T0 ≈ 212 K

79. 13.2 ◦C

80. 1.2352 kg/m3

81. a) h ≥ B2

A2
1

2g
Tair
∆T ; b) 45 m; c) v =

√
2gh ∆T

Tair
is constant;

d) p = p0 − (ρair − ρsmoke)gh − ρsmokegz; e) η = gh
cTair

;
f) linear; g) 0.64%; h) 45 kW; i) 360 kWh with 8 h;

j) ∆T =
(

G2S2Tair
A2c2ρ2

hot2gh

)1/3

≈ 9.1K; w = 760 kg/s

82. V1 = 0.472 l, p1 = 1.06 atm; V2 = 0.395 l, p2 = 1.22 atm,
Vf = 0.100 l, pf = 1.22 atm

83. a) 14 g/mol; b) 3.3 km; c) 420 km; d) 2.6 × 10−3 ;
e) 7.5 × 1011 1/m2s; f) 1.2 × 1038 ; g) 4500 years;
h) 9.6 × 1011 years; i) supply as H2O from oceans.
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84. a) 8; b) 3mRT0
µ ln r0

r3
; c) T0

(
r3
r

)3γ−3;

d) r4 ≈ r3

(
RT0r3
µmG

) 1
3γ−4 , T4 ≈ T0

(
RT0r3
µmG

) 3γ−3
4−3γ

85. a) Rm = 2.31µm, Tm = 6.86 × 104 K; b) Rf = 2.98µm;
c) τ ∼ 3 × 10−9 s; d) a0 ∼ 0.01

86. a) 3
2 kBT ; b) 3

k

2
B

T/EF , as the temperature grows, energy
of a majority of the electrons will remain unchanged.

87. a)−NµBB tanh(µBB/kBT ) b) N(µBB)2/kBT .

88. m = 1.5RTνρ/σ (proof of minimality required).

— page 40 —


	INTRODUCTION
	Heat and temperature
	Gases
	Entropy and Carnot cycle

