
1. Rock Climber (6 points)

A rock climber of mass m = 80 kg ascends along
a vertical rock. For self-protection, the climber
uses the following method. One end of an elastic
rope is anchored to the ground. The rope goes
through smooth protection loops (carabiners),
which are anchored to the rock. The height of the
last carabiner is H = 20 m. The other end of the
rope goes through a special braking clip which
is tied to the harness of the climber. During the
climb, this clip keeps rope tight, but enables the
climber to lengthen protective part of the rope.
(Assume that the rope between the clip and ca-
rabiners is always tight) When falling, the max-
imum acceleration must not exceed amax = 5g

(to protect from injuries). You may assume that
the rope is always vertical, the distance between
the clip and the centre of mass of the climber is
very small, and friction between the rope and ca-
rabiners is negligible. Relationship between the
strain and stress of the rope is sketched on the
graph below.

1) Assume that the distance between the climber
and the last carabiner is L (see Figure). If the
climber happens to fall, the distance between the
highest carabiner and the climber will reach a
maximal value l (afterwards, the elasticity of the
rope starts lifting the climber). Which inequality
should be satisfied for l ? (1.5 pts)

2) Find the maximal safe length L between the
climber and the last carabiner (upon reaching of
which he has to anchor a next carabiner; 4.5 pts).
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2. Magnetic break (12 points)

Foucault currents can be used to decelerate mov-
ing metal objects, e.g. a rotating disc. Consider
the following simple model. For the sake of sim-
plicity, the disc is substituted by a “circular rail-
way”, see Figure. Plastic “can” of radius r =
15 cm, mass m = 100 g, and height h = 1 cm
consists of a homogeneous disc (the bottom of
the “can”), and of a much thinner cylindrical wall.
Along the edges of the cylinder, there are two
wire rings (“rails”), which are connected with a
set of parallel wire bars (“sleepers”). Both the
“sleepers” and “rails” are made of a copper wire
of diameter δ = 0,2 mm; the distance between
the “sleepers” L = αh, where α = 0,3. Friction-
less rotation of the system is decelerated with an
homogeneous magnetic field (B = 1 T) in the
slit between the poles of a permanent magnet,
see Figure. Assume that the homogeneous field
fills a region of rectangular cross-section, equal
to the area between three subsequent “sleepers”
(i.e. of size h × 2αh). Outside of that region, the
field is negligible. The specific resistance of the
copper ρ = 1.724 · 10−8 Ωm.
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Suppose the system is motionless.

1) Find the resistance R of a single “sleeper”
(1 pt).

2) Suppose the “rails” are cut near the end-points
of a certain “sleeper” A and B. Prove that the res-

istance between A and B is approximately given
by R0 = R[

√
α(α + 2) − α] (2 pts).

Now suppose the system is rotating with an
angular speed ω = 1 rad/s, and the “rails” are
uncut.
3) Sketch an equivalent DC circuit, so that the
currents through the resistors are equal to the
currents in the respective “railway” elements:
“sleepers” and “rail” segments (between sub-
sequent “sleepers”; 2 pts).
4) Using the above obtained results, prove that
the (Joule) dissipation power is given by formula
P = kB2ω2/R, and express the constant k

(3 pts).
5) Find the decelerating torque M (2 pts).
6) Prove that the angular speed will vanish as
ω = ω0e

−t/τ , and determine the time constant
τ (2 pts).

3. Ballistic rocket (8 p)

A rocket is launched from a pole of the Earth
with the first cosmic velocity (near-Earth or-
bital velocity) in such a way that it lands at the
Equator. The radius of the Earth R = 6400 km.
1) Find the longer semi-axes a of the rocket’s or-
bit (1.5 pts).
2) What is the maximal height of the rocket’s or-
bit h (from the Earth’s surface; 3.5 pts)?
3) What is the rocket’s flight time τ (3 p)?
Remark: The mechanical energy of a planet ro-
tating around a star E = −GMm/2a, where G

is the gravitation constant, M — the star mass,
m — the planet mass, and a — the orbit’s longer
semi-axes (zero potential energy corresponds to
an infinite departure). The surface area of an el-
lipse S = πab, where b is the shorter semi-axes.

4. Water pump (10 p)

Consider the following construction of a water
pump. A vertical tube of cross-sectional area S1

leads from an open water reservoir to a cylindric
rotating tank of radius r. All the vessels are filled

with water; there are holes of net cross-sectional
area S2 along the perimeter of the tank, which
are open for the operating regime of the pump.
The height of the tank from the free water sur-
face of the reservoir is h (the height of the tank
itself is small). An electric engine keeps the ves-
sel rotating at the angular velocity ω. The water
density is ρ, the air pressure — p0, and the sat-
urated vapour pressure — pk. Assume the wa-
ter flow to be laminar (neglect the energy of vor-
tices) and neglect the friction. Inside the tank,
there are metal blades, which make the water ro-
tating together with the tank.

1) Calculate the pressure p2 at the perimeter of
the tank, when all the holes are closed (2 p).

2) From now on, all the holes are open. Find the
velocity v2 of the water jets with respect to the
ground (2 p).

3) If the tank rotates too fast, the pump efficiency
drops due to cavitation: the water starts “boil-
ing” in some parts of the pump. Find the highest
cavitation-free angular speed ωmax (3 pts).

4) If the power of the electric engine is P ,
what is the theoretical upper limit of the volume
productivity of the pump µmax (volume of the
pumped water per unit time)?



5. Anemometer (6 points)

Anemometer is a device measuring flow rate of
a gas or a fluid. Let us look the construction
of a simple laser-anemometer. In a rectangu-
lar pipe with thin glass walls flows a fluid (re-
fractive index n = 1,3), which contains light
dissipating particles. Two coherent plane waves
with wavelength λ = 515 nm and angle α =
4◦ between their wave vectors, are incident on
a plate so that (a) angle bisector of the angle
between wave vectors is normal to one wall of
the pipe and (b) pipe is parallel to the plane
defined by wave vectors. Behind the pipe is a
photodetector, that measures the frequency of
changes in dissipated light intensity.

1) How long is the (spatial) period ∆ of the inter-
ference pattern created along x-axis (see Figure;
2 pts)?

2) Let the oscillation frequency of the photo-
meter signal be ν = 50 kHz. How large is the
fluid’s speed v? What can be said about the dir-
ection of the fluid flow (2 pts)?

3) Let us consider a situation, when the
wavelengths of the plane waves differ by δλ =
4,4 fm (1 fm= 10−15 m). What is the frequency
of signal oscillations now (fluid’s speed is the
same as in previous section)? Is it possible to de-
termine the flow direction with such a device (2
pts)?
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6. Mechano-electrical oscillator (7 points)

Mechanical and electrical processes are some-
times strongly coupled. Very important ex-
amples are systems containing piezoelectric ma-
terials, e.g. quartz resonator. Here we investigate
a somewhat simpler situation.

There are two metal plates with area S and
mass m. One plate is situated atop of the other
one. Plates are connected to each other with
springs, whose total spring constant is k and
what are made of insulator. The lower plate is
mounted on a steady base. Equilibrium distance
between the plates is X0.

1) Let us assume that there is a small vertical
shift x of the upper plate from its equilibrium po-
sition. Derive acceleration ẍ of x in terms of sys-
tem parameters. What is the angular frequency
ω0 of the small vertical oscillations of the upper
plate (1 pts)?

2) Plates are now connected to a constant high
voltage source, so that they form a capacitor.
Electrostatic force between the plates causes an
additional shift of the upper plate. The equilib-
rium distance between the plates is now X1. De-
rive expressions of the electrical attractive force
Fe and voltage applied to the plates U in terms
of X0, X1, S , m and k (2 pts).

3) System is set to oscillate again, keeping
voltage U constant. Let x stand still for the shift
from the equilibrium position. Derive an expres-
sion for the acceleration ẍ of x in terms of X0,
X1, S , m, k and shift x. What is the angular fre-
quency ω1 of upper plate’s small vertical oscilla-
tions (2 pts)?

4) Let us modify the situation of the previous
question and connect an inductor with induct-
ance L in series to the capacitor and voltage

source. We describe the situation in terms of
plate shift x and capacitor’s charge q. Derive ex-
pressions for the accelerations ẍ and q̈ in terms
of X0, X1, S , m, k, x and q. Which angular fre-
quencies of harmonic oscillation are possible in
the system? (2 pts)

7. Heat exchange (8 points)

1) Consider a simplified model of the air ventil-
ation system of a house using a passive heat ex-
changer. The exchanger consists of a metal plate
of length x and width y and thickness d dividing
the air channel into two halves, one for incoming
cold air, and another for outgoing warm air. Both
channels have constant thickness h, air flow ve-
locity is v see Figure. Thermal conductance of
the metal is σ (the heat flux through a unit area
of the plate per unit time, assuming that the tem-
perature drops by one degree per unit thickness
of the plate). Specific heat capacity of the air by
constant pressure is cp, air density is ρ (neglect
its temperature dependance). You may assume
that the air is turbulently mixed in the channel,
so that the incoming and outgoing air temperat-
ures Tin and Tout depend only on the coordinate
x (the x-axes is taken parallel to the flow velo-
city), i.e. Tin ≡ Tin(x) and Tout ≡ Tout(x). As-
suming that the inside and outside temperatures
are T0 and T1, respectively, what is the temperat-
ure T2 of the incoming air at the entrance to the
room (4 pts)?
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2) Attached is a plot of the heat exchange rate P

of the wire of an electric heater as a function of
temperature (assuming the room temperature is
T0 = 20◦C). The operating temperature of the
wire is T1 = 800◦C. The heater is switched off;
find the time after which the temperature of the
wire will drop down to T2 = 100◦C. The heat ca-
pacitance of the wire is C = 10 J/K (4 pts).
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8. Balloon (8 points)

Find the mass of the balloon (including the
gas inside it). Equipment: balloon (floats in
air), digital scales, rope, measuring tape, rope
fasteners, dynamometer, paper sheets for folding
and rough angle measurements, 100-g weight,
thread.

Remark: You may find it useful to know that
if a rope is tied around a balloon so that the ten-
sion of the rope is T , the excess pressure inside
the balloon is ∆p, the angle between the tan-
gents of the balloon envelope near the rope is 2α

(average over the perimeter; see Figure), and the
radius of the circular loop formed by the rope is
R, then ∆p = T tanα/R2. The universal gas
constant R = 8.31 J/K·mol, the molar mass of
air µ = 29 g/mol.

2α

9. Mechanical black box (7 points)

There is something small inside the cylindrical
“black box”. Find the mass of it, as well as the
friction coefficient between it and the inner sur-
face of the box. Equipment: black box, ruler, a
wooden plank, timer, scales.


