
1. Rock Climber

1) In the case of falling, the acceleration should not exceed 5g, which
means that σ(ε)

m − g < 5g. Maximum strain is the solution of the fol-
lowing equation σ(ε) = 6gm = 6×9.8 m

s2 ×80kg = 4.7kN . According
to the graph, ε = 0.315; hence, l < 0.315(L + H) + L
2) In the case of falling, the climber reaches the lowest point, when its
velocity become zero. This means that the energy absorbed by the rope
becomes equal to the change of the potential energy:

E = mg(2L + x),

where x = l − L. Energy absorbed by the rope is given by

E =

∫
σ(ε)dx =

∫
σ(ε)(L + H)dε = (L + H)

∫
σ(ε)dε.

We know that the maximal value is ε = 0.315, which makes it possible
to calculate the integral numerically, as the area under the graph.

S(ε) =

∫ 0.31

0

σ(ε)dε ≈ 564.8N

Thus,
(L + H)S(ε) = mg(2L + x) = mg(2L + ε(L + H)),

hence

L =
H(mgε− S(ε))

S(ε) − mg(ε + 2)
≈ 5.08m.

So, the new carabiner must be anchored within next L = 5.08 m.

2. Magnetic brake

1) Sleeper is a simple cylindrical conductor:

R =
ρh

( δ
2 )2π

≈ 5.59mΩ.

2) Length of the railway element is αR, hence the resistance is R2 =
αR. Main ideas: first - we can imagine that railway is infinite; second
— the resistance (RR) of this infinit array remain same even if we cut
of one periodic element. Hence,

RR =
R(2R2 + RR)

2R2 + RR + R
.

After solving the equation

RR = −R2 ±
√

R2
2 + 2R2R =

√
R2

2 + 2R2R − R2

and noting that the negative solution of the equation has to be dropped
(it does not have physical meaning), we arrive at

RR = R(
√

α(α + 2) − α).

3) Important ideas:

• electromotive force is generated when conductors move in mag-
netic field;

• There is always two sleepers moving between magnets (in mag-
netic field);

• Those sleepers act as a sources of electromotive force (like a bat-
tery);

• those sleepers also have internal resistance R.

Notice also that we can take account symmetry and connect points
with equal potential; this allows us later to simplify cyclic railway to
previously solved infinite (actually, very long) railway. We can also see
that there is no current between the two sleepers residing in the mag-
netic field (there is no potential difference), hence we can disconnect
them. So, we can obtain two indipendent (almost) infinite railways and
both have their own source of elecromotive force.

R

αR

4) Electromotive force in the sleeper is E = Bvh. Energy is dissipated
into heat P = E2

Rcircuit
. where Rcircuit = 1

2 (RR + 2αR + R),

Rcircuit =
1

2
R(

√
α(2 + α) + α + 1).

Consequently

P =
2B2ω2r2h2

R(
√

α(2 + α) + α + 1)

Eventually,

k =
2r2h2√

α(2 + α) + α + 1
≈ 2.12 × 10−6.

5) Since the power equls to Mω = P , the torqe can be found as

M =
P

ω
=

2B2ωr2h2

R(
√

α(2 + α) + α + 1)
≈ 0.39 mNm.

6) Disc has a momentum of inertia eual to I = 1
2
mr2; the angular

acceleration ε = M
I = dω

dt . Consequently (using decelerating M),

kB2ω

IR
= −dω

dt
.

If we group the variables I and t into different side of the equation, we
obtain

kB2

IR
dt =

dω

ω
.

Integrating the both sides of the equation yields∫ t

0

kB2

IR
dt = −

∫ ω

ω0

dω

ω
⇒ kB2

IR
t = −ln

ω

ω0
,

ω = ω0e
− kB2

IR t, and finally τ = IR
kB2 ≈ 2.9s.

3. Ballistic rocket

1) The net energy depends only on the longer semi-axes. Hence, the
longer semi-axes is the same as in the case of near-Earth orbit: a = R.
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2) The ellipse has a property that the sum of lengths from each point on
the orbit to the both foci of the orbit is constant (equals to 2a). Hence,
the other focus (i.e. which is not the centre of Earth) is at the distance R
from both the launching point and landing point, see Fig. So, the height
h = |CB| = |OB| − R; since |OB| = R + 1

2 |OO′| = R(1 +
√

2
2 ), we

finally obtain h = R√
2

.
3) The ratio of the flight time to the period along the elliptic orbit
equals to the ratio of two surface areas: the one painted dark grey
in Fig, and the overall area of the ellipse. The rotation period is the
same as in the case of near-Earth orbit (due to Kepler’s third law),
T = 2πR/v = 2π

√
R/g. The dark gray surface area is calcula-

ted as the sum of half of the ellipse area, and a triangle area. So,
τ = T · (π

2 R · R√
2

+ R2/2)/πR · R√
2

= (π +
√

2)
√

R/g.

4. Water pump

1) Let us consider the process in the system, rotating together with the
tank. Then, there is a potential energy related to the centrifugal force:
Uc =

∫ r

0
ω2rdr = 1

2ω2r2. So, the pressure p2 = p0 − ρgh + 1
2ω2r2.

2) From the Bernoulli formula, 1
2ρu2 = p2−p0 = 1

2ω2r2−ρgh, hence
the squared velocity in the rotating reference system u2 = ω2r2 − 2gh.
The laboratory speed v2 = u2 + ω2r2 = 2(ω2r2 − gh), i.e. v2 =√

2(ω2r2 − gh).
3) The point of lowest pressure pm inside the pump is the upmost point
of the tube. Using the Bernoulli formula, p0 = pm + ρgh + 1

2
ρv2

1 ,
where the velocity in the tube can be found from the continuity condi-
tion: S1v1 = S2u = S2

√
ω2r2 − 2gh. Therefore, pm = p0 − ρgh −

1
2
ρ(ω2r2 − 2gh)(S2

S1
)2. Notice that the “boiling” starts when pm = pk .

So, ω2
mr2 = 2gh + ( p0−pk

ρ − gh)(S1
S2

)2 ; finally we obtain

ωm = r−1

√
2gh +

(
p0 − pk

ρ
− gh

)(
S1

S2

)2

.

4) The maximal productivity is apparently achieved for the highest ef-
ficiency. The efficiency is highest, when the residual velocity is lowest:
u → 0, and ω → ωmin. According to the results of the second ques-
tion, ωmin = r−1√2gh. So, the minimal residual velocity of the wa-
ter streams is vmin = ωminr =

√
2gh. The associated lost power is

1
2
µv2

min = µgh. The useful power is associated with the potential ener-
gy increase (by gh),i.e. the total power P = 2µgh. Hence, µ = P/2gh.



5. Anemometer

1) First we need to find the angle after the refraction β: For small inci-
dence angles we find approximately β = α/n. In the liquid, the wa-
velength is decreased n times: λ′ = λ/n. The requested wavelength
can be found as the distance between the lines connecting the intersec-
tion points of the equal phase lines of the two beams. Alternatively (and
in a simpler way), it is found as the difference of the two wavevectors:
k′ = kβ, where k = 2π/λ′ = 2πn/λ is the wavevector of the incident
beams. So, ∆ = 2π/k′ = λ/α ≈ 7,4µm.
2) The scattered light fluctuates due to the motion of the scattering
particles; the frequency is ν = v/∆ = vα/λ. There is no way to de-
termine the direction of the flow, but the modulus is obtained easily:
v = νλ/α ≈ 0.37 m/s.
3) The spatial structure of the interference pattern remains essentially
unchanged (the wavelength difference is negligible). However, the pat-
tern obtains temporal frequency δω = δ(c/λ) ≈ cδλ/λ2 . The velocity
of the interference pattern u = ∆δω = c

α
δλ
λ . If the fluid speed is

v ≈ 0.37 m/s, then the relative speed of the pattern and the fluid is
ν′ = c

α
δλ
λ

± v, depending on the direction of the flow (in both cases,
ν′ ≈ 740 kHz). So, the output frequency allows us to determine the
flow direction as long as we can be sure that the interference pattern
velocity is larger than the flow velocity.

6. Mechano-electrical oscillator

1) From the Newton’s second law, mẍ = −kx, hence ẍ = − k
mx, hence

ω =
√

k/m.
2) From the Gauss’ law, the charge on the plate Q = Sε0E =
Sε0U/X1 . The force acting on it Fe = k(X0 − X1) = Q 〈E〉, whe-
re 〈E〉 is the average electric field (averaged over the charges). Let us
look at the charge layer (at the surface of the plate) with a high mag-
nification: the electric field there depends linearly on the net charge
inwards (in the plate) from the current point. Therefore, the average
field is just the arithmetic average of the fields on both sides of the layer:
〈E〉 = E/2. Finally, Fe = k(X0 − X1) = QE/2 (this result could
have been obtained from energetic considerations, using infinitesimal
virtual displacement of the plate and the energy conservation law). So,
Fe = S

2
ε0(U/X1)

2 , hence U = X1

√
2k(X0 − X1)/Sε0 .

3) If the plates move by x, the change of the force due to electric field
is δFe = x| d

dX1

S
2 ε0(U/X1)

2| = x
X1

Sε0(U/X1)
2 ; bearing in mind

that S
2 ε0(U/X1)

2 = k(X0 −X1), we obtain δFe = 2 x
X1

k(X0 −X1).
There is also force cahnge due to elasticity: δFk = −kx; the two forces
have opposite sign (while approaching the discs, δFk tries to push back,
and δFe tries to pull disks even closer). So, δF = −kx[1 − 2(X0

X1
−

1)] = −kx(3 − 2X0
X1

). Finally, ẍ = δF/m = −x k
m (3 − 2X0

X1
), and

ω =
√

k
m (3 − 2X0

X1
)

4) Now we have two oscillating variables, x and q. First, we write down
the equation due to Kirchoff ’s laws: Lq̈ = − q

C
− xQ d

dX1
C−1 . He-

re, the second term describes the voltage change on the capacitor due
to the change of the capacitance (we approximate the real change by
differential, valid for small shifts x). Note that C−1 = X1/Sε0 and

Q = Sε0U/X1 ; hence d
dX1

C−1 = 1/Sε0 , and

Lq̈ = − q

C
− U

x

X1
.

Here, the sign of the second term assumes that the x-axes is directed
upwards (there is no current in the inductance and Lq̈ = 0, if the vol-
tage on the capacitor keeps constant; for increasing charge q > 0, this
assumes increasing capacitance, i.e. x < 0; in a full agreement with the
signs of the above expression).

The second equation describes the Newton second law. First we no-
te that the expression for Fe can be rewritten as Fe = Q2/2Sε0 . So,
if the charge on the plate does not change (q = 0), neither does chan-
ge Fe. So, δFe = q d

dQQ2/2Sε0 = qQ/Sε0. The infinitesimal force
changes (δFk and δFe) can be simply added:

mẍ = −kx − qQ/Sε0.
Now, let us look for a sinusoidal solution of circular frequency ω.

Then, ẍ = −ω2x and q̈ = −ω2q. Substituting this into the two above
obtained equations, we find{

(Lω2 − C−1)q = xU/X1

(ω2m − k)x = qQ/Sε0
.

This has a non-zero solution for x and q only if
(Lω2 − C−1)(ω2m − k) = UQ/X1Sε0.

Bearing in mind that UQ/X1 = 2k(X0 − X1) and C = ε0S/X1 , we
can rewrite the equation as

(ε0SLω2 − X1)(ω
2m − k) = 2k(X0 − X1).

Introducing ω2
0 = k/m and ω2

1 = X1/ε0SL we can further rewrite as

ω4 − ω2(ω2
1 + ω2

0) + ω2
0ω2

1

(
3 − 2

X0

X1

)
= 0.

Therefore,
2ω2 = ω2

1 + ω2
0 ±

√
ω4

1 + ω4
0 + 2ω2

1ω2
0(X0X

−1
1 − 5),

i.e. this system has two eigenfrequencies, if X0
X1

< 3
2 (and becomes uns-

table, otherwise).

7. Heat exchange

1) It is easy to see that the temperature profile along the plate is linear,
and the temperature difference ∆T between the two plates is constant,
∆T ≡ T0 − T2. Indeed, then the heat exchange rate q (per unit plate
area) is also constant, which in its turn corresponds to a linear tempe-
rature profile. Let us use a reference frame moving together with the
incoming air. Then, the temperature increase rate at a given point is
Ṫ = v(T2 − T1)/x. Then, the heat balance for a air element of volume
V = s × h is written as ρshcpṪ = q = sσ∆T/d = sσ(T0 − T2)/d.
So, ρshcpv(T2 − T1)/x = sσ(T0 − T2)/d, hence

T2 =
xσT0 + ρhcpvdT1

xσ + ρhcpvd
.

2) Rewriting the heat balance equation P = −C dT
dt

as
dt = −CP−1dT we conclude that time can be found
via the area S under the graph, where P−1 is plotted
versus the temperature as t = SC . The graph data:

T (K) 100 200 300 400 500 600 700 800
P (W) 13 30 55 83 122 177 258 395
100P−1 7.7 3.3 1.8 1.2 .82 .57 .39 .25

Substituting the region with smooth boundaries with a superposition
of trapezoids we find S ≈ 12 K/W. Consequently, t = 120 s.

8. Balloon

We can measure the lift of the ball by attaching a weight M = 100 g to it
and taking the reading of the scales F/g = m+M−ρV = 73.4 g, whe-
re ρ = µp0/RT ≈ 1.2 g/l. Hence, ρV −M = 27.6 g. So, we need to de-
termine the volume of the ball. To that end, we tighten the rope around
the ball as tightly as the fasteners can hold (note that smaller tension
values would results in a too small volume decrease, and hence, in a lar-
ge uncertainty of the final answer). We weight the ball with rope (93.3
g) and subtract the mass of the rope (19.1 g) to find ρV ′ −M = 28.4 g,
where V ′ is the ball volume, when the rope is tightened. Hence, the
volume decrease ∆V = V − V ′ = (28.4 − 27.6)/1.2 l≈ .67 l. La-
ter, we determine the maximal tension in rope (which can be hold by
fasteners) with dynamometer, T ≈ 30 N. We also estimate the average
angle tanα ≈ 1.4. The radius of the loop is calculated from the measu-
rement of the perimeter, R ≈ 15 cm. According to the given formula,
these data correspond to ∆p ≈ 1900 Pa. Due to gas law, ∆p

p0
≈ ∆V

V
,

hence V ≈ p0
∆V
∆p

≈ 33 l. Therefore, M = ρV − 27.6 g ≈ 12 g.

9. Mechanical black box

First we determine the coefficient of friction as follows. We make sure
that the object is at the bottom of the box. We put the box on the plank
so that the axes of the cylinder is parallel to the axes of the plank. We
start inclining the plank so that the bottom of the cylindrical box gets
higher. We determine the angle of the plank α, when the object starts
sliding: it hits the cover of the box. It is convenient to put the cover
(and the rim of the cover) of the box hanging slightly over an end of the
plank. In that case, object hiting the cover of the box results in box fal-
ling down from the plank. We measure the tangent of the plank at that
moment: µ = tan α = 0.17 ± 0.2.

Now we turn the axes of the cylinder perpendicular to the axes of
the plank, but keep lying on its side. We start again inclining the plank
and determine the angle β, at which the box starts rolling down. As-
suming that the object is small (as compared to the radius of the box),
the following relationship can be derived: M sin β = m(sinα− sin β),
where m is the mass of the object and M — the mass of the empty box.
Using sin α = 60±5

350 and sin β = 25±3
350 we obtain M/m = 35/25 =

1.4 ± 0.2. From the measurement of the net weight M + m = 10.4 g
we find m = 10.4 g/2.4 = (4.3±0.4) g. Note that the actual mass was
4.5 g.

The mass ratio can be, in principle, determined from the period of
small oscillations, T ≈ 0.4 s. Then, if we estimate the moment of iner-
tia of the system box+object as (M + m)r2, where r is the radius of the
cylinder, then Iϕ̈ = −mrgϕ, i.e. ω2 = m

m+M
g
r . Using r = 16 mm

we obtain M+m
m = g

r T 2/4π2 = 3.9. This result, however, is rather
approximate, because it is difficult to measure such a short oscillation
period (at the high dissipation rate). Furthermore, the period is taken
to the second power, this explains the unrealistic result (so,it does not
make sense to try to improve the approach by taking account the geo-
metric factors for the calculation of the moent of inertia of the box etc).


