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Solutions

1. Fuel consumption If the car produces
a forward force F at a speed of v, then the work
done on a path length s isW = Fs. Since the ef-
ficiency is constant, this work is proportional to
the consumed fuel volume, W = ksf , where
f = f(t) denotes the fuel consumption rate
(volume per distance), and k is a proportional-
ity coefficient. Hence, F = kf(t), i.e. the fuel
consumption graph can be interpreted as a force
graph. The proportionality constant k can be
found from the fact that when the car is start-
ing from the rest, there is no air drag (air drag is
zero if speed is zero), and hence, all the driving
force goes to accelerating the car, F (0 s) = ma0.
Keeping in mind that f(0 s) = 33 l/100km =
ma0/k = mg

2k , we obtain k
mg = 1.52 km/l.

At v0 = 90 km/h, there is air drag which we
need to consider, but since the speed is constant,
so is the force from the air drag and we can just
subtract F (16 s) to get the force without the air
drag. The increased fuel consumptionwhen going
uphill at an angle α comes from the component
of the gravitational force tangential to the road
F (t)− F (16 s) = mg sin(α). The highest point
with sinα = 0 is reached when the fuel con-
sumption is again equal to that at 16 s, which is
at 22 s. The work done by the force pushing the
car W =

∫
[F (t) − F (16 s)]ds =

∫
[F (t) −

F (16 s)]v0dt = k
v0

∫ 22 s
16 s [f(t) − f(16 s)]dt goes

to the change of the potential energy mgh; here
the integral I ≡

∫ 22 s
16 s [f(t) − f(16 s)]dt ≈

0.38 l s/km is found as a surface area from the
graph [the area between the graph and the line
f(t) = f(16 s)]. Therefore, h = W/mg =
kI

v0mg ; with
k
mg = 1.52 km/l we obtain h ≈

14m.

The problem was graded as follows.

• Relating consumption rateC to F - 1.5 p
• Determining the coeff. of proportionality
based onC(0) = 33 L/100 km and a(0) =

5m/s2 - 0.5 p
• Noticing that max height is at 21 s - 0.5 p
• Noticing that due to friction, only the excess
consumption is related tomgh - 1 p

• Relating the excess area under the curve (S) to
mgh - 1 p

• Finding S - 0.3 p
• Finding h - 0.2 p

2. Glass plate
i) The energy and impulse of a photon are re-
lated by E = pc. Because the incident side is
black, it will absorb the photons and feel the force
due to their momentum: Fa = dp

dt , where
dp
dt =

1
c
dE
dt = P

c is the impulse of the photons gener-
ated per unit time. Fa = P

c .

ii) A fraction r of the photons will be reflected,
so they will exert twice the force, because the mo-
mentum change is twice as much as compared to
absorbing them. A fraction 1−rwill be absorbed
andwill give a force similar to the previous expres-
sion.

Fb = 2r
P

c
+ (1− r)

P

c
= (1 + r)

P

c
.

iii) The light will be reflected many times and
we will have to consider interference. Since en-
ergy is proportional to the square of the amp-
litude of the electric field, if a fraction r of the
photons and therefore of the energy is reflected,
the amplitude of the reflected wave’s electric field
is
√
r of the incident electric field. Let’s calculate

the total electric field amplitude of the wave that
goes through. Denote by Ei the electric field of
the incident wave and by Et the electric field of
the wave that has gone through the other side of
the glass. On the incident side the proportion of
the electric field amplitude that goes through is√
1− r, of which a part

√
1− r will go through

and part
√
r will bounce pack. So a wave with

amplitudeE0 = (1−r)Eiwent straight through
and awavewith amplitude

√
(1− r)rEi is boun-

cing back through the glass. Now itwill go back to

the first side, reflect back from there and of that a
proportion

√
1− rwill go through and add toEt.

However the wave has traveled an optical path
2nd = 200.5λ, so it will be 180 degrees out of
phase and we get E1 = −(1 − r)rEi. Repeat-
ing the procedure E2 = (1 − r)r2Ei and so on
En = (1− r)(−r)nEi. Summing all the electric
fields that go through the other side of the glass
we get:

Et =

∞∑
n=0

En = (1−r)Ei

∞∑
n=0

(−r)n =
1− r

1 + r
Ei.

Power is proportional to the square of the electric
field:

Pt

P
=

(
Et

Ei

)2

=

(
1− r

1 + r

)2

.

Since power is also proportional to the number of
photons, this fraction of the photons have gone
through and haven’t given their momentum to
the glass. By energy conservation the rest have
been reflected back toward the laser and since
their momentum has been reversed:

Fc = 2

(
P − Pt

c

)
=

2P

c

(
1−

(
1− r

1 + r

)2
)

=
8Pr

c(1 + r)2
.

Note: if we would calculate directly the total
electric field of the reflected light, we would need
to take into account that on the first reflection
of the laser light from the glass there is a phase
shift of 180 degrees due to reflection from a sur-
facewith a higher refractive index (air to glass sur-
face).

Alternative solution: The light is bouncing
back and forth. Inside the glass there is some
sum of waves with the same frequency, which we
can represent as a single wave moving forward
and a single wave moving backwards. Denote
by E the wave amplitude of the forward moving
wave right under the surface in the glass. The

wave amplitude is constant at that point and it
is made of the transmitted part of the incoming
light

√
1− rEi and from the 180 degrees out of

phase part ofE itself as it bounces twice inside the
glass to arrive at the same point back again: −rE.
We get the relation:

E =
√
1− rEi − rE → E =

√
1− r

1 + r
Ei.

The wave that has gone all the way through the
plate is

Et =
√
1− rE =

1− r

1 + r
Ei.

The rest follows as in the previous solution.

3. Music

i) For the tubular bells we can find the speed of
sound in steel using dimensional analysis. It can
depend on the youngmodulusE and on the dens-

ity ρ. We find that v ∝
√

E
ρ ∝

√
EL3

m , where L
is the characteristic length of the bell. The speed,
frequency and wavelength are related by f =
v
λ . For a standing wave to exist on the bell, the
wavelengthmust be proportional to it’s character-
istic length, because it has anti-nodes at the ends:
λ ∝ L. We get f ∝

√
L3

L =
√
L. Due to thermal

expansion, the lengths scale by (1+α∆T ), where
α is the coefficient of thermal expansion. Using
this we have f = f0

√
1 + α∆T ≈ 330.04Hz.

This is a very small change from f0 = 330Hz.

For the pipe organ we also have f = v
λ .

The sound is generated by a standing wave in
the air column. The speed v in the formula is
the speed of sound in the air. As in the previ-
ous case, thewavelength has to be proportional to
the length of the pipe for a standing wave to exist
and the length scales by (1 + αT ). Since αT ≈
2.4× 10−4 is much smaller than the change in
the speed of sound, we can ignore it. Using the
given formula for the speed of sound, we have

f = f0

√
1 + 45

273.15/
√
1 + 25

273.15 ≈ 341Hz.
This is a significant change.



For the guitar string thespeed of thewave can
depend on the mass m of the string, the length
L and the tension T . Using dimensional analysis

we get v ∝
√

LT
m . A more accurate derivation

will show that the constant of proportionality is 1,
whichwould be the simplest guess. The lowest fre-
quency on the string has a wavelength of 2L, be-
cause thewavehas to havenodes at the ends of the
string. The tension is given by T = ES∆L/L,
where∆L is the change in length of the string due
to the tension andS is the area of the cross section
of the string. Putting it all together:

f =

√
LT
m

2L
=

√
LES∆L/L

ρSL

2L
=

√
E∆L/L

ρ

2L
.

Let’s find ∆L
L = ρ

E (2Lf)2 ≈ 7.3× 10−3.
When the temperature increases and the string
stretches, the relative lengthening ∆L

L will de-
crease by αT , ∆L

L → ∆L
L − αT =

∆L
L

(
1− αT

∆L/L

)
= ∆L

L (1 − 3.3× 10−2). This
proportional change is larger than the changes
in the other factors (the lengths get scaled by
(1 + α∆T )), which we can ignore. We get f =

f0
√
1− 3.3× 10−2 ≈ 325Hz. This is also a sig-

nificant changewhen the instruments are playing
together.

ii) For the tubular bells and for the guitar the fre-
quency is determined by the properties and the
speed of sound of the metal and therefore doesn’t
change in the heliox. For the pipe organ, the
sound is generated directly by the vibrating air
column in the pipe and changing the air to heliox
will change the frequency. The wavelength is de-
termined by the length of the pipe and since the
frequency is f = v

λ , it will change proportionally
with the speed of sound, f = 1.7 · f0 ≈ 561Hz.
This is a very significant change.

4. Dimmer

i) Denote ω = 2πf . Adding an imagin-
ary component to the voltages u = Uejωt

and uC = UCe
j(ωt+φ) (with j being the

imaginary unit), there is a relation uC =

uzC/(R + zC), where the capacitor’s imped-
ance zC = 1/(jωC). Calculating, we get
k ≡ zC/(R + zC) = 1/(jωRC +

1) = 1/
[√

1 + (ωRC)2 × ej arctan(ωRC)
]
.

Therefore UC = U |k| = U/
√
1 + (2πfRC)2

and φ = arg k = − arctan(2πfRC). (The an-
swers could also be obtained by analyzing a vector
diagram.)

ii)Thediac starts to conductwhen the voltage on
the capacitor rises to Ub. This voltage is then ap-
plied to the series connection of Rt and the diac,
whose voltage has dropped to Ud. Therefore the
current through the diac is (Ub−Ud)/Rt and the
inequality isRtIt < Ub − Ud.

iii) At t0, the voltage on the capacitor becomes
larger than Ub. Thus, UC sin(2πft0 + φ) = Ub

and t0 = [arcsin(Ub/UC)− φ]/(2πf).

iv) The lamp is lit at phase 2πft0 and turned
off at phase π. The power is proportional to the
voltage squared, giving the ratio

r =

∫ π

0
sin2 α dα∫ π

2πft0
sin2 α dα

.

Because
∫
sin2 α dα =

∫ 1−cos(2α)
2 dα = α

2 −
sin(2α)

4 , we get

r =

(
π
2 − sin(2π)

4

)
−
(

0
2 − sin(0)

4

)
(

π
2 − sin(2π)

4

)
−
(

2πft0
2 − sin(4πft0)

4

)
=

1

1− 2ft0 +
sin(4πft0)

2π

.

5. Candy wrapper The setup is as follows.
First the candy wrapper is cut in half and then
wound around the hexagonal pencil on both ends
A times and fixed tightly against the other pen-
cil using the rubber bands. That way there is a
gap of width Ad between the two pencils. The
laser light is directed through the gap between the
two pencils and the resulting diffraction pattern
is displayed on the screen (which is fixed vertic-
ally to the stand). We can keep the pencils and

laser horizontal using the given clamps and ad-
just the height of the laser so it passes through the
gap by placing sheets of paper below the laser. Be-
cause the pencil surface is rough the gap between
the pencils varies. In order to diminish this ef-
fect we can put more layers of the candy wrapper
between the pencils. The resulting experimental
values are displayed on the table, whereN is the
number of localmaxima orminima on the screen,
a is the distance between the first and last meas-
ured maximum or minimum and L is the dis-
tance from the screen to the pencils. Note that
the centralmaximum is double-wide andwehave
to take it into account when countingminima (as
it covers one minimum) and take it into account
twice when counting maxima.

A N a (cm) L (cm) d (µm)
12 21 2.4 70 20
12 14 1.6 63 29
8 9 1.3 60 23

Let θ be the angle of incidence of the laser light
that lands on the screen. Then the difference
between the angles for the different maxima or
minima can be expressed as θ ≈ a

L using the
small angle approximation. The number of max-
ima or minima can be expressed using Aθd =
Nλ. Then

d =
Nλ

Aθ
=

NλL

Aa

Using the data from the table we get d = 25 µm.
The main contributing factor for uncertainty
comes from the roughness of the pencil which can
be estimated using the maximal and minimal val-
ues of measured wrapper thickness. Then∆d ≈
dmax−dmin

2 = 4.5 µm.

6. Charge on a ring

i) The speed v is just the magnitude of rϕ̇, and
energy conservation gives us that

v2 +
C

|r− rQ|
= const. = 2E/m,

where C = Qq
2πmϵ0

. The value hence must equal
the initial value. The figure indicates that ϕ(0) =
0 and ϕQ = −π/2, and we get:

v(ϕ)2 = v20+
C√

r2 + d2
− C√

r2 + d2 + 2rd sinϕ
,

and v(ϕ) is just the square-root of this.

ii) The force Fn from the ring is a constraint
force, normal to the ring, and balances the other
forces to give a total perpendicular force equal to
the required centripetal force Fc = mv2/r, dir-
ected inwards. The other force is the Coulomb
repulsion (if C > 0) from Q, with a magnitude
FQ = mC

2(r2+d2+2rd sinϕ) . Its perpendicular com-
ponent acquires a factor of cosα, with α the
angle between the local radius vector and the line
Qq. The cosine theorem on the triangle defined
by q, Q, and the ring’s center yields cosα =

r+d sinϕ√
r2+d2+2rd sinϕ

. We have cosα > 0 consist-

ently, the normal part of FQ pointing outwards
everywhere (in the repulsive case). We get for the
force from the ring

Fn =
mv2

r
+

mC (r + d sinϕ)

2 (r2 + d2 + 2rd sinϕ)3/2
,

with both terms directed inwards in the repuls-
ive case ofC > 0, else the second term will point
outwards.

iii) When the particle has come to rest, the fric-
tion force parallel to the ring is automatically zero,
but the other forces must balance. All normal
forces are automatically balanced by the ring. We
need to consider the longitudinal force, which can
only come form the Coulomb force on q, and so
its longitudinal componentmust vanish. This can
only happen in two places, at the maximal and
minimal distance from Q, i.e. at the top or bot-
tom point. These points correspond to a min-
imum and maximum, respectively, of the electro-
static potential, and only the former would be
stable for the repulsive case of qQ > 0 (else the
opposite).



7. Helium The heat required for vaporiz-
ation comes from the heat energy of the liquid:
λdm = mc(T )dT . By separating the variables
m and T and integrating, we get:

λ

∫ m

m0

dm′

m′ =

∫ T

T0

c dT ′,

λ ln
m

m0
=

∫ T

T0

c dT ′,

m

m0
= exp

∫ T

T0
c dT ′

λ
.

By numerically approximating the integral
from the given graph, we get

∫ T

T0
c dT ′ ≈

−5.2 kJ kg−1. Thus the fraction of liquid thatwas
vaporized is

m0 −m

m0
= 1− m

m0
≈ 1−exp

−5.2 kJ kg−1

22 kJ kg−1 ≈ 0.21.

8. Oscillations

i) The stiffness k of the spring is found from the
force balance mg = kx, thus k = mg/x. The
period of oscillations for such a spring pendulum

is T = 2π
√
m/k

!
= 2π

√
l/g =⇒ l =

mg/k = x.

ii) Apply Gauss’s theorem to a sphere with radius
r, concentric with the asteroid. By symmetry,
the field strength (the gravitational acceleration)
is constant on the sphere, thus the flux of this
field strength equals the area of the sphere mul-
tiplied by field strength (with a minus sign, be-
cause the force is directed inwards). On the other
hand, Gauss’s theorem states that this flux equals
−4πG times the totalmass inside the sphere. For-
mulaically (denote the asteroid’s density by ϱ),
−4πr2g = −4πG× 4

3πr
3ϱ and g = 4

3πGϱr =
GMr/R3 (denoting the total mass byM and the
total radius byR). Whenever we have an attract-
ive force that is proportional to the displacement,
we have harmonicmotion (like in a spring pendu-
lum).

iii) Identifying the gravitational acceleration
as the centripetal acceleration, GM/R2 =
ω2
oR =⇒ ω2

o = GM/R3 (with ωo being
the orbital angular speed). The time of reaching
the friend is to = To/2 = 2π

ωo
/2 = π/ωo.

Through the hole, on the other hand, we have
half a period of an effective spring pendulumwith
a “stiffness” k = GMm/R3: namely, th =
Th/2 = 2π

ωh
/2 = π/ωh. From the “stiffness” and

a general formula for a spring pendulum, ω2
h =

k/m = GM/R3 = ω2
o . Therefore to = th —

the times are equal!

iv) As the motion after a bounce equals the time-
reversed motion before the bounce, the period is
twice the time of the first bounce (tb). For a con-
stant acceleration, h = gt2b/2 =⇒ T = 2tb =

2
√

2h
g . On the Earth, g ≈ 10m/s2, therefore

T = 2
√

2×50 cm
10m/s2 ≈ 0.6 s.

This is not a harmonic motion, because the
displacement is a quadratic function of time, not
a sinusoid. Also, here the restoring force is not
proportional to displacement.

9. Deflection on Falling

i) The Earth is rotating with angular velocity
ω = 2π

T , where T = 24 h. The velocities at the
top and bottom of the shaft are vt = ωR and
vb = ω(R − h), whereR is radius of Earth. The
difference of the velocities is thus∆v = vt−vb =
ωh ≈ 7.3mm/s.

ii) The time of free fall can be found from the re-
lation h = gt2/2, giving t =

√
2h/g. Thus, the

horizontal displacement is simply∆x = ∆vt =

ωht = ω
√
2h3/g ≈ 33mm.

iii) There are at least three different approaches
to this problem; one is using the angular mo-
mentum conservation law, second one is based
onKepler’s laws (given later below), and the third
one — which we don’t consider here — is based
on Coriolis force formula.

Consider the rotation speed ω′ of the radius
vector drwan from the falling body to the centre

of Earth, and let us compare this speed with
the rotation speed of Earth ω. The angular mo-
mentum of the falling body is conserved, hence
ω′r2 = ωR2. We can substitute r = R − y,
where y is the current depth, and approximate
ω′ = ω

(
R
r

)2 ≈ ω(1+2 y
R ). Therefore, the hori-

zontal displacement speed in the Earth’s frame of
reference vh = (ω′−ω)r ≈ 2ωyR. Finally, hori-
zontal dipslacement is found as∆x =

∫
vhdt =∫

(2ωyR/vv)dy, where the vertical falling speed
vv =

√
2gy. So, we find∆x = 2

3Rω
√
2h3/g ≈

22m.

Now, let obtain the same result using the
Kepler’s laws. Consider the trajectory of the steel
ball as seen in a non-rotating frame of reference.
Although it is a thin ellipse, we have drawn the
figure out of scale in order the facilitate the cal-
culation of areas. The steel ball is released from
point A and it hits the bottom of the shaft at
point D, at distance x from B, the location of bot-
tom at the start of fall. As the falling time is still
t =

√
2h/g, the location of the bottom travels

x′ = (v − ∆v)t = vt − ωht during the fall.
Thus, the horizontal displacement of the landing

point is simply∆x = x− x′.

Now, the distance x can be found using the
Kepler’s second law, stating that the area covered
by radius vector per unit time∆S/∆t is constant,
which is a manifestation of conservation of angu-
lar momentum ∆S/∆t = L/2m = rv⊥/2.
(The latter relation could easily be obtained by
observing a circular orbit.) For our steel ball,
L/2m = Rv/2 = ωR2/2. The area covered
by the steel ball can be calculated as the sum of
the segment OBD and the region ADB. Keeping
in mind that x ≪ R, the segment OBD is simply
a triangle with area x(R−h)/2. Likewise, the re-
gion ACDB is approximately a rectangle of area
xh and knowing that a parabola divides the area
of its surrounding rectangle into proportions 1/3
and 2/3, we conclude that the area of regionADB
is 2xh/3. Thus, from the Kepler’s second law:

S =
1

2
x(R− h) +

2

3
xh =

1

2
vRt,

x =
vt

1 + 1
3

h
R

≈ vt− 1

3
ωht.

Finally, the horizontal displacement ∆x =
x − x′ = 2

3ωht ≈ 22mm. (Note that the naive
answer overestimated the correct one by 50%.)

10. Black box

i) There are a few ways to get an initial idea,
what could be in the black box. One way is to put
the ammeter in series with the voltage source and
measure the current through each combination.

Ubat = 1581± 14mV

Iblack→white = 4.33± 0.09mA

Iblack→blue = 2.21± 0.07mA

Iblue→white = 1.80± 0.06mA

Iblue→black = 2.20± 0.07mA

Iwhite→blue = 90.9± 2.8 µA

Iwhite→black = 81.2± 2.8 µA

Wecan see that the other terminals are connected
to white through the diode. That leaves us three
options.



Wecandeduce the correct schematics of the black
box fromthesemeasurements, but there aremore
straightforward ways to test these options. One
is to measure the voltage U1 between “black”
and “blue”, while connecting the battery between
“black” and “white”. Secondly measure the voltage
U2 between “blue” and “black”, while connecting
the battery between “blue” and “white”.

U1 = 857± 9mV, U2 = 884± 9mV

Since neither is 0we can eliminate options B and
C.

ii) From voltages U1 and U2 and currents
Iblack→white and Iblue→white we can calculate R1

andR2.

R1 = U1/Iblack→white = 196± 7Ω

R2 = U2/Iblue→white = 491± 22Ω

Uncertainties are calculated by summing the re-
lative errors of the current and voltage measure-
ments.

iii) From the current measurements we can
already calculate 4 datapoints for the current
voltage curve of the diode. We obtain additional
two datapoints by measuring the current while
the resistors inside the black box are connected
in parallel.

Iblueandblack→white = 5.86± 0.10mA

Iwhite→blueandblack = 85.3± 2.8 µA

The calculated datapoints:

I0 = 0, U0 = 0

I1 = 1.80mA, U1 = 697mV

I2 = 4.33mA, U2 = 732mV

I3 = 5.86mA, U3 = 760mV

I4 = 90.9 µA, U4 = 1536mV

I5 = 81.2 µA, U5 = 1541mV

I6 = 85.3 µA, U6 = 1569mV


