
1. Dumbbell (6 points)

1) During the �rst collision, we can neglect the e�ect of the
spring, because during the collision time, the balls almost don't
move, hence the spring doesn't deform. Two absolutely elastic
identic balls exchange velocity during a central collision. So, the
�rst ball will remain at rest, and the second one will obtain the
velocity v. So, the velocity of the centre of mass of the dumbbell
is v/2.
2) After the impact, the dumbbell will oscillate in the sys-
tem of reference of its centre of mass with circular frequency
ω =

√
2k/m (balls oscillate so that the middlepoint of the spring

is at rest; twice shorter spring has a twice larger sti�ness).
Due to the energy conservation law, the only way for the

fourth ball to acquire the velocity v is such that all the other
balls remain at a complete rest after the interaction. Therefore,
before the impact of the third and fourth balls, the third ball must
have velocity v (and the second ball must be at rest). This is the
opposite phase of the moment, when the dumbbell started its
motion. Hence, the travel time t of the dumbbell must be a half-
integer multiple of the period T = 2π

√
m/2k. For that phase

of oscillation, the spring is, again, undeformed, i.e. the travel
distance of the centre of mass is also L. So, 2L/v = T (n + 1

2
),

hence

L = πv

(
n+

1

2

)√
m/2k.

2. Microcalorimeter (9 points)

1) Every bridge has thermal resistance L/κS; so, the overall res-
istance is R = L/4κS.
2) The power dissipation P results in an heat �ux through the
bridges, Φ = ∆T/R, and in the change of the heat contained in
the microcalorimeter, Q̇ = CṪ = C∆Ṫ (here, dot denotes the
time derivative). So,

P0 cos(ωt) = C∆Ṫ +∆T/R.

Now, we can search the solution as ∆T = A cos(ωt + ϕ), and
denote ψ = arcsin(Cω/

√
C2ω2 +R−2). Then,

P0 cos(ωt) = A
√
C2ω2 +R−2 cos(ωt+ ϕ− ψ).

So, we must have ϕ = ψ and A = P0/
√
C2ω2 +R−2, i.e.

T = T0 +
P0 cos

(
ωt+ arcsin(Cω/

√
C2ω2 +R−2)

)
√
C2ω2 +R−2

.

3) The amplitude of the oscillations is A = P0√
C2ω2+R−2

; it

must be as sensitive with respect to the small changes of C, i.e.
dA/dC must be maximal by modulus. dA/dC = P0(C

2ω2 +
R−2)−3/2Cω2; if we denote x = (Cω)2, we need to minimize the
following function of x:

ln
[
(dC/dA)2

]
= 3 ln(x+R−2)− lnx+ lnC.

Upon taking derivative and putting it equal to 0, we obtain
3x = x+R−2, from where x = R−2/2, i.e.

ω = 1/
√
2CR.

4) The heat contained in the bridge must be comparable with the
heat, which �ows through it during one half-period (if it is much
smaller, the stationary linear pro�le will develop very soon). So,
AcρSL ≈ AκS/(Lωc); hence,

ωc ≈ κ/cρL2.

3. Tractor (6 points)

1) Let us draw from an arbitrary point B on the road a line par-
allel to the direction of the wind, and let it intersect the smoke
trail at point C. Then, the smoke emitted by the tractor at B
has travelled the distance |BC| = ut, where u is the wind speed.
Tractor itself has travelled the distance |AB| = v0t. So, we can
measure the distances |AB| and |BC from the �gure and calcu-
late

u = v0
|BC|
|AC| =

18mm

42mm
30 km/h ≈ 13 km/h.

2) If the second tractor (at the right-hand-side) had started some-
what earlier, the two tractors had been at the crossroad simul-
taneously. Now, the tractors would be at the same distance from
the crossroad, i.e. for the current position of the second tractor
C, |OC| = |AO| = v0t (this is how we �nd the point C). Its
smoke trail can be found as a line, parallel to its smoke trail at
its actual position B. Such a meeting of the tractors would have
been resulted in the crossing of the smoke trails. which would be
now in position D, with OD = ut. So, we �nd

u = v0
|OD|
|AO| =

27mm

39mm
30 km/h ≈ 21 km/h.

4. Magnetic �eld (6 points)

1) Since the radius of the cyclotron orbit is equal to the radius
of the region R, the trajectory is given by the curve DABE in
the Figure (AB is a circle fragment).

2) Circular part of the trajectory is a quarter of the full circle,
so t = πR/2v.
3) Let O′ be the centre of the circular orbit of the electron and B
� the intersection point of the trajectory with the region bound-
ary. The polygon COBO′ is rhomb, because all the sides are
equal to R. So, the line BO is vertical (because O′C is vertical
and BO is parallel to it). Hence, the inclination angle of the
electron is

α = ∠CO′B = ∠AOB + ∠AOC =
π

2
− arcsin

a

R
.

5. Ball (9 points)

We lay one of the rulers horizontally on the table. Then, we put
the ball on that ruler, and the other ruler laying on the ball. With
�nger, we keep one end of the second ruler in contact with the
�rst ruler and �nd the closest stable position of the ball (resulting
in the largest inclination angle of the second ruler), see Figure.
Now, we consider the torque balance (for the ball) with respect to
the ball and ruler touching point B. Gravity force has no torque,
because it is applied to the centre of the ball O. So, the resultant
vector of the friction and reaction forces at C must have also zero
torque, i.e. it has to go through B. At the threshold of sliding, the
angle between this vector and the surface normal CO is arctanµ.
So, µ = tan∠BCO = tan∠OAB = |OB|/|AB| = R/|AB|. The
radius of the ball R ≈ 40mm can be measured by rolling the ball
on the ruler by angle 2π. The distance |AB| can be measured
directly using the ruler. Several measurements are needed, to
�nd the critical position of the ball more accurately.

We have used one ruler as the basis, because if the surface has
smaller coe�cient of friction than the ruler, the sliding starts at
the point B, hence we are not able to obtain the required result.

6. Recti�er (8 points)

1) Since none of the DC current through the load can come from
the capacitor, all must come through the diode. Hence, the aver-
age current through the diode is also I = 2mA, and the average
power dissipation is obtained by multiplying it with the diode
voltage u = 1V: P = 2mW.
2) If the diode is open, Uload(t) = U0 cos(ωt) − u. If the di-
ode is closed [i.e. U0 cos(ωt) < Uload(t) + u], the capacitor dis-
charges through the load. However, the relative change of the



voltage of the capacitor has to be small (otherwise ∆I/I would
not be small). The respective load voltage as a function of time
is sketched in the Figure. So, we can use the above written
Kircho�'s law with Uload(t) ≈ IR, hence U0 = IR+ u = 21V.

3) The change of the voltage of the capacitor during the discharge
cycle can be estimated as ∆U = ∆Q/C, where the capacitor's
charge drop ∆Q = It, and t is the discharge time. Since the dis-
charge cycle occupies almost all the period (see Figure), we can
use t ≈ 1/ν. Further, ∆I/I = ∆U/U = ∆Q/CU = ∆Q/CIR =
1/CRν. Hence, C ≥ 100/Rν = 200µF.

4) Initially, the capacitor is empty, so that the charge �owing
through the capacitor during the �rst cycle is Q = CIR. Hence,
the average power P1 = Quν = CIRuν = 200mW.

7. Fire (6 points)

The smoke will rise until its density becomes equal to the density
of the air at the same height. Since the molar masses and pres-
sures of the smoke and air are equal, this implies also equal tem-
peratures (pressures are equal, because otherwise, there would be
no mechanical equilibrium). Temperature of the smoke will drop
with increasing height due to adiabatic expansion. If we com-
bine the law of the adiabatic process pV γ = Const with the ideal
gas law (pV/T )γ = Const, we obtain pγ−1/T γ = Const. Tak-
ing a logarithm and di�erential from this equation, we obtain
(γ − 1) dp

p
− γ dT

T
= 0, hence we can use approximate expression

for the require temperature change

20K = ∆T = T
γ − 1

γ

∆p

p
.

We can use ∆p = ρgh, where ρ = pµ/RT ≈ 1.2 kg/m3 is the air
density. Also, we can substitute γ = cp/cV = (cV + R)/cV . So,
we obtain

∆T =
R

cV +R

µgh

R
,

hence

h =
(
1 +

cV
R

) ∆TR

µg
≈ 2040m.

8. Electron (5 points)

Let us write the Newton's II law for x- and y-components of the
electrons coordinates:

mẍ = −eE0ω cosωt,

mÿ = eE0 sinωt.

We can integrate these equations over time (bearing in mind that
initial velocity is zero):

mẋ = −eE0ω
−1 sinωt,

mẏ = eE0ω
−1(1− cosωt).

Now, we can integrate once more, bearing in mind that the initial
coordinates are zero:

x =
eE0

mω2
(cosωt− 1),

y =
eE0

mω2
cosωt+

eE0

ωm
t.

So, the electron performs circular motion in the system of ref-
erence, moving with velocity (parallel to the y-axis) u = eE0

ωm
.

The radius of the orbit is R = eE0
ω2m

. In the laboratory system,
this is a cycloid (the curve drawn by a point on the edge of
a rolling disk); the distance between the neighbouring loops is
∆ = 2πu/ω = 2πR.

9. Asteroid (7 points)

1) The longer semiaxis is a = 1
2
(r1 + r2) =

1
2
(α + β)R. So, the

full energy of the asteroid at the Earth's location is

E

m
= −γM

2a
=

1

2
v2 − γM

R
.

Bearing in mind that v20 = γM
R
, we can rewrite this as

v20
α+ β

= v20 − 1

2
v2.

So, we obtain

v = v0
√

2[1− (α+ β)−1] ≈ 34.5 km/h.

2) Tangential component can be found from the angular mo-
mentum conservation law: vr = vpβ, where the velocity at the
perihelion can be found analogously to v:

vp = v0

√
2

(
1

β
− 1

α+ β

)
= v0

√
2α

α+ β
≈ 37.5 km/h.

So,

vt = v0β

√
2α

α+ β
≈ 24.4 km/h.

Radial component

vr =
√
v2 − v2t ≈ 24.4 km/h.

3) The required components can be found by subtracting the
Earth's orbital velocity. Apparently ur = vr, and

ut = vt − v0 ≈ −5.6 km/h.

4) When the asteroid approaches Earth's surface along the para-
bolic orbit, the energy due to the Earth gravity force gR0 is added
to its kinetic energy in the Earth's system of reference:

w =
√
u2
t + u2

r + 2gR0 ≈ 27.4 km/h

10. Glass plate (10 points)

There are two possible setups. First,
we consider the interference of the
beams, re�ected from the upper and
lower surfaces of the glass plate, see
Figure, upper drawing. Second, we
direct the beam on the edge of the
plate. As a result, on the screen, there
will be almost the same di�raction
pattern, as from a single slit (lower
drawing in the Figure).

In the �rst case, we need to calculate the optical path dif-
ference, see Figure. ∆l = 2(n|CD| − |AB|) = 2(nd/ cosβ −
d sinβ sinα) = 2d(n/ cosβ − sin2 α/n); we keep in mind that
sinβ = sinα/n. We need to �nd such a change in α,
which gives rise to the change of ∆l by λ (this corresponds
to a transition from one di�raction minimum to another one):
∆α · d(∆l)

dα
= λ. Then, we can relate the measured quant-

ity, the distance between the minima on the screen a = L∆α
(where L is the path length |AB| + |BC|) to the plate thick-
ness. d(∆l)

dα
= 2d(sinα/ cos2 β − sin 2α/n) = 2d sinα(cos−2 β −

2 cosα/n). So, Lλ = 2ad sinα(cos−2 β − 2 cosα/n); hence,
d = Lλ/2a sinα(cos−2 β − 2 cosα/n). We can easily measure
α and calculate β; for n, we can use typical value n ≈ 1.4, or use
the Brewster angle αB measurement to �nd n = tanαB . For the
precise measurement of a, we count several, e.g. 10, inter-minima
intervals, and divide the distance between the farthest minima by
10.

In the second case, the angular distance between the minima
is given by ∆α = 2λ/d, so that a = 2Lλ/d and d = 2Lλ/a.
Numerically, the thickness was d ≈ 0.20mm.


