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1. Boat (9 points)
i) From the Newton II law, mdv

dt
+ αdx

dt
= 0. Multiplying this

equation by dt, we obtain dv + α
m

dx = 0. Integrating (i.e.
summing over all the small increments dx and dv) this equation
leads us to

v +
α

m
x = Const,

i.e. k = α
m
.

ii)We proceed in the same way as before, but we need to add the
interaction force between the boat and the boy: mdv

dt
+ αdx

dt
=

M du
dt
. [Note that since the right-hand-side of this equation is

the interaction force, it goes to zero, if the boy leaves the boat.
	erefore, if we want to keep this equation correct even a�er the
boy leaves the boat at themoment of time t = t∗, wemust assume
u(t) ≡ u(t∗) for t > t∗.] Similarly to the previous section, we
obtain

v +
M

m
u(t) +

α

m
x = Const.

iii) We use the conservation law of the previous section, and
compare the value of the le�-hand-side immediately before the
boy lands into the boat with its value a�er a very long time.
Bearing in mind that we need to substitute u(t → ∞) = −u2

(see above), we obtain

0 +
M

m
u1 + 0 = 0 − M

m
u2 +

α

m
s.

So,

s =
M

α
(u1 + u2),

i.e. the result is independent of how long time did the boy spend
in the boat.
2. Nanoclock (10 points)
i)All the charges of the ring are at the samedistance from thepoint
P , l =

√
R2 + z2. So, according to the superposition principle,

the potential is the sum of potential of all the charges,

ϕ = kQ/
√

R2 + z2.

ii)E = −dϕ
dz

= kQz/(R2 + z2)3/2.

iii) For |z| ≪ R we may approximate (R2 + z2)3/2 ≈ R3, so
thatE =≈ kQz/R3.
iv) From the Newton II law, mz̈ = −ekQz/R3, i.e. ω2 =

ekQ/mR3 and f = 1
2πR

√

ekQ
mR

≈ 5.6 × 1012 Hz.

v) At the origin, there are no charges; hence, the electric �eld
lines cannot neither start nor end there. Consider a tiny coaxial
cylinder embracing the origin. 	e �eld lines exit the cylinder
through its bo�om and top surfaces (because there is an electric

�eld E =≈ kQz/R3). Hence there must be �eld lines entering
the cylinder through its side surface. 	is implies a radial repelling
force for an electron situated at that surface, i.e. instability.

Remark: In the same way, one can prove a theorem,
electrostatic equlibria are always unstable.

3. Ball (8 points) A straightforward way to solve parts i), ii),
and iii) is to use conservation of angular momentumwith respect
to any axis laying on the surface (there is no torque with respect
to these axes). Angular momentum at the beginning: L0 =
mvr. Rolling ball is always rotating around the touching point
with the ground (although the location of that point is constantly
changing). From Steiner’s theorem we know that for a rotation
axis that is located at the distance r form the center of mass, the
moment of inertia is I ′ = I + mr2. 	erefore the angular
momentum for rotating ball is L′ = I ′ω and clearly L0 = L′,
thereforemvr = (I + mr2)ω, ω = mvr

I+mr2 .

i)	e torque with respect to center of mass: M = mgµr. Since
M∆t = I∆ω, and the sliding stops when angular speed has
reached valueω, we obtain the corresponding time: t = Iω

mgµr
=

Iv
gµ(I+mr2)

.

ii) Clearly, ω∗ = mvr
I+mr2

and E∗ = 1
2
(mv2

∗ + Iω2
∗) =

1
2
(mr2ω2

∗ + Iω2
∗) = m2v2r2

2(I+mr2)
. If I increases thenE∗ decreases.

iii) Since we didn’t make any assumptions about the functional
form of µ while deriving w∗, the resultsw∗ andE∗ of ii) are still
valid.

iv)	enet forceF = Fµ+Fr causes thedecrease of translational
velocity: m∆v = F∆t, v′(t) = v−(µ+µr)gt. 	e sliding
stops whenω(t) = v′(t)/r. Note that the torque with respect to
center of mass is only caused by kinetic frictional force, therefore
ω(t) = mgµr

I
t. Weget an equation for the timeof the termination

of sliding: mgµr2

I
t = v − (µ + µr)gt, t = Iv

gµ(I+mr2)+gµrI
.

	e corresponding angular speedω∗
′′ = mvr

I+mr2+ µr
µ

I
, and energy

E∗
′′ = 1

2
(I + mr2)ω2

∗ . Clearly,E∗
′′ < E∗.

4. Black box (9 points) Independetly of whether there is a
triangular or a star connection, one can measure the ratio of the
resistances a pair of resistors by connecting the ba�ery to two
outlets — let these be the outlets 1 and 3, and measuring the
voltages between the outlets 1 and 2, and between the outlets 2
and 3. For a star connection,

R3

R1

=
V23

V12

,

where Ri denotes the resistor closest to the i-th outlet; for a

triangular connection,
R3

R1

=
V12

V23

,

where Ri denotes the resistor farthest away from the i-th outlet;
for a triangular connection,

In such a way we �nd
R3

R1

≈ 4,7,
R3

R2

≈ 3,3, and
R2

R1

≈ 1,4,

implyingR1 = 100 Ω,R2 = 140 Ω andR3 = 470 Ω; or
R1

R3

≈ 4,7,
R2

R3

≈ 3,3, and
R1

R2

≈ 1,4,

R3 = 100 Ω, R2 = 330 Ω and R1 = 470 Ω. So, we can
conclude that the largest resistance is 470 Ω, and the middle-
valued resistance is either 330 Ω or 140 Ω.



5. Pencil(6points)Weput thepencilwith its graphite end against
a horizontal sheet of paper, and push the other endwith a �ngertip
(without holding between the �ngers and thereby possibly giving
a torque to it). 	en, there will be a purely longitudinal stress
inside the pencil (there is no bending of the pencil). If we push
strongly enough, we may neglect the weight of the pancil in the
balance of torque with respect to the �ngertip. So, equilibrium
implies that the resultant forceof the friction and reaction forces at
the graphite end are along the axis of the pencil. 	is is possible, if
tan α ≤ µ, whereα is the angle between the pencil and a vertical
line. So, we increase α wile pushing the pencil, and determine
the position α0, when the pencil starts sliding; tan α0 can be
calculated as tan α0 = x/

√
l2 − x2, where l is the length of the

pencil, and x is the length of the projection of the pencil onto a
horizontal plane.
6. Spring (7 points) First, we measure the lengthening of the
spring under its ownweight. 	e relative lengthening of each loop
is propotional to the order number of the loop. So, the average
value of those legth increments is half of the largest increment (for
the topmost loop). 	e topmost loop is deformed by the weight
of the whole spring, hence the average deformation corresponds
to the half-weight of the spring,

kx1 = mg/2.
Now we add a load to the lower end of the spring and measure
the new deformation x2. Since the additional weight of the load
increases the stress of all the loops by the same value Mg, each
loop is deformed additionally by the same length increment. 	e
sum of those additional increments is x2 − x1; according to the
Hook’s law, k(x2 − x1) = Mg. So, x2

x1

− 1 = 2M
m

, and

M =
m

2

x2 − x1

x1

≈ 6 g.

7. Soap �lm (6 points) Suppose the area of a broken part of the
soap �lm is S. 	e corresponding surface energy is ES = 2σS.
	e mass of the soap water that was previously located at the
broken part is m = Shρ, where ρ = 103kg/m3. Assuming
that the surface energy is transformed to the kinetic energy of
the moving front, we get an equation for the speed of the front:

2σS = 1
2
mv2, 4σS = Shρv2. 	erefore v =

√

4σ
hρ

=
√

4 · 0.025
10−6 · 103

m/s = 10m/s and we can estimate the time of

breakup of the soap �lm to be t = D/v = 1
100

s.
8. Magneticpulse (7 points)Sincewe canneglect the inductance
of the coil, it performes as a voltage source, which outputs U =
NSB/τ = 1 V during the time period between t = 0 ms and
10 ms, and 0 V otherwise. 	e characteristic time scales of the

RC andLC cirquits are τ1 = R1C = 0.6 s and τ2 = L/R2 ≈
0.3 s. So, for both cirquits, the processes are very fast, i.e. the
capacitor is e�ectively short-circuited, and almost all the voltage
falls on the inductance.
i) According to the considerations given above, I1 = U/R1 ≈
0.33 A. As for I2, it starts growing from 0 A at t = 0 at a rate,
given byLdI

dt
= U , i.e. I2 = Ut1/L = 5 mA.

ii) When the voltage U is switched o� (at t = τ = 10 ms),
the capacitor will (almost completely, because t2 − τ ≪ R1C)
retain the charge it has accumulated, Q = I1τ . All the voltage
of the capacitor (Q/C) will fall on the resistorR1, so that I

′
1 =

Q/R1C = Uτ/R2
1C ≈ 5.6 mA. As for the inductance, it will

retain (almost completely, because t2 − τ ≪ L/R2) the current
it has acquired during the �rst 10 ms, I ′

2 = Uτ/L = 10 mA.
iii) Since the current in R2 will decay very slowly, as compared
to its growth during the �rst 10 ms, we can neglect the charge
passing thorugh it during t < τ . 	en we can write the Kirho� ’s
law in the formLdI

dt
+R2

dq
dt

= 0, fromwhereLdI+R2dq = 0,
and L∆I = −R2∆q. Since ∆I = −I ′

2, we obtain ∆q =
LI ′

2/R2 = 3.3 mC.
9. Stratostat (5 points)
i)Consider the pressure di�erence at heights z+dz and z: dp =
−ρgdz (the di�erence is simply due to the weight of the layer
dz). 	e density can be found using the state equation of ideal
gas: pV = m

µ
RT, ρ = m

V
= µp

RT
. 	erefore 1

p
dp
dz

= − µg
RT

.

Note that we have a derivative of a logarithm: 1
p

dp
dz

= d ln p(z)

dz
.

	erefore ln(p/p0) = −αz, p = p0e
−αz , where α = µg

RT
.

Alternatively, we can derive this law from the Boltzmann
distribution for the particle density n = n0e

−U/kT , where U
is the potential energy of a molecule. Bearing in mind that for a
constant temperature, the pressure is propotional to the density,
we obtain p = p0e

−U/kT . SubstitutingU = mgz = µ
NA

gz and
R = kNA, we obtain the same result as above.
ii) Clearly, the pressures inside and outside of the stratostat are
equal and depending on the height as p = p0e

−αz , where
α = µag

RT
. For helium inside the sack pV = const. Let the

volume of the stratostat be VS , therefore p0βVS = pVS , where
p is the pressure at the height, where helium has �lled the entire
volume. Since p = βp0, we obtain

µag
RT

h = − ln β, h =
RT
µag

ln 1
β
, h = 17 km.

10. Wedge (5 points) 	e center of mass of the system doesn’t
move, therefore Mu = mvh, where u and vh are the horisontal
components of the velocities of the wedge and block in the lab
frame at some instant of time. In the wedge’s frame, the block has

horisontal velocity v′ = vh + u = vh(1 + m
M

). Since the
block is sliding down the wedge, the vertical component of the
block has to be v↓ = v′ tan α. 	e total kinetic energy in the lab
frameEK = 1

2
(Mu2 + mv2

h + mv2
↓). Substituting the relevant

quantities and simplifying, we obtain

Ek =
m

2
v2
↓β, where β ≡ M

M + m
cot2 α + 1.

	e kinetic energy equals to the change in potential energy:
m
2
βv2

↓ = ∆EP = mg(h − h′). By di�erentiating and noting

thatdh = dt · v↓, we getβdv↓ = gdt, t = β
g
v↓max. From the

above wri�en energy conservation lawwe get v↓max =
√

2gh
β
; so

we �nally have t =
√

2βh
g

=

√

2h
g

(

M
M+m

cot2 α + 1
)

.


