
Estonian-Finnish Olympiad - 2010
Problem 1. Charges in E (8 points) i. (2.5 pts) The
initial and final momentum of the dumbbell differ by 4mv. The
only external force acting on the dumbbell is the electrostatic
force Eq, applied to the blue particle. So, the duration of that
force must satisfy condition Eqτ = 4mv, hence τ = 4mv/Eq.
ii. (3 pts) Once the blue particle enters the electric field, the
dumbbell’s center of mass C obtains acceleration a = Eq/2m.
Let us consider the motion in the system, where C is at rest.
Red and blue particles move symmetrically in that system; let
us consider the red particle. Due to the inertial force Fi =
ma = Eq/2, the equilibrium position of the red particle is shif-
ted (the half-spring is to be deformed by x = Fi/2k = Eq/4k

to achieve the equilibrium); the particle starts from rest, apart
from the equilibrium. So, it starts oscillations, the circular
frequency being given by ω =

√
2k/m (the factor 2 accounts

for the fact that oscillations take place around the center of
the spring and half-spring has twice larger stiffness). For the
dumbbell to return with the same velocity as it approached,
the residual oscillations must be absent (otherwise, some part
of the initial kinetic energy would be turned into the oscillations
energy, so that the center of mass velocity would be decreased).
So, the oscillations phase needs to be ωτ = 2nπ, where n is an
integer. Since the spring’s length achieves minimum only once,
n = 1. So, ωτ = 2π, and the equality can be written as√

2k

m

4mv

Eq
= π.

iii. (2.5 pts) There is a requirement that the red particle never
enters the region x > 0. The most critical moment is t = τ/2
(t = 0 corresponds to the blue particle enetring the electric
field), when the spring is maximally compressed. The center of
mass has displaced by s = at2/2 = (Eq/2m) · τ2/8 = mv2/Eq,
and the spring half-length has decreased by 2x (x is the differ-
ence between lengths of the initial and equlibrium states; we
need the differece between the lengths of the initial, i.e max-
imally stretched state, and maximally compressed state). So,

L

2
> s + 2x = mv2/Eq + Eq/2k.

Problem 2. Thermos bottle (6 points)
i. (3.5 pts) Remark: this problem techically rather challenging.
Therefore, reasonable estimates like P ≈ σεS1(T 4

2 − T 4
1 ) ≈

2.6 W or P ≈ 1
2 σεS1(T 4

2 − T 4
1 ) ≈ 1.3 W will be graded by 2–2.5

pts.
The heat flux radiated from one wall is partially reflected

back by other wall, which is also partially reflected back, etc.
Besides, the flux from the outer wall can hit itself, if it misses
the inner wall. So, near the surface of the outer wall, we can
split the heat flux into inwards flux Qi and outwards flux Qo.
Then, upon designating the flux radiated by the outer wall by
Q = εσS2T 4

2 , we have equalities

Qi = Q + Qo(1 − ε),

i.e. the inward flux consists of (a) inital radiation, and of (b)
the back-reflected part of the outwards flux. Similarly we have

Qo = Qiκ(1 − ε) + Qi(1 − κ) = Qi(1 − κε),

i.e. the outward flux consists of (a) the part κ of itself, which
hits the inner wall and is reflected back, and of (b) the part
1 − κ of itself, which misses the inner wall hence reaches again

the outer wall as an outwards flux. Upon substituting Qo from
the second equation into the first one, we obtain

Q = Qi[1 − (1 − κε)(1 − ε)] = Qiε(1 + κ − κε),

hence Qi = Q/ε(1 + κ − ε). From that inwards flux, the part
which hits the inner wall is κ; in order to get the dissipated
part, we need further to multiply the result by ε. So, the dis-
sipated flux is

Qdi = εσS2T 4
2 κ/(1 + κ − κε).

In order to obtain the flux Qdo, which is radiated from the
inner wall and is dissipated in the outer wall, we proceed in the
same way. Now, let Q = εσS1T 4

1 ; then,

Qo = Q + Qi(1 − κε),

and
Qi = Qo(1 − ε),

so that Qo = Q/[ε(1 + κ − κε)] and

Qdo = εσS1T 4
1 /(1 + κ − κε).

Now, let us consider (an imaginary) situation, when T1 = T2.
This is thermal equilibrium, when the heat flux Qdo given by
the inner wall to the outer one must be equal to the flux Qdi,
which is given by the outer wall to the inner one. Using our
expressions we see that κS2 = S1, i.e. κ = S1/S2. Now we can
finally write down the expression for the net flux given to the
nitrogen,

P = Qdi − Qdo = εσ4πR2
1(T 4

2 − T 4
1 )

1 + (1 − ε)R2
1/R2

2
≈ 1.78 W.

ii. (2.5 pts) The net heat received by the inner wall is spent
on evaporating the nitrogen, i.e. τP = λm, where m = 4

3 πρR3.
So,

τ = 4
3

πρR3λµ/P ≈ 36 h.

Problem 3. Tyrannosaur (T. Rex) (6 points)
i. (3 pts) Knowing that mass m is proportional to volume, the
relationship between mass and length scale is L = l(M/m)1/3.
The force F on animal bones is proportional to its mass and
to the cross-sectional area of the bone; hence, the area is pro-
potional to the mass. So, M

m = N , from which L = lN1/3 ≈
3.23 m. The step length is half of the distance between two
traces of the same leg, i.e. 2 m. This corrsponds to the angle
between the legs α = 2 arcsin 1

3.2 ≈ 36◦, which seems reason-
able.
ii. (3 pts) Let us model the leg with a physical pendulum.
The leg can be approximated as a uniform rod attached from
its upper end (the hip joint). Then its moment of inertia is
I = 1

3 ML2, where M is the leg mass.
For small-angle swings of the pendulum, the only force act-

ing on the leg is from the mass of the leg. Thus, the torque
equation will be

1
3

ML2 · φ̈ = −Mgφ
L

2
;

here, φ is the angle of the leg, so that the gravity force’s lever
arm is equal to φ L

2 . Hence, the circular frequency of the leg
is ω =

√
3g
2L . The displacement A corresponds to the whole

period, i.e. the walking speed v = A/T = Aω/2π = A
2π

√
3g
2L ≈



1.2 m/s ≈ 5 km/h. So, the walking speed is comparable to that
of a human.

Problem 4. Ball (6 points)

The friction force Ff cannot exceed µN , where N is the nor-
mal force. Hence, the resultant vector T⃗ of those two forces
must point to some point Q on the segment AB, the length of
which is 2µR, and R stands for the radius of the ball (so that
AC = µR, where C is the ball’s center).

The ball has three forces applied: the force applied by the
wall (T⃗ ), the gravity force mg⃗, and the external force F⃗ . All the
lines defined by these vectors must intersect in a single point.
Indeed, suppose that the line defined by the force F⃗ intersects
the vertical axis of the ball in a point, different from Q. Then
it would have a non-zero torque with respect to the point Q —
unlike the other two forces, causing imbalance of torques.

Now let us consider the torque balance with respect to O.
The torque of the gravity force mgR is balanced by the torque
of F ; so, in order to have as small as possible force F , its lever
arm must be as long as possible. Hence, Q must be as far
away as possible from O, i.e. coincide with A, and PA must
be perpendicular to OA (this answers the question ii). Finally,
Fmin = mgR/OA = mg/

√
1 + µ2 ≈ 800 N.

Problem 5. Elastic thread (10 points) i. (5 pts)
Using the tape, we fix one end of the thread to one end of the
wooden rod (let it be point A), and press another end (or a
point in the middle of the thread) to some point on the rod by
finger (or also by using the tape; let it be the point B). Then
we hang the load to the middle of that part of the thread,
which is between the points A and B; this will be refferred to
as the point C. Further we measure the final length of the
thread l, together with the non-stretched length l0, and calcu-
late the tension T in the thread: T = 1

2 mg AC
CD , where D is the

middle of the segment AB. By changing the length AB and
the used thread length (the thread can be already stretched
before hanging the load), we can cover the range from l ≈ 1.1l0
to l ≈ 4.5l0.
ii. (5 pts) Note that εS = l−l0

l0
S = V

l0
−S, i.e. V = (ε+1)S =

T
Eε (ε + 1) = T

E (1 + ε−1). Since we are interested in the relative
change of V , it suffices to plot T (1+ε−1) (which is V/E) versus
ε.

Problem 6. Charges in B (5 points)

i. (1.5 pts) In the magnetic field, the particle moves along a
circle of radius R, such that the Lorentz force qvB = mv2/R,
hence R = mv/qB. Outside the magnetic field, the trajectory
is a straight line, see Fig. For the period of circular motion,
y = R − R cos(ωt), for the rest of the time, y = 0 or y = 2R.
ii. (3.5 pts) The second particle follows the first one by being
delayed along the trajectory by the same distance as it was
originally. Once the first particle enters the magnetic field,
the geometrical distance starts decreasing and achieves a min-
imum, when the distance changing rate swaps sign, i.e. reaches
zero (at least for a single moment). In that state, they move as
if being a part of a rigid body, i.e. the distance to the instant-
aneous rotation center (which would be the intersection point
of the perpendiculars to the velocity vectors) must be equal for
both particles (because the velocities are equal). It is easy to
see that this equality of distances is achieved precisely when
the second particle also enters the field and remains satisfied
as long as both particles stay there. When the first particle
exits the field, the distance starts increasing symmetrically to
how it decreased before. The resulting graph is sketched in
Fig; note that the curve is smooth; indeed, non-smooth joints
of segments would imply infinite second time-derivative of the
distance, i.e. infinite acceleration and force.

Once both particles are in the field, they are on a end-
points of circle segment of arclength L0. So, the distance
Lmin = 2R sin α

2 , where the angle in radians α = L0/R. So,

Lmin = 2mv

qB
sin L0qB

2mv
.

Problem 7. Satellite (5 points)
i. (3 pts) Before the collisions, the balls achieve the velocity
u =

√
2gh. The first collison is between the large ball and

ground; the velocity of the large ball reverses direction. Let
us consider the second collision in the system of the center of
mass, which is approximately the same as the large ball’s sys-
tem of reference. In that system, the small ball approaches
with velocity u + u = 2u, and after the collisions, departs with
the same velocity. In the laboratory system, the velocity is
2u + u = 3u = 3

√
2gh.

ii. (2 pts) We use the same method as previously. Let des-
ignate the velocity of the i-th ball before the i + 1-st collision
by vi. Then, in the system of the i-th ball, the i + 1-st ball
approaches and departs (after the collision) with the velocity
vi + u; in the laboratory system, the departing vleocity is

vi+1 = (vi + u) + vi = 2vi + u.

Bearing in mind that v1 = u, we find that v2 = 3u, v3 = 7u,
v4 = 15u etc, vN = (2N − 1)u. So, vN = (2N − 1)

√
2gh, hence

N = ⌈log2

(
1 + vN

2gh

)
⌉ = 11.

Here, ⌈. . .⌉ denotes the ceiling function, i.e. rounding up.
Each next ball is 10 times less massive than the previ-

ous one, so that the lowest ball must have a mass equal to
MN · 10N−1 = 1 × 1010 kg.

Problem 8. Sprinkler (3 points) It is known that for a
body thrown at some angle α to the horizon with a vleocity v,
the maximal flight length is achieved with α = 45◦ (this result



can be also easily derived). That maximal flight length is found
as smax = vt/

√
2, where the flight time t is obtained from the

condition gt = 2v/
√

2. So, smax = v2/g. This distance gives
the radius of the circular region, watered by the sprinkler; its
area is S = πs2

max = πv4/g2.
i. (1.5 pts) Let us plot the flight distance s as a function of the
angle α at the outlet of the sprinkler. This is a smooth curve
with one maximum. For a range of distances from s to s + ∆s,
the amount of received water is (roughly speaking) proportional
to the corresponding width of the angle range ∆α. So, the wa-
tering intensity is (roughly)propotional to Q ∝ ∆α

∆s = 1/ ∆s
∆α .

At the limit of small ∆α and ∆s, this transforms into a de-
rivative: Q ∝ 1/ ds

dα , i.e. Q tends to infinity at the maximum
of s(α). In other words, the best position is at the distance
s = smax.

Problem 9. Power supply (6 points)

i. (2 pts) When the key is closed, there is no current through
the diode, because it has reverse voltage applied. Mean-
while, the voltage applied to the inductance is Ui = Lİ,
hence I = I0 + Uit/L. Since there was initially no current,
I0 = 0, and I = Uit/L. So, the maximal current achieved is
Imax = Uiτc/L. The current through an inductance cannot
change instananuously; so, when the key is opened, all the cur-
rent is redirected to the diode. The diode receives a forward
current, hence it has no voltage drop. Thus, the inductance
obtains the voltage Lİ = Ui −Uo, (which is smaller than −Ui).
Hence, I = I0 − (U0 − Ui)t/L, where I0 is such as to match
the current Imax at the moment when the key is opened. Once
the current reaches zero, the diode is closed and no further
current flows in the system. These findings allow us to sketch
the Figure above.

ii. (2 pts) For the first cycle, we can use the result of the ques-
tion i. We notice that at the beginning of the second cycle, the
system is exactly at the same state as at the beginning of the
first cycle. So, the process starts to behave periodically, see
Fig.

The average output current J is the surface area under
one period of the graph, divided by the period length. So,
J = 1

2 Imaxτ1/(2τc), where τ = τc
Ui

U0−Ui
is the length of a time

segment when Io > 0. So,

J = Imax
1
4

Ui

U0 − Ui
= τc

4L

U2
i

U0 − Ui
.

iii. (2 pts) Now, we can use the result of the question ii, be-

cause the situation is exactly the same as it was, except that
the output voltage will establish itself according to the value of
average current J . Note that average current to the capacitor
is 0 (because its upper plate is isolated from the lower one),
therefore, all the current J goes to the resistor. (The capacitor
works as a buffer, redistributing the strongly fluctuating cur-
rent of the previous graph over time, so that the current to the
resistor is almost constant.) So, the output voltage Uo = JR,
where the expression for J can be found from the answer of the
question ii. It is convenient to designate Uo/Ui = κ. Then we
have

κ(κ − 1) = τcR

4L
⇒ 2κ = 1 ±

√
1 + τcR

L
.

We need κ ≥ 2, so the “–” sign can be excluded, and we arrive
at

Uo = Ui

2

(
1 +

√
1 + τcR

L

)
,

which is valid as long as τcR ≥ 8L. If this inequality is not sat-
isfied, the assumption Uo ≥ 2Ui will not be satisfied, so that
the expression for J will fail.

If Uo < 2Ui, the ascending branch of the Ii(t)-graph is
steeper than the descending one. So, the sawtooth profile of
that graph starts “climbing up”. The higher it goes, the larger
will be J and hence the larger will be Uo. In its turn, larger Uo

results in a steeper the descending branch of the Ii(t) graph;
the process continues until reaching a state when the ascending
and descending branches are equally steep; this corresponds to
U0 = 2Ui. So,

U0 = 2Ui, if τcR < 8L.

Problem 10. Ice-rally (7 points)
i. (2 pts) Since at the very beginning, the effect of the air
friction is negligible, the acceleration (i.e. the tangent of the
graph) gives us the ratio of the friction force Ff and the mass
m, i.e. µg. From the graph, this tangent is µg = 1.0 m/s2,
hence µ = 0.1.

ii. (2.5 pts) When the driving force stops, the acceleration
is reduced by Ff /m = µg, i.e. from the slope at the current
point of the graph we need to subtract the slope of it at the
origin. A close-up sketch of the graph around the period of
gear change is given in Fig. After the gear change, the new
graph follows the ideal graph, but is shifted rightwards by τ2,
this shift is marked also in Fig. Since 2τ1 = τ2, the ascend-
ing and descending slopes in that close-up sketch must be of
equal steepness, i.e. a = µg/2. So, the gear change takes place
at that speed, when the acceleration is twice smaller than at
zero-speed. From the graph we can find that v0 ≈ 25 m/s.
iii. (2.5 pts) The distance difference is the surface area S

between the actual v(t) graph, and the ideal one. These graphs
coincide for v < v0 and upon achieving the value v = vt. So,
the area S is enclosed into the range vt > v > v0, where the
actual graph is, in fact, just the ideal graph, but shifted right-
wards by τ2. This area has a shape of a narrow curved stripe,
the horizontal width of which is at every value of v equal to τ2.
One can divide this stripe into tiny horizontal layers of height
δ and width τ2. If we sum up the surface areas of these layers,
we can bring τ2 before the braces; then, the sum of the layer



widths goes into the braces and yields vt − v0. So, the surface
area S = τ2(vt − v0) ≈ 15 m.

Problem 11. Black box (10 points) There are several
measurements, which can be made.
i. (2 pts) We can measure the voltage of the battery E ≈ 3.2 V.
ii. (2 pts) Then, we can connect battery to the outlets of the
box via ammeter and measure the current. It appears that at
the first moment, Ic0 ≈ 1.3 mA; however, the current starts to
decrease (decreasing twice during τ1 ≈ 12 s) and achieves at
the long-time limit the final value Ic∞ ≈ 0.35 mA.
iii. (2 pts) Further, we can measure voltage at the outlet after
disconnecting the battery. At the first moment, Vd ≈ 2.35 V;
it decreases twice per τ2 ≈ 25 s and vanishes at the long-time
limit.
iv. (4 pts) Finally, we can connect the ammeter to the outlet
immediately after disconnecting the battery, and measure the
current. Initially, it has value Id ≈ 1.0 mA, and vanishes at the
long-time limit.

From iii and ii we can conclude that the box must contain a
capacitor C (if there were an inductance , the current Ic would
increase in time). Because of self-discharge (voltage vanishes
for iii), there must be a resistance R1 parallel to the capacitor.
Because of a prolonged charging (for ii, τ1 > 0), there must
be also a resistor R2 in serial connection to the capacitor. So,
there are two possible schemes, Fig (a) and Fig (b).

In case (a):

Ic0 = E/R2, Ic∞ = E/(R1 + R2),

Id = ER1/R2(R1 + R2), Ud = ER1/(R1 + R2).

In case (b),

Ic0 = E(R−1
2 + R−1

1 ), Ic∞ = E/R1,

Id = E/R2, Ud = ER1/(R1 + R2).

In both cases, we have two unknown quantities (R1 and R2),
and four equations. It appears (follows from these equations)
that in both cases, two equalities should hold between the
measured quantities: Ud = EIc∞/Ic0, and Ic0 = Ic∞ + Id.
So, the effective (independent) number of equations is reduced
by two, which still leaves two — just sufficient for finding R1
and R2, but not enough to distinguish between the cases (a)
and (b). In fact, it can be shown that these two cases cannot be
distinguished even if we study the time-dependences of voltage
and currents. So, we can say that we have either scheme (a)
with R2 = E/Ic0 ≈ 2.5 kΩ and R1 = E/Ic∞ − R2 ≈ 6.9 kΩ,
or scheme (b) with R1 = E/Ic∞ ≈ 9.1 kΩ and R2 = E/Id ≈
3.2 kΩ.

The value of the capacitor can be estimated from charac-
teristic current decay times. For instance, using the charac-
teristic time τ2, in the case (a) we have τ2 = ln 2R1C, hence
C = τ2/ ln 2R1 ≈ 5.2 mF. In the case (b), τ2 = ln 2(R1 +R2)C,
hence C = τ2/ ln 2(R1 + R2) ≈ 2.9 mF.


