
Estonian-Finnish Olympiad - 2011: solutions

1. Spool (12 points) i) First solution. 	emomentary rotation
centre of the spool is the contact point P with the �oor (since
this point is at rest). So, the velocity of the spool is u′ = Rω,
whereω is the angular velocity. Consider trianglePOA, whereA
is de�ned as the point where the loose end of the rope meets the
inner part of the spool at the currentmoment of time, but which is
actually a point of the spool, i.e. it rolls together with the spool);
O is the centre of the spool. Let us denote 6 PAO = β; it is easy
to see that 6 AOP = π − α. 	e velocity ~vA of the point A
is perpendicular to PA and, hence, forms angle β with the loose
end of the rope. Its projection to the rope equals to u, therefore
vA = u/ cos β. Further, ω = vA/l, where l = |AP | can be

found from the cosine theorem: l =
√
R2 + r2 + 2Rr cosα.

	e angle β can be found using the sine theorem for the triangle
AOP : sin β = R sinα

l
. Combining everything together we end

up with

u′ =
uR√

R2 cos2 α+ r2 + 2Rr cosα
=

uR

|R cosα+ r| .

Second solution. Let us decompose the velocity ~vA into two
components: the tangential component (parallel to the rope)
equals (by modulus) to u; let us denote the radial component as
ur . Since the distance between O and A is constant, the projec-
tion of the velocities ofO andA to the lineOA are equal:

ur = v sinα ⇒ v = ur/ sinα ⇒ ω = ur/R sinα.

	evertical component of the velocity of the pointA remains un-
changed if we switch the laboratory system of reference with the
system associated with pointO; hence,

u sinα− ur cosα = ωr sinα = urr/R ⇒

v =
ur

sinα
=

uR

R cosα+ r
.

ii) (2 pts) 	e easiest way to solve this part is to use the energy
balance for in�nitesimal displacement of the cylinder and apply
the answer to the previous question:
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⇒
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.

iii)Let us write the force balance projection to the horizontal axis
assuming that the spool is at the edge of slipping, i.e. the friction
force Ff = µminN , whereN = mg − F sinα is the normal
force:

Ma = F cosα+µminN = F cosα+µmin(Mg−F sinα).

Using the result of the previous task, we can use this equation dir-
ectly to obtain an expression for the minimal allowed value of the
coe�icient of friction:
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iv)	e angular moment of the spool with respect to the edge of
the threshold conserves during the impact (since the impact force
has zero arm):

Mu(R−H) + J
u

R
=
(

J +MR2
) v

R
⇒

v = u

(

1− H/R

1 + J
MR2

)

v) From the energy conservation law we obtain immediately

(J +MR2)
v2

R2
= (J +MR2)

w2

R2
+ 2MgH ⇒

w =

√

v2 − 2gH

1 + J
MR2

.

vi)	e spool is the most prone to jumping immediately a�er the
impact; the gravity force needs to be large enough to bind the
centre of mass to the rotational motion around the edge of the
threshold:

Mv2
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2. Capacitor (6 points)
i)	e energy is W = CU 2/2 = 1

2
ε0

A
d
E2d2 = 1

2
ε0AdE

2;

hence, the energy densityw = W/Ad = 1

2
ε0E

2.
ii)	ere are two ways to calculate the force. First, we notice that
the innermost charges q at the capacitor plates are a�ected by the
electric �eldE, therefore there is a forceqE actingupon these. 	e
outermost charges, however, have no electric �eld around them
(because outside the inter-plate space, there is no electric �eld).
Due to the Gauss law, the electric �eld decreases linearly with the
net charge le� below the level of the current point (i.e. towards
the inter-plate space). 	erefore, the electric �eld averaged over
the charges is just half of the maximal valueE: 〈E〉 = 1

2
E, and

the net force acting on the plate is F = Q 〈E〉 = CEd 〈E〉 =
1

2
ε0AE

2.
	e secondway includeswriting the energy balance for a small

displacement of a plate: F · δd = δ(Q2/2C) = Q2

2ε0A
δd =

1

2
C2E2d · δd ⇒ F = 1

2
ε0AE

2.

iii) Let us push away part of the water from the inter-plate space
so that there will be a small region of plate areadA, where there is
no water between the plates (here, ∆p is the pressure di�erence
between the inter-plate space and the outside regions). By doing
so, we perform work d · δA ·∆p, and increase the capacitor’s en-
ergy:

δW = δ(Q2/2C) =
Q2d

2ε0

[

1

εA
− 1

ε(A− δA) + δA

]

.

So,

δW =
Q2d(ε− 1) · δA

2ε0ε2A2
=

1

2
ε0E

2d(ε− 1) · δA;

comparing this with the pressure work d · δA ·∆p we conclude
that

∆p =
1

2
ε0E

2(ε− 1) ⇒ p = p0 +
1

2
ε0E

2(ε− 1).

3. Charged cylinder (8 points)
i)Moving surface charge creates a solenoidal surface current with
the surface density j = σv = σωr. From the circulation the-
orem for a rectangular loop embracing a segment of surface cur-
rentweobtain Bl

µ0
= jl, where l is the lengthof the surface current

segment (so that jl gives the current �owing through the loop).
Hence,B = µ0j = µ0σωr.
ii)Using formula E = dΦ

dt
= B dS

dt
, where S is the area covered

by the wire, we obtain E = Bωr2/2. Indeed, during a small time
interval dt, the wire covers a equilateral triangle of side lengths r,
r, and rωdt; its area is apparently r2ωdt/2. By using the earlier
obtained expression forB we end up with

E = µ0σω
2r3/2.

iii)We need to show that from the previous task, dS
dt

is independ-
ent of the wire shape. First we note that due to rotational sym-

metry, dS
dt
, it cannot depend on the rotation angle, i.e. dS

dt
≡ Ṡ =

Const. Further we note that regardless of the wire shape, during
the entire rotation period 2π/ω, the whole circle area is covered;

Ṡ · 2π/ω = πr2 ⇒ Ṡ = r2ω/2.
4. Black box (10 points)	ere are several ways to perform this
task. First one can notice that if two capacitors discharge at the
same resistor, starting with equal voltages and ending also with
equal voltages, the ratio of the discharge times equals to the ratio
of the capacitances (because for each given voltage, the discharge
currents are the same, but larger capacitor hasmore charge—pro-
portionally to the capacitance). 	erefore we can �rst charge the
known capacitor (using the ba�ery), and let it discharge on the
voltmeter (which has some �nite resistance), measuring the time
t1 required for it to reach a pre-de�ned �nal voltage. 	enwe need



to repeat the procedure with the other capacitor and measure the
time t2 and calculateC2 = C1t2/t1; the uncertainty is estimated

as∆C1 = C1

(

∆t1
t1

+ ∆t2
t2

+ ∆C1

C1

)

.

It is recommended to check thenegligibility of the leak current
across the plates of the capacitor. To this end, one can charge a ca-
pacitor, measure the voltage, remove the voltmeter and wait for
some time (of the order t1 and t2), and check again the voltage.

Another way is to discharge completely one capacitor by
short-circuiting its terminals and charge the other capacitor up to
the voltage of the ba�ery. Further, we connect the terminals A
and B so that the capacitors re-distribute the chargeQ = EC1

and take the same voltage: Q1/C1 = (Q − Q1)/C2 ⇒Q1 =
QC1/(C1 + C2) = EC2

1/(C1 + C2). Consequently, the new
voltage (whichwemeasure) isU = Q1/C1 = EC1/(C1+C2),
from whereC2 = ( E

U
− 1)C1.

5. Plutonium decay (3 points)
Let the number of Pu239-atoms be reduced during time interval
t = 1 s by a factor of 1 − λ (with λ ≪ 1). 	en, during the
time period of τ1/2, it is reduced by a factor of (1 − λ)τ1/2/t ≈
e−λτ1/2/t = 1

2
⇒ λ = t ln 2/τ1/2. 	erefore, the number of

atom decay events isNd = Nt ln 2/τ1/2, whereN = ρdS/m0

is the number of atoms, i.e. the α-particle �ux is Φ = Nd/2St
(where the factor 2 accounts for the fact that the particles are emit-
ted towards the both sides of the plate). Upon bringing all the ex-
pressions together, we obtain

Φ =
ρd ln 2

2τ1/2m0

≈ 2.36 × 1013 m−2 · s−1.

6. Violin string (9 points)
i) When the plate slides, there is a constant friction force µ2N
acting upon the block, which means that the equilibrium deform-
ation of the spring is x0 = µ2N/k; the net force acting upon the
block (due to spring and friction) is given by F = −kξ, where
we have de�ned ξ = x− x0. 	erefore, while sliding, the block
oscillates harmonically around the point ξ = 0. Slipping starts
when the static friction will be unable to keep equilibrium, i.e.
at kx = µ1N , which corresponds to ξ0 = (µ1 − µ2)N/k.
If the plate moves slowly, the block is released with essentially
missing kinetic energy, and the energy conservation law yields
1

2
kξ20 = 1

2
mv2max ⇒ vmax = ξ0

√

k/m.
ii)Asmentioned, when the plate slides, themotion of the block is
harmonic, i.e. the graph of x(t) is a segment of a sinusoid; when
there is no sliding, the blockmoves together with the plate, i.e. the
graph ofx(t) is a straight line. At themomentwhen slipping starts
or stops, the oscillatory speed is equal to the speed of plate, i.e. the

straight line is tangent to the sinusoid. 	e length of a straight seg-
ment can be calculated as

T1 = 2ξ0/u = 2(µ1 − µ2)N/ku;
the sinusoidal segment corresponds to a half-period and therefore
has a length of T2 = π

√

m/k.

iii)	e speed v(t) = dx
dt

is the derivative of x(t); therefore, the
sinusoidal segment of x(t) will correspond to a sinusoidal seg-
ment of v(t), and a straight segment of x(t) — to a horizontal
segment of v(t). 	e resulting graph is depicted below.

iv) Let the amplitude of the oscillations be A, i.e. the sinusoidal
segments follow the law ξ(t) = A cos(ωt), whereω =

√

k/m.
Correspondingly, v(t) = Aω sin(ωt) ⇒ A sin(ωt) =
v(t)/ω; hence, for any point at a sinusoidal segment, ξ2 +
v2/ω2 = A2. At a point, where a sinusoid and a straight line
meet, the straight line and sinusoid have equal values for ξ =
ξ0 = (µ1 − µ2)N/k and v = u. Consequently,

(µ1 − µ2)
2N 2/k2 + u2/ω2 = A2 ⇒

A =
1

k

√

(µ1 − µ2)2N 2 + u2mk.

v)	eoscillations will be almost harmonic when the straight seg-
ments are very short, i.e. when u/ω ≫ (µ1 − µ2)N/k ⇒
u ≫ (µ1 − µ2)N/

√
mk.

7. Vacuum bulb (8 points)
i) Each pumping cycle reduces the number of molecules inside
the bulb by a factor of (1 − α); therefore, a�er N cycles, the
number of molecules (and hence, the pressure) by a factor of
β = (1− α)N ≈ e−Nα ⇒

N = − ln β

α
.

ii)Majority of the pumping cycles are done when the pressure in-
side the bulb is negligible as compared to the outside pressure.
During such a cycle, a work equal to p0V α is done. 	erefore,
A ≈ Np0V α = p0V | ln β|.

iii) Due to adiabatic law, pV γ = Const; when combined with
the gas law pV ∝ T we obtain pγ−1 ∝ T γ . During the last
downwards motion of the piston, the pressure inside the cylinder

is increased by a factor of 1/β; thus, T = T0β
1
γ −1.

iv)According to themodi�ed pumping scheme, the work/energy
loss is only due to the release of the hot air. Note that if we had
a cylinder of volume V , we could be able to create vacuum inside
there using only one pumping motion, i.e. by performing work
A = p0V and without any energy loss. Now, we perform an ex-
cess work, which is converted into internal energy of the released
hot air, which needs to be calculated. Let ξ = p

p0
be an inter-

mediate rarefaction factor; then, we can apply the previous result
to calculate the internal energy of released air, if its quantity is dν

moles: dU = T0(ξ
1
γ −1 − 1)cV dν . Let us note that the num-

ber of moles inside the bulb is ν = p0ξV
RT0

⇒ dν = p0V
RT0

dξ. So,

U = p0V
cV
R

∫ 1

0
(ξ

1
γ −1 − 1)dξ = (γ − 1)p0V

cV
R
. Now, recall

that γ = cp/cV = 1 + R
cV

, hence cV
R

= 1

γ−1
and U = p0V .

	is gives us the energy loss due to heating the released air; an-
other p0V is required for loss-free creation of the vacuum. Hence,
the total required work isA = 2p0V .
8. Heat sink (6 points)
i)When the average temperature is stable atT0, all the power dis-
sipated at the electronic component is eventually given to the air:
the air is being heated with powerP . As the heat �ux depends lin-
early on the temperature di�erence between a point on the plate
and the air, the average heat �ux and therefore the net power dis-
sipated into the air depends linearly on the average temperature of
the plate. 	e average temperature determines the radiated power.

Now consider the situation a�er the heating has ended. 	e
average temperature is initially the same, so the radiated heat
power is initially still P . By the de�nition of heat capacity, an
in�nitesimal heat amount given to the surroundings is dQ =
−C dTavg with the minus sign encoding the direction of the heat

�ow. 	us, at the �rst moment, P = dQ
dt

= −C dTavg

dt
. Assum-

ing that during τ the average temperature depends approximately
linearly on time (because T0 − T1 = 1 ◦C is much less than the

usual ambient temperature), dTavg

dt
≈ T1−T0

τ
andC ≈ Pτ

T0−T1
=

350 J/◦C. Actually the graph ofTavg(t) is slightly curved down-
wards (as it is an exponential eventually stabilizing at the ambient
temperature) and initially somewhat steeper, soC is a bit smaller.
ii)	eaverage temperature of the heat sink falls o� exponentially,
therefore, if the “tail” of the given graph turns out to be expo-
nential, we can presume the “tail” depicts the situation where the
sensor is sensing the average temperature and the initial “bump”



in the temperature distribution has evened out. Extrapolating the
exponential to t = 0we get the initial average temperature Tavg,0

(immediately a�er the Q has been dissipated into the sink) and,
by Q = C(Tavg,0 − Tamb), the heat Q. 	e ambient temper-
ature Tamb can be read o� from the beginning of the given graph
where the sensor’s surroundings have not yet heated up. 	is is
furthermore a check for the assumption T0 − T1 ≪ Tamb made
in the �rst part of the solution. From the table, Tamb = 20.0 ◦C.

Let us analyse the (yet hypothetical) exponentialTavg−Tamb

ought to obey, so that eventually we expect T ∼ Tavg =

Tamb + Tce
− t

tc whereTc and tc are, respectively, a characteristic
temperature and a characteristic time. (	e “∼”means “is asymp-
totical to” or “approaches”.) We plot ln(T −Tamb) using the data
from the table. 	en approximate the “tail” linearly (valuing the
end of it most) to get ln[(T − Tamb)/

◦C] ∼ 4.89 − t
300 s

.
	erefore Tc ≈ e4.89 ◦C ≈ 133 ◦C. On the other hand,
plugging t = 0 into our exponential function shows that
Tavg,0 − Tamb = Tc and, �nally,Q = CTc ≈ 46 700 J.

Actually, quite a good result can be obtained without re-
plo�ing anything, by just considering the last three datapoints
of the table. Denote ∆Ti ≡ Ti − Tamb. If the times t3 −
t2 = t2 − t1, then with an exponential we should observe
that ∆T3/∆T2 = ∆T2/∆T1. 	e last three timepoints are
good indeed, so we check ∆T1 = 4.4 ◦C, ∆T2 = 2.3 ◦C
and∆T3 = 1.2 ◦C. 	eir ratios are∆T3/∆T2 ≈ 0.522 and
∆T2/∆T1 ≈ 0.523, a splendid match. 	is con�rms the ex-
ponential “tail”. As in every equal time interval the ∆T is mul-
tiplied by the same number (that is the essence of exponentials),

Tc = ∆Tavg,0 = ∆T3 ×
(

∆T2

∆T3

)

t3
t3−t2 ≈ 114 ◦C. From this,

Q ≈ 39 900 J. 	is is discrepant from our previous calculation,

but not toomuch: Tc is exponentially sensitive to theT -intercept
of the straight line ��ed to the “tail” (its crossing point with the
T -axis) on the logarithmic plot. 	e bump has still not yet disap-
peared completely enough.
9. Coe�icient of refraction (10 points)
i) We direct the laser beam radially into the semi-cylinder: per-
pendicularly through its cylindrical surface. 	e beam enters the
plate without refraction and reaches the opposing �at face at the
axis of the cylinder. Depending on the angle between that face and
the beam, there may or may not be a refracting beam, but there is
always a re�ecting (from the �at face) beam . We rotate the semi-
cylinder around its axis to �nd the position, when the refracting
beam appears/disappears; the angle α between the �at face and
the incident beam correspond to the angle of complete internal
re�ection, i.e. n = 1/ cosα. We can measure cosα using the
graph paper: we draw the beam as a segmentAO and the �at face
of the semi-cylinder as a line BO so that 6 ABO = π/2; then,
n = |AO|/|BO|. 	e uncertainty can be found using the for-

mula ∆n = n(∆|AO|

|AO|
+ ∆|BO|

|BO|
) and by estimating the uncer-

tainties of the direct length measurements∆|AO| and∆|BO|.
ii)Wedrop the liquid on the prism and press it against the �at face
of the semi-cylindrical plate. Further we study the complete in-
ternal re�ection at the boundary between the semi-cylinder and
prism (which is �lled with the liquid) by repeating the above
described experiment. 	ereby we measure new lengths A′O
and B′O; the condition of complete internal re�ection is now
n/nl = |A′O|/|B′O| ⇒ nl = n|B′O|/|A′O|, where nl

stands for the coe�icient of refraction of the liquid. 	e uncer-

tainty is now calculated as∆nl = nl(
∆|A′O|

|A′O|
+ ∆|B′O|

|B′O|
+ ∆n

n
).


