
29

th

International Physis Olympiad

Reykjavík, Ieland

Theoretial ompetition

Saturday, July 4

th

, 1998

9 a.m. � 2 p.m.

Read this �rst:

1. Use only the pen provided.

2. Use only the front side of the answer sheets.

3. Use as little text as possible in your answers; express yourself primarily with equa-

tions, numbers and �gures. Summarize your results on the answer sheets.

4. For anything but your answers and your graphs use the blank answer sheets. This

applies e.g. when you are asked to show that : : : and also for all alulations you

want to be onsidered for evaluation.

5. You may often be able to solve later parts of a problem without having solved the

previous ones. In suh ases you may take the result of a previous part as given, in
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1 Rolling of a hexagonal prism

1

1.1 Problem text

Consider a long, solid, rigid, regular hexagonal prism like a ommon type of penil (Figure

1.1). The mass of the prism is M and it is uniformly distributed. The length of eah

side of the ross-setional hexagon is a. The moment of inertia I of the hexagonal prism

about its entral axis is

I =

5

12

Ma

2

(1.1)
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a

Figure 1.1: A solid prism with the ross setion of a regular hexagon.

The moment of inertia I

0

about an edge of the prism is

I

0

=

17

12

Ma

2

(1.2)

a) (3.5 points) The prism is initially at rest with its axis horizontal on an inlined plane

whih makes a small angle � with the horizontal (Figure 1.2). Assume that the surfaes

of the prism are slightly onave so that the prism only touhes the plane at its edges.

The e�et of this onavity on the moment of inertia an be ignored. The prism is now

displaed from rest and starts an uneven rolling down the plane. Assume that frition

prevents any sliding and that the prism does not lose ontat with the plane. The angular

veloity just before a given edge hits the plane is !

i

while !

f

is the angular veloity

immediately after the impat.

Show that we may write

!

f

= s!

i

(1.3)

and write the value of the oe�ient s on the answer sheet.
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�

Figure 1.2: A hexagonal prism lying on an inlined plane.

b) (1 point) The kineti energy of the prism just before and after impat is similarly K

i

and K

f

.

Show that we may write

K

f

= rK

i

(1.4)

and write the value of the oe�ient r on the answer sheet.

) (1.5 points) For the next impat to our K

i

must exeed a minimum value K

i;min

whih may be written in the form

K

i;min

= ÆMga (1.5)

where g = 9.81 m/s

2

is the aeleration of gravity.

Find the oe�ient Æ in terms of the slope angle � and the oe�ient r. Write your

answer on the answer sheet. (Use the algebrai symbol r, not its value).

d) (2 points) If the ondition of part () is satis�ed, the kineti energy K

i

will approah

a �xed value K

i;0

as the prism rolls down the inline.

Given that the limit exists, show that K

i;0

may be written as:

K

i;0

= �Mga (1.6)

and write the oe�ient � in terms of � and r on the answer sheet.

e) (2 points) Calulate, to within 0.1

Æ

, the minimum slope angle �

0

, for whih the uneven

rolling, one started, will ontinue inde�nitely. Write your numerial answer on the answer

sheet.

1.2 Solution

a)

Solution Method 1

At the impat the prism starts rotating about a new axis, i.e. the edge whih just hit

the plane. The fore from the plane has no torque about this axis, so that the angular

momentum about the edge is onserved during the brief interval of impat. The linear

3



momentum of the prism as a whole has the same diretion as the veloity of the enter of

mass (

~

P = M ~v

C

where the subsript C refers to the enter of mass), and this diretion

is easy to follow when we know the axis of rotation at a given time. Just before impat

~

P

is direted 30

Æ

downwards relative to the plane, but will after impat point 30

Æ

upwards

from the plane, see Figure 1.3.

PSfrag replaements
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Figure 1.3: The linear momentum of the prism as a whole, before and after impat.

To �nd the angular momentum about the edge of impat just before the impat we

use the equation relating angular momentum

~

L about an arbitrary axis to the angular

momentum

~

L

C

about an axis through the enter of mass parallel to the �rst one:

~

L =

~

L

C

+M ~r

C

� ~v

C

(1.7)

where the subsript C refers to the enter of mass. Here, this is applied to an axis at the

point of impat so that ~r

C

is the vetor from that point to the enter of mass (Figure

1.3). The vetors on the right hand side of equation (1.7) both have the same diretion.

Hene we get for the quantities just before impat

2

j~r

C

� ~v

Ci

j = r

C

v

Ci

sin 30

Æ

= a

2

!

i

= 2 (1.8)

L

i

= I !

i

+

1

2

M a

2

!

i

=

�

5

12

+

1

2

�

M a

2

!

i

=

11

12

M a

2

!

i

(1.9)

On the other hand, angular momentum about the edge just after impat is, from

equation (1.2):

3

2

This may also be done by using Steiner's theorem twie, going from the previous axis of impat to

the enter of mass and from there to the new axis of impat.

3

Alternatively:
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L

f

= I

0

!

f

=

17

12

Ma

2

!

f

(1.10)

where the subsript f always refers to the situation just after impat. We may notie that

the di�erene omes about beause of the di�erent diretions of ~v

Ci

and ~v

Cf

. Now, when

we state the onservation of angular momentum, L

i

= L

f

, we obtain a relation between

the angular veloities as follows:

!

f

=

11=12

17=12

!

i

=

11

17

!

i

(1.11)

We thus get:

s = 11=17 (1.12)

We may note that s is independent of a, !

i

, and �.

Solution Method 2

On impat the prism reeives an impulse

~

P [N � s℄ from the plane at the edge where the

impat ours. There is no reation at the edge whih is leaving the plane. The impulse

has a omponent P

k

parallel to the inlined plane (positive upwards along the inline in

Figure 1.3 and a omponent P

?

perpendiular to the plane (positive upwards from the

plane in the same �gure).

We an set up three equations with the three unknowns P

k

, P

?

and the ratio s =

!

f

!

i

.

The quantity P

k

is the hange in the parallel omponent of the linear momentum of the

prism and P

?

is the orresponding hange in perpendiular linear momentum. Thus:

P

k

= M (!

i

� !

f

) a �

p

3

2

(1.13)

P

?

= M (!

i

+ !

f

) a �

1

2

: (1.14)

We �nally have:

P

?

a

1

2

� P

k

a

p

3

2

= I (!

i

� !

f

) (1.15)

sine the right hand side is the hange in angular momentum about the enter of mass.

Equations (1.13), (1.14) and (1.15) an now be solved for the ratio s =

!

f

!

i

giving, of

ourse, the same result as before.

L

f

= I !

f

+M j~r

C

� ~v

Cf

j = I!

f

+Ma

2

!

f

sin 90

Æ

=

�

5

12

+ 1

�

Ma

2

!

f

=

17

12

Ma

2

!

f
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b)

The linear speed of the enter of mass just before impat is a!

i

and just after impat

it is a!

f

. We know that we an always write the kineti energy of a rotating rigid body

as a sum of �internal� and �external� kineti energy:

K

tot

=

1

2

I !

2

+

1

2

M v

2

C

(1.16)

From this we see that in our ase the kineti energy K

tot

is proportional to !

2

both

before and after impat so that we get

K

f

= r K

i

=

�

11

17

�

2

K

i

=

121

289

K

i

(1.17)

so

r = 121=289 � 0:419 (1.18)

)

The kineti energy K

f

after the impat must be su�ient to lift the enter of mass

to its highest position, straight above the point of ontat. The angle through whih ~r

C

moves for this is

x =

�

2

� � (1.19)

where � = 60

Æ

is the top angle of the triangles meeting at the enter of the polygon.

4

The

energy for this lifting of the enter of mass is

E

0

=Mga(1� os x) = Mga (1� os(30

Æ

� �)) (1.20)

and we get the ondition

K

f

= rK

i

> E

0

= Mga (1� os(30

Æ

� �)) (1.21)

thus

Æ =

1

r

(1� os(30

Æ

� �)) (1.22)

(Note that os(30

Æ

� �) =

p

3

2

os � +

1

2

sin �).

d)

Let K

i;n

and K

f;n

be the kineti energies just before and just after the nth impat.

We have shown that we have the relation

4

In the general ase � = 2�=N .
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K

f;n

= r K

i;n

(1.23)

where r =

121

289

for a hexagonal prism. Between subsequent impats the height of the enter

of mass of the prism dereases by a sin � and its kineti energy inreases for this reason

by

� =Mga sin � (1.24)

We therefore have

K

i;n+1

= rK

i;n

+�: (1.25)

One does not have to write out the omplete expression K

i;n

as a funtion of K

i;1

and

n to �nd the limit. This would atually be a proof that the limit exists (see below) but

this is given in the problem text. Hene one an make K

i;n+1

� K

i;n

arbitrarily aurate

for su�iently large n. The limit K

i;0

must thus satisfy the iterative formula, i.e.

K

i;0

= rK

i;0

+� (1.26)

yielding the solution

K

i;0

=

�

1� r

: (1.27)

i.e.

� =

sin �

1� r

(1.28)

We an also solve the problem expliitly by writing out the full expressions:

K

i;2

= r K

i;1

+� (1.29)

K

i;3

= r K

i;2

+� = r

2

K

i;1

+ (1 + r)� (1.30)

: : :

K

i;n

= r

n�1

K

i;1

+ (1 + r + : : :+ r

n�2

)� (1.31)

= r

n�1

K

i;1

+

1� r

n�1

1� r

� (1.32)

In the limit of n!1 we get

K

i;n

! K

i;0

=

�

1� r

(1.33)

whih is, of ourse, the same result as before.

If we alulate the hange in kineti energy through a whole yle, i.e. from just before impat

number n until just before impat n+ 1 we get

�K

i;n

= K

i;n+1

�K

i;n

= (r � 1)r

n�1

K

i;1

+ r

n�1

� (1.34)

= r

n�1

(�� (1� r)K

i;1

) (1.35)
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This is positive if the initial value K

i;1

< K

i;0

so that K

i;n

will then inrease up to the limit

value K

i;0

. If, on the other hand, K

i;1

> K

i;0

, the kineti energy K

i;n

just before impat will

derease down to the limit K

i;0

.

All of this may remind you of motion with frition whih inreases with speed. Mathemati-

ally speaking, the main di�erene is that we here are dealing with di�erene equations instead

of di�erential equations.

e)

For inde�nite ontinuation the limit value of K

i

in part (d) must be larger than the

minimum value for ontinuation found in part ():

1

1� r

� =

1

1� r

Mga sin � > Mga (1� os(30

Æ

� �)) =r (1.36)

We put A =

r

1�r

=

121

168

:

A sin � > 1� os 30

Æ

os � � sin 30

Æ

sin � (1.37)

(A+ 1=2) sin � +

p

3=2 os � > 1 (1.38)

To solve this we de�ne

5

u = aros

 

A+ 1=2

p

(A+ 1=2)

2

+ 3=4

!

� 35:36

Æ

(1.39)

and obtain

os u sin � + sinu os � > 1=

p

(A+ 1=2)

2

+ 3=4 (1.40)

sin(u+ �) > 1=

p

(A+ 1=2)

2

+ 3=4 (1.41)

� > arsinf1=

p

(A + 1=2)

2

+ 3=4g � u � 41:94

Æ

� 35:36

Æ

= 6:58

Æ

(1.42)

That is

�

0

� 6:58

Æ

(1.43)

If � > �

0

and the kineti energy before the �rst impat is su�ient aording to part

(), we will, under the assumptions made, get an inde�nite �rolling�.

5

You an of ourse solve any of the inequalities in a purely numerial way, e.g. by progressive guessing

or by using the approximations sin� � � and os� � 1� �

2

=2.

8



1.3 Grading sheme

Part 2(a)

Answer: s = !

f

=!

i

= 11=17, equation (1.12) 3.5

Part 2(b)

Answer: r = K

f

=K

i

= s

2

= 121=289, equation (1.18) 1.0

Part 2()

Answer: K

i;min

by Æ, equation (1.22) 1.5

Part 2(d)

Answer: Limit K

i;0

by � = sin �=(1� r), equation (1.28) 2.0

Part 2(e)

Answer: Minimum angle �

0

= 6:58

Æ

, equation (1.43) 2.0
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2 Water under an ie ap

6

2.1 Problem text

An ie ap is a thik sheet of ie (up to a few km in thikness) resting on the ground below

and extending horizontally over tens or hundreds of km. In this problem we onsider the

melting of ie and the behavior of water under a temperate ie ap, i.e. an ie ap at

the melting point. We may assume that under suh onditions the ie auses pressure

variations as a visous �uid, but deforms in a brittle fashion, prinipally by vertial

movement. For the purposes of this problem the following information is given.

Density of water: �

w

= 1:000 � 10

3

kg=m

3

Density of ie: �

i

= 0:917 � 10

3

kg=m

3

Spei� heat of ie: 

i

= 2:1 � 10

3

J=(kg

Æ

C)

Spei� latent heat of ie: L

i

= 3:4 � 10

5

J=kg

Density of rok and magma: �

r

= 2:9 � 10

3

kg=m

3

Spei� heat of rok and magma: 

r

= 700 J=(kg

Æ

C)

Spei� latent heat of rok and magma: L

r

= 4:2 � 10

5

J=kg

Average outward heat �ow through the

surfae of the earth:

J

Q

= 0:06 W=m

2

Melting point of ie: T

0

= 0

Æ

C, onstant

a) (0.5 points) Consider a thik ie ap at a loation of average heat �ow from the interior

of the earth. Using the data from the table, alulate the thikness d of the ie layer

melted every year and write your answer in the designated box on the answer sheet.

b) (3.5 points) Consider now the upper surfae of an ie ap. The ground below the ie

ap has a slope angle �. The upper surfae of the ap slopes by an angle � as shown in

Figure 2.1. The vertial thikness of the ie at x = 0 is h

0

. Hene the lower and upper

surfaes of the ie ap an be desribed by the equations

y

1

= x tan�; y

2

= h

0

+ x tan � (2.1)

Derive an expression for the pressure p at the bottom of the ie ap as a funtion of

the horizontal oordinate x and write it on the answer sheet.

Formulate mathematially a ondition between � and �, so that water in a layer

between the ie ap and the ground will �ow in neither diretion. Show that the ondition

is of the form tan � = s tan�. Find the oe�ient s and write the result in a symboli

form on the answer sheet.

The line y

1

= 0:8 x in Figure 2.2 shows the surfae of the earth below an ie ap. The

vertial thikness h

0

at x = 0 is 2 km. Assume that water at the bottom is in equilibrium.

On a graph answer sheet draw the line y

1

and add a line y

2

showing the upper surfae

of the ie. Indiate on the �gure whih line is whih.

6
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�

�

y

x

y = h

0

y = 0

x = 0

S

I

G

Figure 2.1: Cross setion of an ie ap with a plane surfae resting on an inlined plane

ground. S: surfae, G: ground, I: ie ap.

) (1 point) Within a large ie sheet on horizontal ground and originally of onstant

thikness D = 2:0 km, a onial body of water of height H = 1:0 km and radius r = 1:0

km is formed rather suddenly by melting of the ie (Figure 2.3). We assume that the

remaining ie adapts to this by vertial motion only.

Show analytially on a blank answer sheet and pitorially on a graph answer sheet,

the shape of the surfae of the ie ap after the water one has formed and hydrostati

equilibrium has been reahed.

d) (5 points) In its annual expedition an international group of sientists explores a

temperate ie ap in Antartia. The area is normally a wide plateau but this time they

�nd a deep rater-like depression, formed like a top-down one with a depth h of 100 m

and a radius r of 500 m (Figure 2.4). The thikness of the ie in the area is 2000 m.

After a disussion the sientists onlude that most probably there was a minor vol-

ani eruption below the ie ap. A small amount of magma (molten rok) intruded at

the bottom of the ie ap, solidi�ed and ooled, melting a ertain volume of ie. The

sientists try as follows to estimate the volume of the intrusion and get an idea of what

beame of the melt water.

Assume that the ie only moved vertially. Also assume that the magma was om-

pletely molten and at 1200

Æ

C at the start. For simpliity, assume further that the intrusion

had the form of a one with a irular base vertially below the onial depression in the

surfae. The time for the rising of the magma was short relative to the time for the

exhange of heat in the proess. The heat �ow is assumed to have been primarily vertial

suh that the volume melted from the ie at any time is bounded by a onial surfae

entered above the enter of the magma intrusion.

Given these assumptions the melting of the ie takes plae in two steps. At �rst the

water is not in pressure equilibrium at the surfae of the magma and hene �ows away.

The water �owing away an be assumed to have a temperature of 0

Æ

C. Subsequently,

11
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y

x

y = h

0

y = 0

x = 0

y

1

= 0:8x

G

I

Figure 2.2: Cross setion of a temperate ie ap resting on an inlined ground with water

at the bottom in equilibrium. G: ground, I: ie ap.

hydrostati equilibrium is reahed and the water aumulates above the intrusion instead

of �owing away.

When thermal equilibrium has been reahed, you are asked to determine the following

quantities. Write the answers on the answer sheet.

1. The height H of the top of the water one formed under the ie ap, relative to the

original bottom of the ie ap.

2. The height h

1

of the intrusion.

3. The total mass m

tot

of the water produed and the mass m

0

of water that �ows

away.

Plot on a graph answer sheet, to sale, the shapes of the rok intrusion and of the

body of water remaining. Use the oordinate system suggested in Figure 2.4.

2.2 Solution

a)

Based on the onservation of energy we have

J

Q

� 1 year = L

i

�

i

d (2.2)

12
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y

x

y = D

y = H

x = 0

x = r

W

S

I

G

Figure 2.3: A vertial setion through the mid-plane of a water one inside an ie ap. S:

surfae, W : water, G: ground, I: ie ap.

d =

J

Q

� 1 year

L

i

�

i

=

0:06 J s

�1

m

�2

365:25 � 24 � 60 � 60 s

3:4 � 10

5

J=kg 917 kg=m

3

= 6:1 � 10

�3

m (2.3)

b)

Let p

a

be the atmospheri pressure, taken to be onstant. At a depth z inside the ie

ap the pressure is given by:

p = �

i

gz + p

a

(2.4)

Therefore, at the bottom of the ie ap, where z = y

2

� y

1

:

p = �

i

g(y

2

� y

1

) + p

a

(2.5)

= �

i

gx(tan� � tan�) + �

i

gh

0

+ p

a

(2.6)

For water not to move at the base of the ie ap the pressure must be hydrostati

(trivial, but an be seen from Bernoulli's equation), i.e.

13
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y

x

h

x = r

x = 0

I

G

M

S

Figure 2.4: A vertial and entral ross setion of a onial depression in a temperate ie

ap. S: surfae, G: ground, I: ie ap, M : rok/magma intrusion, W : water. Note that

the �gure is NOT drawn to sale.

p = onstant� �

w

gy

1

(2.7)

= onstant� �

w

gx tan� (2.8)

Therefore

�

i

gx(tan� � tan�) = ��

w

gx tan� (2.9)

leading to

tan � = �

�

w

� �

i

�

i

tan� = �

��

�

i

tan� � �0:091 tan� (2.10)

s = ���=�

i

= �0:091 (2.11)

(2.12)

where the minus-sign is signi�ant.

This an also be seen in various ways by looking at a mass element of water at the

bottom of the ie and demanding equilibrium. � We now proeed with the solution.

14



With tan� = 0:8, we get tan � = �0:073 and

y

2

= 2 km� 0:073 x (2.13)

The students are supposed to draw this line on a graph.

)

Sine the ie adapts by vertial motion only we see that the onial depression at the

surfae will have the same radius of 1.0 km as the intrusion. Aording to (b) it will have

a depth of

h = jr tan�j =

��

�

i

r tan� (2.14)

=

��

�

i

H (2.15)

= 0:091 � 1 km = 91 m: (2.16)

The students are supposed to show this result as a graph.

d)

The volume of a irular one is V =

1

3

�r

2

h. We assume that the height of the intrusion

is h

1

. We may say that it �rstly melts an ie one of its own volume V

1

=

1

3

�r

2

h

1

. Pressure

equilibrium has not yet been reahed. Hene the water will �ow away and the ie will keep

ontat with the fae of the intrusion making the upper surfae of the ie horizontal again.

The intrusion then melts a volume equivalent to a one of height h

2

=

��

�

i

h

1

whereupon

pressure equilibrium has been reahed (following part ()). During this seond phase the

melted water will also �ow away. Assuming that the intrusion still has not ooled down

to 0

Æ

C the intrusion will further melt a volume equivalent to a one of height h

3

, its water

aumulating in plae, forming a one of height h

0

3

=

�

i

�

w

h

3

relative to the top of the

intrusion. The total height of the ie one melted is

h

tot

= h

1

+ h

2

+ h

3

(2.17)

The depth of the depression at the surfae will be given by

h =

��

�

i

(h

1

+ h

0

3

) (2.18)

whih is most easily seen by onsidering pressure equilibrium in the �nal situation (again

following part ()). Thus, the requested height of the top of the water one is

H = h

1

+ h

0

3

=

�

i

��

h = 1:1� 10

3

m (2.19)

The heat balane gives

1

3

� r

2

f�

r

h

1

(L

r

+ 

r

�T )� �

i

L

i

h

tot

g = 0 (2.20)
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where �T = 1200

Æ

C is the hange in temperature of the rok intrusion. Following equa-

tion (2.17) and using the fats that h

2

=

��

�

i

h

1

and h

3

=

�

w

�

i

h

0

3

we obtain

h

tot

= h

1

+

��

�

i

h

1

+

�

w

�

i

h

0

3

=

�

w

�

i

(h

1

+ h

0

3

) (2.21)

Therefore (using equation (2.19))

h

tot

=

�

w

�

i

(h

1

+ h

0

3

) =

�

w

�

i

H =

�

w

��

h = 1:20 � 10

3

m (2.22)

This implies that the one does not reah the surfae of the ie ap. Inserting the

result into the equation (2.20) we an solve for h

1

:

�

r

h

1

(L

r

+ 

r

�T ) =

�

i

�

w

L

i

h

��

(2.23)

h

1

=

�

i

�

w

L

i

h

�� �

r

(L

r

+ 

r

�T )

(2.24)

= 103 m (2.25)

The total mass of water formed is of ourse equal to the mass of the ie melted and is

m

tot

= �

i

(1=3) � r

2

h

tot

= 2:9 � 10

11

kg (2.26)

The mass of the water whih �ows away is

m

0

=

h

1

+ h

2

h

tot

m

tot

=

�

w

h

1

�

i

h

tot

m

tot

= 2:7 � 10

10

kg (2.27)

The students are �nally expeted to plot the shapes of the rok intrusion and the

water body.

2.3 Grading sheme

2(a)

Answer: equation (2.3), d = 6:1 � 10

�3

m 0.5

2(b)

Answer i): equation (2.6): p = �

i

gx(tan� � tan�) + �

i

gh

0

+ p

a

1.0

Answer ii): equation (2.10): s = �

�

w

��

i

�

i

= �

��

�

i

2.0

Answer iii): Graph based on equation (2.13) 0.5

2()

Answer: Depth, radius and graph, r = 1000 m, h = 91 m 1.0

2(d)

Answer i): Height of water one as in (2.19): H = 1:1 � 10

3

m 2.0

Answer ii): Height of intrusion as in (2.25): h

1

= 103 m 1.0

Answer iii): Total mass of melt water as in (2.26): m

tot

= 2:9 � 10

11

kg 0.5

Answer iv): Mass of water �owing away as in (2.27): m

0

= 2:7 � 10

10

kg 1.0

Answer v): Graph 0.5
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3 Faster than light?

7

3.1 Problem text

In this problem we analyze and interpret measurements made in 1994 on radio wave

emission from a ompound soure within our galaxy.

The reeiver was tuned to a broad band of radio waves of wavelengths of several

entimeters. Figure 3.1 shows a series of images reorded at di�erent times. The ontours

indiate onstant radiation strength in muh the same way as altitude ontours on a

geographial map. In the �gure the two maxima are interpreted as showing two objets

moving away from a ommon enter shown by rosses in the images. (The enter, whih

is assumed to be �xed in spae, is also a strong radiation emitter but mainly at other

wavelengths). The measurements onduted on the various dates were made at the same

time of day.

The sale of the �gure is given by a line segment showing one ar seond (as). (1 as =

1=3600 of a degree). The distane to the elestial body at the enter of the �gure, indiated

by rosses, is estimated to be R = 12.5 kp. A kiloparse (kp) equals 3.09 �10

19

m. The

speed of light is  = 3.00 �10

8

m/s. Error alulations are not required in the solution.

a) (2 points) We denote the angular positions of the two ejeted radio emitters, relative

to the ommon enter, by �

1

(t) and �

2

(t), where the subsripts 1 and 2 refer to the left

and right hand ones, respetively, and t is the time of observation. The angular speeds, as

seen from the Earth, are !

1

and !

2

. The orresponding apparent transverse linear speeds

of the two soures are denoted by v

0

1;?

and v

0

2;?

.

Using Figure 3.1, make a graph to �nd the numerial values of !

1

and !

2

in milli-ar-

seonds per day (mas/d). Also determine the numerial values of v

0

1;?

and v

0

2;?

, and write

all answers on the answer sheet. (You may be puzzled by some of the results).

b) (3 points) In order to resolve the puzzle arising in part (a), onsider a light-soure

moving with veloity ~v at an angle � (0 � � � �) to the diretion towards a distant

observer O (Figure 3.2). The speed may be written as v = �, where  is the speed of

light. The distane to the soure, as measured by the observer, is R. The angular speed

of the soure, as seen from the observer, is !, and the apparent linear speed perpendiular

to the line of sight is v

0

?

.

Find ! and v

0

?

in terms of �, R and � and write your answer on the answer sheet.

) (1 point) We assume that the two ejeted objets, desribed in the introdution and in

part (a), are moving in opposite diretions with equal speeds v = �. Then the results of

part (b) make it possible to alulate � and � from the angular speeds !

1

and !

2

and the

distane R. Here � is the angle de�ned in part (b), for the left hand objet, orresponding

to subsript 1 in part (a).

Derive formulas for � and � in terms of known quantities and determine their numerial

values from the data in part (a). Write your answers in the designated �elds on the answer

sheet.

d) (2 points) In the one-body situation of part (b), �nd the ondition for the apparent

perpendiular speed v

0

?

to be larger than the speed of light .

7

Authors: Einar Gudmundsson, Knútur Árnason and Thorsteinn Vilhjálmsson
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Figure 3.1: Radio emission from a soure in our galaxy.
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PSfrag replaements

A

O

~v

�

R

Figure 3.2: The observer is at O and the original position of the light soure is at A. The

veloity vetor is ~v.

Write the ondition in the form � > f(�) and provide an analyti expression for the

funtion f on the answer sheet.

Draw on the graph answer sheet the physially relevant region of the (�; �)-plane.

Show by shading in whih part of this region the ondition v

0

?

>  holds.

e) (1 point) Still in the one-body situation of part (b), �nd an expression for the maximum

value (v

0

?

)

max

of the apparent perpendiular speed v

0

?

for a given � and write it in the

designated �eld on the answer sheet. Note that this speed inreases without limit when

� ! 1.

f) (1 point) The estimate for R given in the introdution is not very reliable. Sientists

have therefore started speulating on a better and more diret method for determining R.

One idea for this goes as follows. Assume that we an identify and measure the Doppler

shifted wavelengths �

1

and �

2

of radiation from the two ejeted objets, orresponding to

the same known original wavelength �

0

in the rest frames of the objets.

Starting from the equations for the relativisti Doppler shift,

� = �

0

(1�� os�)(1��

2

)

�1=2

, and assuming, as before, that both objets have the same

speed, v, show that the unknown � = v= an be expressed in terms of �

0

, �

1

, and �

2

as

� =

s

1�

� �

2

0

(�

1

+ �

2

)

2

: (3.1)

Write the numerial value of the oe�ient � in the designated �eld on the answer sheet.

You may note that this means that the suggested wavelength measurements will in

pratie provide a new estimate of the distane.

3.2 Solution

a) On Figure 3.1 we mark the enters of the soures as neatly as we an. Let �

1

(t) be

the angular distane of the left enter from the ross as a funtion of time and �

2

(t) the

angular distane of the right enter. We measure these quantities on the �gure at the

given times by a ruler and onvert to arseonds aording to the given sale. This results

in the following numerial data:

19



time �

1

�

2

[days℄ [as℄ [as℄

0 0.139 0.076

7 0.253 0.139

13 0.354 0.190

20 0.468 0.253

27 0.601 0.316

34 0.709 0.367

The unertainty in the readings by the ruler is estimated to be �0.5 mm, resulting in

the unertainty of � 0.013 as in the � values. We plot the data in Figure 3.3.

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 5 1 0 1 5 2 0 2 5 3 0 3 5

time (days)

s
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p
a

r
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ti
o

n
 
(a

s
)

Figure 3.3: The angular distanes �

1

and �

2

(in as) as funtions of the time in days.

Fitting straight lines through the data results in:

!

1

= d�

1

=dt = (17:0� 1:0) mas=day = 9:54 � 10

�13

rad=s (3.2)

!

2

= d�

2

=dt = (8:7� 1:0) mas=day = 4:88 � 10

�13

rad=s (3.3)

v

0

1;?

= !

1

R = 9:54 � 10

�13

� 12:5 � 3:09 � 10

19

(3.4)

= 3:68 � 10

8

m=s � (1:23� 0:07)  (3.5)

v

0

2;?

= 1:89 � 10

8

m=s � (0:63� 0:07)  (3.6)

b) We onsider the motion of the soure during the time interval �t from the point A to

the point A

0

, see Figure 3.4.

We then have

~r

AA

0

= ~r

A

0

� ~r

A

= ~v ��t : (3.7)

Now let �t

0

denote the di�erene in arrival times at O of the signals from A and A

0

.

Due to the di�erent distanes to A and A

0

and the �nite speed of light, , we have
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PSfrag replaements

A

A

0

O

~v

A

�

R

~r

A

0

~r

A

�x

Figure 3.4: The observer is at O and the original position of the soure is at A. The

veloity vetor is ~v.

�t

0

= �t+ (r

A

0

� r

A

)= : (3.8)

For small �t, suh that v �t << r

A

= R, we have

r

A

0

� r

A

� �v �t os� (3.9)

and hene

�t

0

� �t (1� � os�) ; � = v= : (3.10)

This implies that an observer at O will �nd the apparent transverse speed of the soure

to be

v

0

?

=

�x

�t

0

=

�x

�t (1� � os�)

=

� sin�

1� � os�

(3.11)

where we have used that the real transverse speed in the referene frame of the observer

is v

?

= �x=�t = � sin�.

The angular speed observed at O is

! =

v

0

?

R

=

� sin�

R (1� � os�)

(3.12)

) Figure 3.5 shows the situation in this ase. Note the relations given in the aption.

Taking � = �

1

we have sin�

2

= sin� and os�

2

= � os�. Equation (3.12) then gives:

!

1

=

�  sin�

R (1� � os�)

(3.13)

!

2

=

�  sin�

R (1 + � os �)

: (3.14)
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PSfrag replaements

A

O

~v

1

~v

2

�

1

�

2

R

Figure 3.5: If the two objets have equal speeds but opposite veloities we have v

1

= v

2

=

v; �

1

= �

2

= � and �

2

= � � �

1

.

The quantities !

1

, !

2

and R are given, but � and � are to be determined as stated in

the problem text. Simple algebra gives:

(1� � os�) !

1

!

2

= �  sin� !

2

=R (3.15)

(1 + � os�) !

2

!

1

= �  sin� !

1

=R : (3.16)

Subtrating (3.15) from (3.16) gives:

2 � os� !

2

!

1

= �  sin� (!

1

� !

2

)=R (3.17)

tan� =

2 R !

2

!

1

 (!

1

� !

2

)

(3.18)

� = artan

�

2 R !

2

!

1

 (!

1

� !

2

)

�

: (3.19)

Dividing (3.15) by (3.16) gives � in terms of os� and the known quantities !

1

and

!

2

:

!

1

(1� � os�) = !

2

(1 + � os �) (3.20)

� =

!

1

� !

2

os� (!

1

+ !

2

)

: (3.21)

Inserting the values of !

1

and !

2

from part (a) and the given values of R and  we get:

� = artan(2:57) = 1:20 rad = 68:8

Æ

� 2

Æ

(3.22)

� = 0:892� 0:08 (3.23)
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d) Equation (3.11) shows that the observer will �nd the apparent transverse speed to be

larger than or equal to the speed of light if and only if:

� sin�

1� � os�

� 1: (3.24)

If � < 1 ondition (3.24) is equivalent to:

� sin� � 1� � os� (3.25)

� (sin�+ os�) � 1 (3.26)

�

p

2

�

sin� os

�

4

+ os � sin

�

4

�

� 1 (3.27)

sin

�

�+

�

4

�

�

1

�

p

2

(3.28)

and hene (3.24) is satis�ed if:

� > f(�) =

�

p

2 sin(�+ �=4)

�

�1

: (3.29)

The physially relevant region in the (�; �)-plane is:

(�; �) 2 [0; 1[�[0; �℄ : (3.30)

It is obvious that (3.24) an only be satis�ed for � 2 [0; �=2℄ and (3.28) an only have

a solution for � if � � 1=

p

2.

We therefore take a loser look at the region

(�; �) 2 [2

�1=2

; 1[ � [0; �=2℄ (3.31)

The mapping

(�; �) 7! � sin

�

�+

�

4

�

(3.32)

is ontinuous in this region. It is therefor su�ient to look at the boundary of the region,

de�ned by the equality sign in (3.28):

� sin

�

�+

�

4

�

=

1

p

2

(3.33)

This de�nes � as a funtion of � whih is shown in Figure 3.6 as the urve bounding

the shaded area where v

0

?

> .

e) To �nd the extrema of v

0

?

as a funtion of � we di�erentiate (3.11) and get

d

d�

�

v

0

?



�

=

�(os�� �)

(1� � os�)

2

: (3.34)

This is zero for � = �

m

where:
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Figure 3.6: The region between the

horizontal line and the urve in the

upper left hand orner shows where

v

0

?

= > 1.
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e
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e

n
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s

��

Figure 3.7: The urved surfae is v

0

?

=

as a funtion of � and �. The plane

represents the onstant funtion � = 1.

os �

m

= � ; �

m

= aros � 2℄0; �=2℄ (3.35)

To see that this is indeed a maximum, we di�erentiate (3.34) again and get:

d

2

d�

2

�

v

0

?



�

= ��

�

sin�

(1� � os�)

2

+ 2

� sin�(os�� �)

(1� � os�)

3

�

(3.36)

At the extremum

d

2

d�

2

�

v

0

?



�

�

�

�

�

�

m

= �

� sin�

m

(1� �

2

)

2

< 0 (3.37)

showing that �

m

orresponds to a maximum. From (3.11) and (3.35) the maximum

apparent transverse speed is given:

(v

0

?

)

max

=

�

p

1� �

2

(3.38)

From this and (3.35) we see that

(v

0

?

)

max

�!

�!1

1 ; �

m

�!

�!1

0 : (3.39)

Figure 3.7 shows v

0

?

= as a funtion of � and � in the region (�; �) 2 [2

�1=2

; 1[� [0; �=2℄.

f) We have the equations for relativisti Doppler-shift:
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�

1;2

�

0

=

1� � os �

p

1� �

2

(3.40)

We add them, de�ne an auxiliary ratio � and solve for �.

� :=

�

1

+ �

2

2 �

0

=

1

p

1� �

2

(3.41)

�

2

(1� �

2

) = 1 (3.42)

� =

p

1� 1=�

2

=

s

1�

4 �

2

0

(�

1

+ �

2

)

2

(3.43)

giving

� = 4 (3.44)

Adding equation (3.43) to the set of equations (3.18) and (3.21) we have three equations

whih an be solved for the three unknowns �, � and R. For instane, we may alulate �

from (3.43), insert that into (3.21), and solve for �. The distane R an then be obtained

from (3.18). Thus the measurement of the Doppler-shifted wavelengths turns out to give

an estimate of the distane to the soure provided that !

1

and !

2

are known.

3.3 Grading sheme

Part 1(a)

Answer i): equation (3.2), !

1

in the range (16.5-17.5) mas/day 0.8

Answer ii): equation (3.3), !

2

in the range (8.2-9.2) mas/day 0.8

Answer iii): equation (3.4), for v

0

1;?

in the range (1.13-1.30) 0.2

Answer iv): equation (3.6), for v

0

2;?

in the range (0.56-0.70) 0.2

Part 1(b)

Answer i): v

0

?

(�; �), equation (3.11) 2.5

Answer ii): !(�; �), equation (3.12) 0.5

Part 1()

Answer i): �(!

1

; !

2

), equation (3.19) 0.3

Answer ii): �(!

1

; !

2

), equation (3.21) 0.3

Answer iii): � numerial in the range 67

Æ

- 71

Æ

0.2

Answer iv): � numerial in the range 0.81-0.97 0.2

Part 1(d)

Answer i): Condition � > f(�), equation (3.29) 1.0

Answer ii): Condition on (�; �), graph 1.0

Part 1(e)

Answer: (v

0

?

)

max

, equation (3.38) 1.0

Part 1(f)

Answer: � in terms of �-s, by �, equation (3.44) 1.0
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