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I. LINEAR WAVES

A. Non-dispersive waves: gravity water waves on
shallow water

Let h = h(x) be the water depth, ρ — its density,
and v — its velocity; let x be a vertical axis and y —
horizontal (the origin is at the water bottom). We have
two equations: continuity condition

∂ρ

∂t
+ div ρv = 0, (1)

and the Newton’s second law

ρ

(
∂

∂t
+ v∇

)
v +∇p = 0. (2)

For shallow water waves, velocity is horizontal and de-
pends only on the horizontal coordinate: v = x̂v(x). Let
us integrate these equations over y - the vertical coordi-
nate and take into account that the water density ρ is
constant:

∂h

∂t
+

∂hv

∂x
= 0, (3)

h
∂v

∂t
+ hv

∂v

∂x
+

∂

∂x

gh2

2
= 0. (4)

Here we have taken into account that p = ρg(h− y).
No we need to linearize this set of equations; to that

end, let us assume that the uperturbed water depth is
h0, and h = h0 + χ, where |χ| ≪ h0. We also assume
that the water speed v ≪ cw, where cw is the wave speed
(yet to be found). Because of that, ∂

∂t ≫ v ∂
∂x . So,

∂χ

∂t
+ h0

∂v

∂x
= 0, (5)

h0
∂v

∂t
+ h0g

∂χ

∂x
= 0. (6)

From this system of equations, we can eliminate v:

∂2χ

∂t2
= h0g

∂2χ

∂x2
. (7)

This is a linear wave equation, the generic solution of
which can be written as

χ = f(x−
√

h0gt) + g(x+
√
h0gt), (8)

where f and g are arbitrary functions. Let us notice that
the wave speed cw =

√
h0g is independent of the wave

vector k.

B. Dispersive waves: water waves on deep water

Upon taking divergence from Eq (2), neglecting the
nonlinear small term (v∇)v, and taking into account
that divv = 0, we obtain ∆p = 0. In 2D geometry where
x is the horizontal coordinate, and y — vertical, we ob-
tain

∂2p

∂x2
+

∂2p

∂y2
= 0. (9)

Since for the time being, we are going to derive a lin-
earized equation, it will suffice if we derive it for a single
Fourier component. Indeed, any function can be rep-
resented as a sum of sinusoidal signals, and owing to
the superposition principle (which is valid for the so-
lutions of any linear differential equation), any solution
can be obtained as a superposition of sinusoidal solu-
tions. Therefore we assume that p = −ρgy + p(y)eikx:
water surface is at y = 0, and the underwater region ex-

tends to y < 0. From Eq (9, ∂2p(y,t)
∂y2 = k2p(y, t), hence

p(y) = ae−ky + p0(t)e
ky. The pressure oscillations need

to decay for y → −∞, hence a = 0. At the free sur-
face of water, p = 0, so that the pressure oscillations
are caused by water level elevetion, h = h0(t)e

ikx, where
h0 = p0/ρg.

It is clear that the water velocity should decay accord-
ing to the same exponential law (∝ eky) as the pressure
oscillations (for a formal proof, see below). Hence we can
integrate the continuity condition (1) over y to obtain

∂χ

∂t
+

1

k

∂v

∂x
= 0. (10)

For a water volumes near the water surface, the equation
of motion can be written as

∂v

∂t
+ g

∂χ

∂x
= 0; (11)

Similarly to the shallow water waves, we eliminate here
v to obtain

∂2χ

∂t2
=

g

k

∂2χ

∂x2
. (12)

We can conlcude from here that the phase speed up =√
g
k , and that the group speed

ug =
dω

dk
=

1

2

√
g

k
=

1

2
ug. (13)

However, it is not a proper equation as it combines the
elements of the coordinate space x, and the momentum
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space k. Let us rewrite it in the coordinate space by
substituting ∂

∂x = ik:

∂2χ

∂t2
= ig

∂χ

∂x
. (14)

As usually with the complex-valued signals, we presume
that the physically observed quantity is the real part of
the complex-valued water elevation χ(x, t).
Now, let us derive formally that v ∝ eky. Upon taking

curl of Eq. (2), it can be rewritten as

∂

∂t
∇× v = v × [∇× v] (15)

which describes mathematically the fact that the flux of
the vorticity ∇×v across material loops is conserved (is
“frozen” into the fluid). In particular, if there was no
vorticity initially, ∇×v = 0, the flow will remain always
potential: v = ∇φ; then, the incompressibility condition
yields ∆φ = 0, hence φ = φ0e

ikx+ky.

C. Dispersive wave propagation: ship wake

Now, let us analyze the implications of the dispersion
relationship (13). For isntance, what will happen if a
stone is thrown into water? Falling stone will cause a
strongly localized initial perturbation, which can be con-
sidered to be a Dirack delta-function. In Fourier decom-
position, this is a superposition of all the wavevectors k.
Let us ask, how long time do we need to wait at a dis-
tance r to be able to detect an arriving wave. For a wave
propagating directly in the direction of an observer, the
phase is given by

φ(k) = ωt− kr =
√
gkt− kr (16)

(all Fourier components start with a zero phase at zero
distance from the falling site). For a fixed t, this is a
function of k: strictly speaking, we cannot speak about a
phase unless we fix the wave vector k, and the net water
elevation needs to be expressed as a Fourier integral∫

ei(
√

gkt−kr)dk.

This is an integral of an oscillating function, for which
negative and positive contributions cancel mostly out.
One can say that there is a destructive interference of
different wavelengths. However, there is an exception of
those wavelengths which arrive almost at the same phase
and therefore add up constructively — this is a range of
k-values near k0 which realizes a local extremum of φ(k),
i.e. k ∈ [k0− δk, k0+ δk]. Mathematically, one can arrive
at the same conclusion upon integrating asymptotically
(t, r → ∞) using the saddle point method.
The function (16) has a global maximum at

k = k0 = gt2/4r2. (17)

Thus, the signal observed is dominated by the waves of
wavevector k0 which arrive with the phase

φmax = φ(k0) =
gt2

4r
. (18)

Now we can answer the posed question: the signal can be
detected at the observation point if the phase is not too
small, φ ≥ φ0, for instance with φ0 ≈ 1. According to
Eq. (18), such a phase is achieved after the time interval

t = 2
√
φ0r/g.

The above arguments can be applied to a more generic
case of an arbitrary dependance ω(k): using φ = ω(k)t−
kr and equating differential dφ = tdω − rdk to zero, we
obtain

r

t
=

dω

dk
, (19)

an expression with which we recover a well-know formula
for the group speed.

What about waves generated behind a ship? For a
shallow water, the situation is simple: as soon as the
ship speed w exceeds the wave speed u =

√
gh0, a Mach

cone is formed, and the direction θ of the shock wave
propagation is defined by the Cherenkov resonance con-
dition, u cos θ = w. In the case of dispersive waves (when
the speed u depends on k), it is important to notice that
the Cherenkov resonance condition is to be applied to the
phase speed,

up cos θ = w. (20)

Indeed, let us consider sinusoidal waves of a fixed wave-
length generated by a moving boat. In the figure below,
blue circles are the lines of equal phase of these waves;
the envelope of these circles is the front where the wave
superposition results in a constructive interference — the
wave generated due to Cherenkov interference. A and B
correspond to the positions of the boat in two moments
of time, separated by a time interval ∆t; then, Eq. (20)
follows from the trigonometry of the green triangle in this
figure.

upt

upDt

wDt
A B

Now, this Cherenkov resonance condition is satisfied
for all the wavefronts parallel to the envelope (green
oblique line in figure); however, there is also another
condition for the waves to have a non-vanishing ampli-
tude. Indeed, the wave packets (the energy) travel with
the group speed, and thus only the waves at the corre-
spondign distance can be seen.



3

So, for observable waves behind a boat, both Eq (20)
and (19) need to be satisfied for a wave of arbitrary wave-
length, generated by the boat at an arbitrary moment of
time. So, if a wave was generated by the boat at a point
A (see figure), the wave now needs to reside on the black
circle of radius ugt, and wave propagation (green oblique
line) needs to correspond to the Cherenkov resonance
condition, cos θ = vp/w. This means that the tangent
line to the wavefront intersects the boat trajectory at
point B so that AB = ugt/ cos θ = wt/2. Therefore, for
such a geometric configuration, the position of the point
B is independent of the wave vector k; depending on the
value of k, the radius of the black circle will vary (an-
other circle is shown by a dashed line), but according
to the Thales theorem, the position of the corresponding
resonant wave package lies still on the red circle. The
wave package E with largesr Mach cone angle forms a
tangent EC with the red circle: the observable Mach
cone angle α = arcsin FE

FC = arcsin 1
3 ≈ 19◦.

u gt
qA B C

upt/cosq=wt/2 

E

F

Note that it is also possible to derive the shape of the
lines of constant phase in the boat’s frame of reference.
Indeed, let us recall that according to Eqns. (18,17), the

wave generated by a boat has a phase φ = gt2

4r , and

wavevector k0 = gt2/4r2, where t is the time interval
elapsed from the moment of generation, and r is the dis-
tance between the generation point and the observation
point; the former is at the distance −wt leftwards from
the origin. Then,

x = r cos θ − wt and y = r sin θ, (21)

where the angle θ describes the wave propagation direc-
tion. The system of equations is closed by the condition
for Cherenkov resonance, w cos θ =

√
g/k0 = 2r

t , which
leads us to wt = 2r/ cos θ, and when combined with the

expression φ = gt2

4r , to r = w2φ
g cos2 θ. When we substi-

tute these expressions into Eq. (21), we end up with

x = −w2φ

g
cos θ(2− cos2 θ), y =

w2φ

g
sin θ cos2 θ. (22)

These equations represent parametrically the lines of con-
stant phase and are depicted in figure below.

Therefore, y = 1
2 t
√
g/k0 cos θ − wt and y =

1
2 t
√

g/k0 sin θ We can eliminate k and t from this sys-
tem of four equations, to obtain a parametrical repre-
sentation of the curves (angle θ serves as the parameter
and the value of φ defines wich constant phase line we
consider).

For more information about the waves generated by
ships, see [1].

D. Instabilities: Rayleigh-Taylor instability

Thus far we have studied wave equations: the solutions
will be waves which can travel with constant amplitude.
However, linearized equations can also lead to exponan-
tially decaying or exponentially growing solutions. Grow-
ing solutions means that there is an instability. A clas-
sical example of an instability which plays an important
role in many fields of physics is the Rayleigh-Taylor in-
stability when heavier liquid is put on top of a lighter
liquid.

We proceed in the same way as in the case of deep wa-
ter waves. Let us suppose that in the uperturbed state,
region y > 0 is filled with liquid of density ρ1, and y < 0
is filled with liquid of density ρ2 < ρ1. Then, according to
the results of Section B, the velocity and pressure fluctua-
tions depend on the coordinates proportionally eikx−k|y|.
Our task is to tailor the solutions in y < 0 and y > 0
via the boundary condition at y = 0. To begin with, let
us notice that the continuity condition (10) is still ap-
plicable, but only for the region y < 0; for y > 0, the
‘+’ sign should be substituted with ‘−’ (while for y < 0,
a rising interface level χ(x, t) means that there needs to
be an inflow of the liquid for filling up the extra volume
below the raising interface, at y > 0 the liquid needs to
flow away for emptying that volume). So, in these two
regions, the velocities (and hence, the excess pressures)
need to be in an opposite phase: in the region y > 0,

v = −v0e
ikx−k|y|, p = −p0e

ikx−k|y|; (23)

in the region y < 0,

v = v0e
ikx−k|y|, p =

ρ2
ρ1

p0e
ikx−k|y|; (24)

He we have also taken into account the following consid-
erations. Due to the continuity law, the velocity ampli-
tudes need to be equal. Due to the equation of motion,
the accelerations (and hence, the velocities) are propor-
tional to the excess pressure and inversely proportional to
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the density, hence the excess pressure in different regions
needs to be proportional to the density.
The pressure difference across the interface p0(

ρ2

ρ1
+ 1)

is caused by the hydrostatic excess pressure in the region
y < 0 due to the change of the interface height:

p0(t)e
ikx

(
ρ2
ρ1

+ 1

)
= (ρ2 − ρ1)gχ(x, t). (25)

Now we can find the excess pressure for region y < 0,

p = e−k|y| ρ2 − ρ1
ρ2 + ρ1

ρ2gχ(x, t), (26)

which leads us to the equation of motion near the level
y = 0

∂v

∂t
+ g

ρ2 − ρ1
ρ2 + ρ1

∂χ

∂x
= 0; (27)

Once we eliminate v from this equations, together with
Eq. (10), we end up with the linearized equation

∂2χ

∂t2
=

g

k

ρ2 − ρ1
ρ2 + ρ1

∂2χ

∂x2
. (28)

Now, by substituting ∂
∂t = iω and ∂

∂x = ik, we obtain
immediately

γ ≡ iω = ±
√
gk

ρ1 − ρ2
ρ2 + ρ1

, (29)

which means that there is an exponentially growing so-
lution ∝ eγt. This means the presence of an instability:
initially negligible perturbations develope eventually into
significant distortions. As a rule, the most unstable natu-
ral modes (the sinusoidal perturbations with such a value
of k which correspond to the heighest values of γ) will
evolve (the other modes will not have enough time to de-
velop). Here, the modes with large vakues of k are more
unstable.
However, we have not yet taken into account cappilary

effects. Across an interface of curvature radii R1 and R2,
excess pressure δp = σ(R−1

1 + R−1
2 ) is created, due to

the surface tension σ. Here, R1 and R2 are the curva-
ture radii of the interface intersections with two planes,
perpendicular to each other and to the tangent of the
interface. For a plane wave χ = χ0eikx, R2 = ∞, and

R−1
1 ≈ ∂2χ

∂x2 = −k2χ; the approximate equality becomes
exact at the limit of small wave amplitude.
This effect can be taken into account in Eq. (25) by

adding the additional pressure term σk2χ to the right-
hand-side. As a result, Eq. (28) is rewritten as

(ρ2 + ρ1)
∂2χ

∂t2
=

[g
k
(ρ2 − ρ1) + kσ

] ∂2χ

∂x2
, (30)

which means that

γ2 =
(ρ1 − ρ2)gk − σk3

ρ2 + ρ1
, (31)

Now we can find the most unstable mode via equating
dγ2

dk =, i.e.

k0 =

√
(ρ1 − ρ2)g

3σ
. (32)

Finally, note that Eq. (31) can be used to obtain a
more general expression for the dispersion equation for
the deep water waves. Indeed, the only thing we need to
do is to put ρ1 = 0 and return to ω ≡ −iγ:

ω2 = gk +
σ

ρ
k3. (33)

Task: consider a water cylinder of an infinite length
and a radius r0 in weightlessness (this can model wa-
ter falling from a faucet). Find the instability exponent
for the cylinder with respect to perturbations r(x, t) =
r0 + a(t)eikx, where r(x, t) is the perturbed radius of the
cylinder as a function of the axial coordinate x and time
t. You may assume that k ≫ 1/r0, so that the water
motion is essentially one-dimensional.

E. Nonlinear waves: Korteweg-de Vries equation

Now we want to take into account nonlinearities. So,
we return to Eqns. (3) and (4), which are precise un-
der the assumption of shallowness. Without any addi-
tional assumptions, this would be a rather difficult task.
Because of that, we separate left-propagating and right-
propagating waves by assuming that the height is a func-
tion of velocity, h = h(v). We can say that we are
looking for specific solutions of the system (3) and (4)
— such that the condition h = h(v) is satisfied. Let
us notice that for linear rightwards propagating waves,
h(x, t) = h(x − cst) and v(x, t) = v(x − cst), hence
v = v(h); here, cs =

√
gh0. The same can ba applied

to leftards propagating waves; however, if both propaga-
tion directions are present, the relationship h = h(v) will
fail.

Once we accpet the assumption h = h(v), we can
rewrite the system of equations (3) and (4) as

dh

dv

(
∂v

∂t
+ v

∂v

∂x

)
+ h

∂v

∂x
= 0, (34)

∂v

∂t
+ v

∂v

∂x
+ g

dh

dv

∂v

∂x
= 0. (35)

Once we multply the second one with dh
dv , and subtract

from the first one, we obtain

dh

dv
= ±

√
h

g
; (36)

if we substitute this result into either of the equations,
we end up with

∂v

∂t
+ (v ±

√
hg)

∂v

∂x
= 0. (37)



5

If the amplitude of the wave is not too large, we can
approximate

√
h ≈

√
h0 +

1

2
h
− 1

2
0

dh

dv
v ≈

√
h0 ±

1

2
g−

1
2v. (38)

Using this expression, we can rewrite Eq. (37) as

∂v

∂t
+

(
3

2
v ±

√
h0g

)
∂v

∂x
= 0. (39)

This equation is most conveniently analyzed in a frame of
reference, co-moving with linear waves; this corresponds
to the change of variables ξ = x ∓

√
h0gt, τ = 3

2 t, in
which case we obtain

∂v

∂τ
+ v

∂v

∂ξ
= 0. (40)

Although this is a non-linear equation, it is easy to an-
alyze, because it can be interpreted as the equation of
motion for non-interacting particles: particles lay on the
ξ-axis, and are assigned velocities as a function of their
coordinate, v = v(ξ). They satrt moving without accel-
eration, dv

dt = 0, which is equivalent to Eq (40).
Such a motion of non-interacting particles leads to

wave-breaking: at a certain moment of time, faster par-
ticles “catch up” the slower ones, and after that, there
are regions of particles with different speeds (marked in
grey in figure below).

ξv

It should be emphasized that Eq. (40) is obtained for
nonlinear waves in almost any media after the following
steps: (a) separate waves which move in opposite dire-
tions by assuming that all the parameters describing the
state of the medium as a function of space- and time
coordinates can be expressed as functions of each other;
(b) assume that nonlinearity is not too large, so that only
quadratic nonlinearities can be kept in power series ex-
pansions; (c) use reference frame which moves with the
speed of linear waves; (d) renormalize time so as to get
rid of the prefactor of the nonlinear term.
As we saw above, as long as Eq. (40) serves as a good

approximation, the waves evolve towards wavebreaking.
Quite often, however, this process is stopped by physical
processes neglected thus far: dissipation and/or disper-
sion. Let us first consider the effect of dispersion. As we

have seen previously, for linear waves in shallow water,
ω =

√
gh0k, and in deep water, ω =

√
gk. For an in-

termediate depth, we can also decompose the solution of
linearized equation into Fourier components, yielding a
certain dispersion relationship ω(k); if the depth is not
too large, we can expect that ω(k) ≈

√
gh0k, and we

can improve the approximation by using a power series
expansion,

ω =
√
gh0k +

1

2

d2ω

dk2
k2. (41)

Being equipped with this dispersion relationship, we can
revert back from the Fourier space to the physical space,
using the correspondence ω → −i ∂

∂t , k → i ∂
∂x :

∂v

∂t
+
√
gh0

∂v

∂x
+ a

∂3v

∂x3
= 0, (42)

where a = −1
2
d2ω
dk2 ; we expect that for gravity water

waves, a > 0 (ω(k) =
√
gk is a concave function, with

a negative second derivative). For capillary waves, how-
ever, a < 0.

Note that mathematically, the transition from the
Fourier space to the physical space can be done by
multiplying the dispersion equation with v̂(k, ω)eikx−iωt,
where v̂(k, ω) is the Fourier transform of v(x, t), and by
integrating over ω and k (using integration by parts).

So, taking into account a weak dispersion adds an ad-

ditional term a ∂3v
∂x3 to the differential equation of v(x, t).

The nonlinear version of the differential equation, Eq
(40), can be also appropriately modeified, resulting in

∂v

∂τ
+ v

∂v

∂ξ
+ a

∂3v

∂ξ3
= 0. (43)

Note that with a proper choice of units, with ξ and τ
being normalized to

√
a, we can get rid of the constant

a, so that

∂v

∂τ
+ v

∂v

∂ξ
+

∂3v

∂ξ3
= 0. (44)

This is called the Korteweg-de Vries (KdV) equation,
the importance of which lies in the fact that it describes
correctly any non-linear waves under the asymptotic limit
of small nonlinearity (i.e. small amplitude) and long
wavelength (assuming that the waves are dispersionless
at the limit k → 0, such as sound waves).

F. Solitons

As we have seen abovem nonlinearity will lead to
a wavebreaking. However, dispersion will oppose to
it: wavebreaking means creating a large velocity gradi-
ent, which in Fourier space corresponds to creating high
wavenumbers and hence, increasing the spectral width of
the signal. Increased spectral width means stronger effect
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of dispersion: different wavelengths travel with different
speeds and result in spreading the signal and decreas-
ing the gradients. So, nonlinearity and dispersion have
opposing effects, and the wave profile evolves towards a
state when the two effects compensate each other.
It is quite easy to find if a differential equation admits

solutions in the form of a solitary wave which can tarvel
with constant speed with a stationary shape. To that
end, a standard technique is used, by which stationary
solutions are sought in a co-moving frame of reference,
with ζ = ξ − uτ and ∂

∂τ = −u ∂
∂ζ (time derivative in

the co-moving frame is dropped due to the assumption
of stationarity). As a result, for KdV equation we obtain

(v − u)
∂v

∂ζ
+

∂3v

∂ζ3
= 0. (45)

This equation can be integrated once over ζ:

∂2v

∂ζ2
= uv − 1

2
v2 = −∂U

∂v
, U(v) =

1

6
v3 − 1

2
uv2. (46)

3u2u0 u
v

U/u3

0

⅓

⅔

This equation can be interpreted as the equation of
motion for a fictitious particle with a unit mass, assum-
ing that v is its coordinate, ζ is the time, and U(v) is
the potential energy as a function of coordinate, see fig-
ure below. Depending on the initial speed, the fictitious
particle can perform different types of motions.
First, let us consider a periodic motion, depicted by

green line: the fictitious particle performs nearly har-
monic oscillations at the bottom of the potential mini-
mum. In terms of KdV solutions, this corresponds to a
nearly sinusoidal wave. Let us recall that v is the speed
of the material particles; for a nearly harmonic wave, v
oscillates around the mean value v = 2u: this is the speed
of the medium as a whole. Thus, the (ξ, τ)-frame moves
with the speed

√
gh0, and there, long linear waves are at

rest. Our wave propagates with the speed u (because we
were looking for such solutions); in the laboratory system
of reference, this gives us

√
gh0 + u, and relative to the

medium,
√
gh0 + u − 2u =

√
gh0 − u. The reduction in

speed by u is caused by dispersion: larger u corresponds
to the higher oscillation frequency of the fictitious parti-
cle, and hence, to smaller wavelength and stronger effect
of the dispersion.
Oscillation amplitude of the fictitious particle corre-

sponds directly to the amplitude of the wave. By increas-
ing the amplitude, the fictitious particle starts to “feel” a

departure of the potential from a parabolic one; what we
obtain are called cnoidal waves. For a really large ampli-
tude, the fictitious particle spends considerable time in
the vicinity of the plateau at the origin, hence the cnoidal
waves have extended and flat bottom. At the limit case,
the flat bottom becomes infinitely long; it is easy to see
that this corresponds to the full energy of the fictitious
particle being equal to zero. In that case, we have only a
solitary wave, the shape of which can be found from the
conservation of the fictitious particle’s energy,

1

2

(
dv

dζ

)2

+
1

6
v3 − 1

2
uv2 = 0, (47)

hence

dṽ

ṽ
√
1− ṽ

= dζ̃, ṽ =
v

3u
, ζ̃ = ζ

√
u. (48)

If we denote ṽ = ch−2w, we obtain dṽ = −2 shw
ch3w

· dw,
which leads us to dw = dζ̃, hence

v = 3uch−2ζ
√
u. (49)

This solution appears to be very stable: even if it in-
teracts with other perturbations, it always continues ul-
timately with the same shape and speed u (see below);
such solutions of nonlinear wave equations are called soli-
tons.

G. Lagrangian of the KdV equation

It appears that KdV equation has infinite number of
integrals of motion. We are not going to write down all
of these, but we’ll do this at least to the first three ones,
which follow from the symmetries of the equation. In
order to be able to apply the Noether theorem, we need
to write the KdV equation via a Lagrangian. Therefore
we need to find such L = L(v, ∂v

∂τ ) that KdV equation is
the condition of minimality of the action S =

∫
Ldτ . It

appears that such a function does, indeed, exist:

L =
1

2

∫ [
∂φ

∂τ

∂φ

∂ζ
+

1

3

(
∂φ

∂ζ

)3

−
(
∂2φ

∂ζ2

)2
]
dζ, (50)

where φ =
∫ ζ

v(ζ ′)dζ ′ is the velocity potential. The vari-
ation of the contribution of the first term to the action
S gives us

1

2

∫
dt

∫
dζ

(
∂δφ

∂τ

∂φ

∂ζ
+

∂φ

∂τ

∂δφ

∂ζ

)
=

1

2

∫
dt

∫
dζ

(
−δφ · ∂

∂τ

∂φ

∂ζ
− ∂

∂ζ

∂φ

∂τ
· δφ

)
=

−
∫

dt

∫
dζδφ · ∂v

∂τ
.
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The variation of the other terms can be obtained in a
similar way; the overall result is

δS = −
∫ ∫

dτdζ

(
∂v

∂τ
+ v

∂v

∂ξ
+

∂3v

∂ξ3

)
δφ, (51)

i.e. the KdV equation is, indeed, the condition of mini-
mality for the given Lagrangian. This Lagrangian does
not depend on time, so energy

E =

∫
dζ

δL

δφ̇
· φ̇− L =

∫
dζ

[
−v3

3
+

(
∂v

∂ζ

)2
]

(52)

is conserved. Similarly, Lagrangian does not depend on
ζ, so the momentum is also conserved,

P = −
∫

dζ
δL

δφ̇
· ∂φ
∂ζ

=

∫
v2dζ. (53)

Finally, the Lagrangian does not depend on a shift φ →
φ+ φ0, which results in the conservation law

M = −
∫

dζ
δL

δφ̇
=

∫
vdζ. (54)

Note that the conservation of these intergrals (E, P ,
and M) of motion can be verified without Lagrangian
formalism, by taking time derivative and using the KdV
equation.

H. Inverse scattering method: basic idea
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