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Problems from Section 1.1

Problem 1.5.

Albert announces to his class that he plans to surprise them with a quiz
sometime next week.

His students first wonder if the quiz could be on Friday of next week.
They reason that it can’t: if Albert didn’t give the quiz before Friday, then
by midnight Thursday, they would know the quiz had to be on Friday, and
so the quiz wouldn’t be a surprise any more.

Next the students wonder whether Albert could give the surprise quiz
Thursday. They observe that if the quiz wasn’t given before Thursday, it
would have to be given on the Thursday, since they already know it can’t be
given on Friday. But having figured that out, it wouldn’t be a surprise if the
quiz was on Thursday either. Similarly, the students reason that the quiz
can’t be on Wednesday, Tuesday, or Monday. Namely, it’s impossible for
Albert to give a surprise quiz next week. All the students now relax, having
concluded that Albert must have been bluffing. And since no one expects
the quiz, that’s why, when Albert gives it on Tuesday next week, it really is
a surprise!

What, if anything, do you think is wrong with the students’ reasoning?

Problem 1.5bis.

Why does the “surprise” paradox of Problem 1.1 present a philosophical
problem but not a mathematical one?
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Problem 1.2.

What’s going on here?!

1 =
√
1 =

√
(−1)(−1) =

√
−1

√
−1 = (

√
(−1))2 = −1 .

(a) Precisely identify and explain the mistake(s) in this bogus proof.

(b) Prove (correctly) that if 1 = −1, then 2 = 1.

Problem 1.3.

Identify the bugs in the following bogus proofs:

(a) Bogus claim: 1/8 > 1/4.
Bogus proof:

3 > 2

3 log10(1/2) > 2 log10(1/2)

log10(1/2)
3 > log10(1/2)

2

(1/2)3 > (1/2)2

and the claim now follows by the rules for multiplying fractions.

(b) Bogus proof: 1c = $0.01 = ($0.1)2 = (10c)2 = 100c = $1.

(c) Bogus claim: If a and b are two equal real numbers, then a = 0.

Bogus proof:

a = b

a2 = ab

a2 − b2 = ab− b2

(a− b)(a+ b) = (a− b)b

a+ b = b

a = 0

Problem 1.4

The arithmetic-geometric inequality states that the arithmetic mean of two
nonnegative numbers is an upper bound to their geometric mean, that is:

a+ b

2
≥

√
ab ∀a, b ≥ 0 .
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However, there is something questionable about the following proof of this
fact. What is the objection, and how would you fix it?
Bogus proof:

a+ b

2

?

≥
√
ab so

a+ b
?

≥ 2
√
ab so

a2 + 2ab+ b2
?

≥ 4ab so

a2 − 2ab+ b2
?

≥ 0 so

(a− b)2
?

≥ 0 which we know is true .

The last statement is true because a− b is a real number, and the square of
a real number is never negative. This proves the claim.

Problems for Section 1.5

Problem 1.6.

Show that log7 n is either an integer or irrational, where n is a positive
integer. Use whatever familiar facts about integers and primes you need, but
explicitly state such facts.

Problems for Section 1.7

Problem 1.7.

Prove by cases that

max(r, s) + min(r, s) = r + s

for all real numbers r, s.

Problem 1.8.

If we raise an irrational number to an irrational power, can the result be

rational? Show that it can by considering
√
2
√
2
and arguing by cases.
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Problem 1.10(a).

Suppose that
a+ b+ c = d ,

where a, b, c, d are nonnegative integers.
Let P the assertion that d is even. Let W be the assertion that exactly

one among a, b, and c is even, and let T be the assertion that all three are
even.

Prove by cases that:
P iff (W or T ) .
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Solutions

Problem 1.5.

The students are trying to prove that the statement “Albert will surprise us
with a quiz next week” is false.

First and foremost, this is not what Albert said! Albert said that he
planned to surprise them: not that he would do so. The students are trying
to solve a problem which is a wrong version of the actual one.

But most important, the statement “Albert will surprise us with a quiz
next week” is not a proposition: it relates to a future event, which may or
may not happen, so it does not have a definite truth value.

Albert’s statement, on the other hand, is a proposition: it says that
Albert plans to do something, and that is true!

Problem 1.5bis.

If the statement “I will surprise you with a quiz sometime next week”, which
the students incorrectly attributed to Albert, had been a proposition with
a definite truth value, then the students’ reasoning would have been correct
(and the proposition false).

Problem 1.2.

(a) The first two equalities are correct.

The third equality is seriously wrong! First of all, it changes the con-
text: negative real numbers do not have a real square root, so we are
moving from real numbers to complex numbers. But this creates a new
problem, because in the complex field, the law of square roots does not
hold: in general,

√
ab is different from

√
a
√
b, because every nonzero

complex number has two square roots, not one. For example, if we
choose the value i for the first square root of −1 and −i for the second
one, then their product is 1, not −1.

The fourth equality is also wrong, because we are not sure if the square
root of −1 which we chose for the first factor in the left-hand side is
the same as the one we chose for the second factor.

The last equality is correct:
√
−1, however we choose it, is one of the

two solutions of the equation x2 = −1.
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(b) There are several options; the one from today’s (31 August 2022) ses-
sion goes as follows. Suppose 1 = −1. By adding 3 to both sides, 4 = 2.
By dividing both sides by 2, 2 = 1.

Problem 1.3.

(a) The error is in the second inequality. If the base is larger than 1 and
the argument is smaller than 1, then the logarithm is negative: hence,
the multiplication factor log10(1/2) is negative. But multiplying by a
negative quantity reverses the sign of the inequality, which has not been
done.

(b) The error is in the wrong use of measure units. One dollar is the square
of one square root of a dollar ; similarly, one cent is the square of one
square root of a cent. In turn, if one dollar corresponds to a hundred
cents, then one square root of dollar corresponds to ten square root of
cents, and 0.1 square root of dollars correspond to one square root of
cent. The correct chain of equalities is thus:

1c = $0.01 = (
√
$ 0.1)2 = (1

√
c)2 = 1c .

(c) Everything is fine until the second last equality. If a = b, then a−b = 0,
and we cannot simplify the previous equality to get it.

Problem 1.4

The argument above is not a proof of the arithmetic-geometric inequality!
Written as we did, it is a proof of (a− b)2 ≥ 0 given the arithmetic-geometric
inequality. That is: we are going in the wrong direction.

To solve the issue, we observe that each inequality is equivalent to the
next one: however given a and b, either they are both verified, or neither
is. A key point here is that a and b are nonnegative reals: in particular, the
critical passage from a2 + 2ab + b2 ≥ 4ab to a + b ≥

√
ab is valid. We can

thus replace “so” with “which is equivalent to” in the argument above, and
get a proof of the arithmetic-geometric inequality.

Problem 1.6.

For what we know now, log7 n could be either an integer, or a noninteger
rational, or an irrational. The thesis is then equivalent to saying that the
second case never happens: that is, if log7 n is rational, then it is integer.
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Suppose that we can write log7 n = a/b with a and b integers; as n ≥ 2,
we may suppose a and b both positive. By definition of logarithm, n = 7a/b;
by taking the bth powers, nb = 7a.

Now, by uniqueness of prime decomposition, as the right-hand side is
a power of 7, so is the left-hand side, and this is only possible if n is also
a power of 7. So let k be a nonnegative integer such that n = 7k: then
nb = (7k)b = 7kb = 7a, and this is only possible if kb = a, meaning that
k = a/b is integer, as we wanted to prove.

Problem 1.7.

Exactly three cases are possible: r > s, r = s, or r < s. Let us consider
them one by one:

r > s. In this case, max(r, s) = r and min(r, s) = s, so the equality becomes
r + s = r + s, which is trivially true.

r = s. In this case, the maximum and minimum of r and s are both equal to
the common value t of r and s, so the equality becomes 2t = 2t, which
is trivially true.

r < s. In this case, max(r, s) = s and min(r, s) = r, so the equality becomes
s+ r = r + s, which is true by the commutative property.

Problem 1.8.

We must find two irrational numbers a and b such that ab is rational. We are

given
√
2
√
2
, of which we don’t know if it is rational or irrational1. However,

we know that it is one of the two, so we can proceed by cases:

1. If
√
2
√
2
is rational, then we can just choose a = b =

√
2.

2. If
√
2
√
2
is irrational, we make an experiment and raise it to the power

b =
√
2. Then:(√

2
√
2
)√

2

=
(√

2
)√

2·
√
2

=
(√

2
)2

= 2 ,

which is rational. We can then take a =
√
2
√
2
and b =

√
2.

1It is actually irrational by the Gelfond-Schneider theorem.
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Problem 1.10(a).

There are at least two ways of choosing a “good” set of cases. In both cases
(pardon) the rule “even plus even is even, even plus odd is odd, odd plus
odd is even” will play a key role. As addition of nonnegative integers is
commutative, we can reason only on the number of summands which are
odd.

1. First option: cases determined by truth values of W and T .

(a) If W is true, then a + b + c is the sum of one even and two odd
summands, so d is even, and P is true. Also, if W is true, then so
is W or T .

(b) If T is true, then a+ b+ c is the sum of three even summands, so
d is even. Also, if T is true, then so is W or T .

(c) If W and T are both false, then the number of even summands in
the sum a+b+c is neither one nor three, so it is either zero or two:
these correspond to one or three odd summands, respectively. A
sum where oddly more summands are odd is odd, so in this case,
d is odd, and P is false. Also, W or T is false.

Summarizing: if either W or T is true, then P is true, and if W and T
are both false, then P is false. This concludes the proof.

2. Second option: cases determined by number of even summands on the
left-hand side.

(a) If all three summands are even, then T is true and so is P .

(b) If one summand is odd, then W and T are both false, and so is P .

(c) If two summands are odd, then W is true, and so is P .

(d) If all three summands are odd, then W and T are both false, and
so is P .

Summarizing: if either W or T is true, then P is true, and if P is true,
then either W or P is true. This concludes the proof.
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