Mathematics for Computer Science
 Exercise session 4, 21 September 2022

Silvio Capobianco

Last update: 21 August 2023

Problems from Section 4.1

Problem 4.3.

(a) Verify that the propositional formula $(P$ and $\bar{Q})$ or $(P$ and $Q)$ is equivalent to P.
(b) Prove that

$$
A=(A-B) \cup(A \cap B)
$$

for all sets A, B, by showing

$$
x \in A \text { iff } x \in(A-B) \cup(A \cap B)
$$

for all elements x using the equivalence of part (a) in a chain of iff 's.

Problem 4.5.

Prove De Morgan's Law for set equality

$$
\begin{equation*}
\overline{A \cap B}=\bar{A} \cup \bar{B} \tag{1}
\end{equation*}
$$

by showing with a chain of iff 's that $x \in$ the left-hand side of (1) iff $x \in$ the right-hand side. You may assume the propositional version (3.14) of De Morgan's Law.

Problem 4.6.

Let A and B be sets.
(a) Prove that

$$
\operatorname{pow}(A \cap B)=\operatorname{pow}(A) \cap \operatorname{pow}(B) .
$$

(b) Prove that

$$
\operatorname{pow}(A) \cup \operatorname{pow}(B) \subseteq \operatorname{pow}(A \cup B)
$$

with equality holding iff one of A or B is a subset of the other.

Problems for Section 4.2

Problem 4.15(a).

(a) Give a simple example where the following result fails, and briefly explain why:

False Theorem. For sets A, B, C and D, let

$$
\begin{aligned}
L & ::=(A \cup B) \times(C \cup D), \\
R & ::=(A \times C) \cup(B \times D) .
\end{aligned}
$$

Then $L=R$.
(b) Identify the mistake in the following proof of the False Theorem. Bogus proof. Since L and R are both sets of pairs, it is sufficient to prove that $(x, y) \in L \longleftrightarrow(x, y) \in R$ for all x, y. The proof will be a chain of iff implications:

$$
\begin{array}{rll}
(x, y) \in R & \text { iff } & (x, y) \in(A \times C) \cup(B \times D) \\
& \text { iff } & (x, y) \in A \times C \text { or }(x, y) \in B \times D \\
& \text { iff } & (x \in A \text { and } y \in C) \text { or }(x \in B \text { and } y \in D) \\
& \text { iff } & (x \in A \text { or } x \in B) \text { and }(y \in C \text { or } y \in D) \\
& \text { iff } & (x \in A \cup B) \text { and }(y \in C \cup D) \\
\text { iff } & (x, y) \in L .
\end{array}
$$

Problem 4.16.

The inverse R^{-1} of a binary relation R from A to B is the relation from B to A defined by:

$$
b R^{-1} A \text { iff } a R b
$$

In other words, you get the diagram for R^{-1} from R by "reversing the arrows" in the diagram describing R. Now many of the relational properties of R correspond to different properties of R^{-1}. For example, R is total iff R^{-1} is a surjection.

Fill in the remaining entries in this table:

R is	iff R^{-1} is
total	a surjection
a function	
a surjection	
an injection	
a bijection	

Hint: Explain what's going on in terms of "arrows" from A to B in the diagram for R.

Problem 4.17.

Describe a total injective function $[=1$ out $],[\leq 1$ in $]$, from $\mathbb{R} \rightarrow \mathbb{R}$ that is not a bijection.

Problem 4.22(a)

Prove that if A surj B and $B \operatorname{surj} C$, then $A \operatorname{surj} C$.

Problems for Section 4.5

Problem 4.39

Let $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ be a set of size n, and $B=\left\{b_{0}, b_{1}, \ldots, b_{m-1}\right\}$ a set of size m. Prove that $|A \times B|=m n$ by defining a simple bijection from $A \times B$ to the nonnegative integers from 0 to $m n-1$.

This page intentionally left blank.

This page too.

Solutions

Problem 4.3.

(a) By using distributivity:

$$
\begin{array}{lll}
(P \text { and } \bar{Q}) \text { or }(P \text { and } Q) & \text { iff } \quad P \text { and }(\bar{Q} \text { or } Q) \\
& \text { iff } P \text { and } \mathbf{T} \\
& \text { iff } P .
\end{array}
$$

(b) Let $P::=x \in A$ and $Q::=x \in B$: then,

$$
\begin{array}{lll}
x \in A & \text { iff } & (x \in A \text { and } \operatorname{not}(x \in B)) \text { or }(x \in A \text { and } x \in B) \\
& \text { iff } & (x \in A-B) \text { or }(x \in A \cap B) \\
& \text { iff } & x \in(A-B) \cup(A \cap B) .
\end{array}
$$

Problem 4.5.

Let D be the domain. Then:

$$
\begin{array}{lll}
x \in \overline{A \cap B} & \text { iff } & x \in D \text { and } \operatorname{not}(x \in A \cap B) \\
& \text { iff } & x \in D \text { and } \operatorname{not}(x \in A \text { and } x \in B) \\
& \text { iff } & x \in D \text { and }(\operatorname{not}(x \in A) \text { or } \operatorname{not}(x \in B)) \\
& \text { iff } & (x \in D \text { and } \operatorname{not}(x \in A)) \text { or }(x \in D \text { and } \operatorname{not}(x \in B)) \\
& \text { iff } & x \in \bar{A} \text { or } x \in \bar{B} \\
& \text { iff } & x \in(\bar{A} \cup \bar{B}) .
\end{array}
$$

Note how the third and fourth iff 's exploit De Morgan's Law and distributivity, respectively.

Problem 4.6.

(a) Let S be a set. We must prove:

$$
\begin{equation*}
S \subseteq A \cap B \text { iff } S \subseteq A \text { and } S \subseteq B \tag{2}
\end{equation*}
$$

We can better do this ${ }^{1}$ by proving the equivalence as a double implication:

$$
\begin{equation*}
(S \subseteq A \cap B \longrightarrow S \subseteq A \wedge S \subseteq B) \wedge(S \subseteq A \wedge S \subseteq B \longrightarrow S \subseteq A \cap B) \tag{3}
\end{equation*}
$$

[^0]Suppose the left-hand side of (2) holds. Let x be an arbitrary element: if $x \in S$, then $x \in A \cap B$, so both $x \in A$ and $x \in B$ by definition of intersection. We have thus proved that, if $S \subseteq A \cap B$, then $S \subseteq$ A and $S \subseteq B$: that is, $\operatorname{pow}(A \cap B) \subseteq \operatorname{pow}(A) \cap \operatorname{pow}(B)$.
Suppose now that the right-hand side of (2) holds. Recall that such intersection is never empty, because the empty set is a subset of every set, thus an element of every power set. Let $S \subseteq A$ and $S \subseteq B$: if S is empty, then $S \subseteq A \cap B$ for sure; if S is not empty, then every element of S belongs to both A and B, thus to $A \cap B$, and this shows $S \subseteq A \cap B$. We have thus proved that, if $S \subseteq A$ and $S \subseteq B$, then $S \subseteq A \cap B$: that is, $\operatorname{pow}(A) \cap \operatorname{pow}(B) \subseteq \operatorname{pow}(A \cap B)$. Double inclusion means equality.
(b) Let S be a set. We must prove:

$$
\begin{equation*}
S \subseteq A \text { or } S \subseteq B \text { implies } S \subseteq A \cup B \tag{4}
\end{equation*}
$$

But this is easy to see: if $S \subseteq A$, then for every $x \in S$ it is also $x \in A$, thus $x \in A \cup B$ as well, and as x is arbitrary, $S \subseteq A \cup B$. Similarly, if $S \subseteq B$, then $S \subseteq A \cup B$.
Now, if for some $x \in A$ it is $x \notin B$, then any subset of $A \cup B$ which has x as an element cannot be a subset of B. It might still be, however, that every element of B is also an element of A : in this case, $A \cup B=A$ and $S \subseteq B$ implies $S \subseteq A$, so:

$$
\operatorname{pow}(A) \cup \operatorname{pow}(B)=\operatorname{pow}(A)=\operatorname{pow}(A \cup B)
$$

That is: if $B \subseteq A$, then the inclusion at (b) is an equality. The same holds, with the roles of A and B swapped, if $A \subseteq B$. However, if neither $A \subseteq B$ nor $B \subseteq A$, then there exist $x \in A$ and $y \in A$ such that $x \notin B$ and $y \notin A$: in this case, $\{x, y\}$ is a subset of $A \cup B$, but not a subset of A nor of B, and the inclusion is strict.

Problem 4.15(a).

(a) If $A=\{a\}, B=\{b\}, C=\{c\}, D=\{d\}$, then $L=\{(a, c),(a, d),(b, c),(b, d)\}$ but $R=\{(a, c),(b, d)\}$.
Here is a more dramatic counterexample. If A and D are empty, but B and C are not, then L is not empty and R is. There is no such thing as a pair without a first element, or without a second element.

The problem here is that the choices for the left and right component are independent in L, but not in R. In L, if we have chosen the first component from A, then we still have the option of choosing the second component from either C or D : but in R, we are forced to choose it from C.
(b) The problem is in the fourth passage, which looks like an application of the distributivity law for disjunction, but is not: it is simply a swap of and with or and vice versa, which is not allowed by the rules of Boolean algebra. What we can conclude from

$$
(x \in A \text { and } y \in C) \text { or }(x \in B \text { and } y \in D)
$$

is not $(x \in A$ or $x \in B)$ and $(y \in C$ or $y \in D)$, but, for example,

$$
(x \in A \text { or }(x \in B \text { and } y \in D)) \text { and }(y \in C \text { or }(x \in B \text { and } y \in D)),
$$

which we can further split into:

$$
\begin{aligned}
& (x \in A \text { or } x \in B) \\
& \text { and }(x \in A \text { or } y \in D) \\
& \text { and }(y \in C \text { or } x \in B) \\
& \text { and }(y \in C \text { or } y \in D)
\end{aligned}
$$

This formula is not the one on the fourth line of the bogus proof! And while the first and fourth clause are harmless, the second and third are not: if $x \in A$ but $x \notin B$, then it must be $y \in C$; similarly, if $y \in C$ but $y \notin D$, then it must be $x \in A$. The set $(A \cup B) \times(C \cup D)$ has no such constraints.

Problem 4.16.

We preliminarily observe that $\left(R^{-1}\right)^{-1}=R$, as:

$$
a\left(R^{-1}\right)^{-1} b \text { iff } b R^{-1} a \text { iff } a R b
$$

Then we can immediately fill:

R is	iff R^{-1} is
total	a surjection
a function	
a surjection an injection	total
a bijection	

To fill the rest of the table, we observe that the relation diagram of R^{-1} is obtained from that of R by first reflecting it along a vertical line which cuts the arrows in half, then reversing the direction of each arrow. This leads to the following important observation:
R has the $\star n$ in property if and only if R^{-1} has the $\star n$ out property
where \star is either \leq, \geq, or $=$. As the inverse of the inverse relation is the original relation, the observation above also holds with the roles of R and R^{-1} swapped.

We can now go on:

$$
\begin{array}{lll}
R \text { is a function } & \text { iff } & R \text { has the } \leq 1 \text { out property } \\
& \text { iff } & R^{-1} \text { has the } \leq 1 \text { in property } \\
& \text { iff } & R^{-1} \text { is an injection }
\end{array}
$$

To conclude, we recall that a bijection is a total function which is both injective and surjective: in this case, R^{-1} is a surjective and injective relation which is both a function and total, so it is also a bijection. And vice versa. The final table is thus:

R is	iff R^{-1} is
total	a surjection
a function	an injection
a surjection	total
an injection	a function
a bijection	a bijection

Problem 4.17.

The function $f(x)=2^{x}$ works just fine. Another example which I, as instructor, like a lot is the arc tangent, whose range (image of the domain) is bounded.

Problem 4.22(a)

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be surjective functions. A good candidate for a surjective function from A to C is $g \circ f$: let's put it to the test.

- $g \circ f$ is a function. Let $x \in A$: as f is a function, there exists at most one $y \in B$ such that $f(x)=y$. But g is a function, so there exists at most one $z \in C$ such that $g(y)=z$. Consequently, if there is any element w of C at all such that $(g \circ f)(x)=w$, it must be $w=z$.
- $g \circ f$ is surjective. Let $z \in C$: as g is surjective, there exists $y \in B$ such that $g(y)=z$. But f is surjective too, so there exists $x \in A$ such that $f(x)=y$. Then $(g \circ f)(x)=g(f(x))=g(y)=z$.

Problem 4.39

We observe that we can order the elements of $A \times B$ into a matrix with n rows and m columns:

$$
\left(\begin{array}{ccccc}
\left(a_{0}, b_{0}\right) & \left(a_{0}, b_{1}\right) & \left(a_{0}, b_{2}\right) & \ldots & \left(a_{0}, b_{m-1}\right) \tag{5}\\
\left(a_{1}, b_{0}\right) & \left(a_{1}, b_{1}\right) & \left(a_{1}, b_{2}\right) & \ldots & \left(a_{1}, b_{m-1}\right) \\
\left(a_{2}, b_{0}\right) & \left(a_{2}, b_{1}\right) & \left(a_{2}, b_{2}\right) & \ldots & \left(a_{2}, b_{m-1}\right) \\
\vdots & & & & \vdots \\
\left(a_{n-1}, b_{0}\right) & \left(a_{n-1}, b_{1}\right) & \left(a_{n-1}, b_{2}\right) & \ldots & \left(a_{n-1}, b_{m-1}\right)
\end{array}\right)
$$

But we can do the same with the natural numbers smaller than $m n$:

$$
\left(\begin{array}{ccccc}
0 & 1 & 2 & \ldots & m-1 \tag{6}\\
m & m+1 & m+2 & \ldots & 2 m-1 \\
2 m & 2 m+1 & 2 m+2 & \ldots & 3 m-1 \\
\vdots & & & & \vdots \\
(n-1) m & (n-1) m+1 & (n-1) m+2 & \ldots & m n-1
\end{array}\right)
$$

(The last number is $(n-1) m+m-1=n m-1$.) Each possible pair $\left(a_{i}, b_{j}\right)$ appears exactly once in the matrix (5). Each possible natural number smaller than $m n$ appears exactly once in the matrix (6). Then we can obtain a bijection between $A \times B$ and $\{0, \ldots, m n-1\}$ by superimposing the matrices. If we do so, we notice that the pair $\left(a_{i}, b_{j}\right)$ corresponds to the number $m i+j$: this is the bijection we were looking for.

[^0]: ${ }^{1}$ The classroom discussion depends on a passage which is not immediate to justify.

