ITB8832 Mathematics for Computer Science

 Autumn 2022Lecture 1 - 29 August 2022
Chapter One
Propositions and Predicates
The Axiomatic Method Good Proof Guidelines

Last update: 29 August 2022

Contents

1 Propositions and Predicates

2 The Axiomatic Method

- Logical deductions
- Proving an Implication
- Proving an "If and Only If"
- Proof by Cases

3 Good Proof Guidelines

Next section

1 Propositions and Predicates

2

> Logical deductions
> Proving an Implication
> Proving an "If and Only If"
> Proof by Cases

What Is a Proposition?

Definition

A proposition is a statement which has a definite truth value: either true, or false.

What Is a Proposition?

Definition

A proposition is a statement which has a definite truth value: either true, or false.

Examples:

- "Tallinn is the capital of Estonia." This is a true proposition.
- "Tartu is the capital of Estonia." This is a false proposition.

What Is a Proposition?

Definition

A proposition is a statement which has a definite truth value: either true, or false.

Examples:

- "Tallinn is the capital of Estonia." This is a true proposition.
- "Tartu is the capital of Estonia." This is a false proposition.
- "For every two real numbers a and $b,|a b| \leq \frac{a^{2}+b^{2}}{2}$."

This is a case of the arithmetic-geometric inequality.

What Is a Proposition?

Definition

A proposition is a statement which has a definite truth value: either true, or false.
Examples:

- "Tallinn is the capital of Estonia." This is a true proposition.
- "Tartu is the capital of Estonia." This is a false proposition.
- "For every two real numbers a and $b,|a b| \leq \frac{a^{2}+b^{2}}{2}$."

This is a case of the arithmetic-geometric inequality.

- "This statement is true."

This is a self-referential statement, which might not have a truth value. This one does: we just don't know which!

What Is a Proposition?

Definition

A proposition is a statement which has a definite truth value: either true, or false.
Examples:

- "Tallinn is the capital of Estonia." This is a true proposition.
- "Tartu is the capital of Estonia." This is a false proposition.
- "For every two real numbers a and $b,|a b| \leq \frac{a^{2}+b^{2}}{2}$."

This is a case of the arithmetic-geometric inequality.

- "This statement is true."

This is a self-referential statement, which might not have a truth value. This one does: we just don't know which!

- "If two and two are five, then I am the Pope."

This is actually a true proposition! (We will see why in Lecture 2.)

What Is Not a Proposition?

Non-examples:

- "Study the textbook from page 1 to page 30 ." This is a request, not a statement.

What Is Not a Proposition?

Non-examples:

- "Study the textbook from page 1 to page 30 ."

This is a request, not a statement.

- "Is it raining now?"

This is a question, not a statement.

What Is Not a Proposition?

Non-examples:

- "Study the textbook from page 1 to page 30 ."

This is a request, not a statement.

- "Is it raining now?"

This is a question, not a statement.

- "It is raining now."

This statement may be true or false according to what time and date it is, so it does not have a definite truth value.

What Is Not a Proposition?

Non-examples:

- "Study the textbook from page 1 to page 30."

This is a request, not a statement.

- "Is it raining now?"

This is a question, not a statement.

- "It is raining now."

This statement may be true or false according to what time and date it is, so it does not have a definite truth value.

- "This statement is false."

Such statement cannot have a truth value: if it were true, then it would be false, and if it were false, then it would be true.

What Is Not a Proposition?

Non-examples:

- "Study the textbook from page 1 to page 30."

This is a request, not a statement.

- "Is it raining now?"

This is a question, not a statement.

- "It is raining now."

This statement may be true or false according to what time and date it is, so it does not have a definite truth value.

- "This statement is false."

Such statement cannot have a truth value: if it were true, then it would be false, and if it were false, then it would be true.

- "If this statement is true, then two and two are five."

This is an instance of Curry's paradox.

Predicates

Definition

A predicate is a proposition whose truth value may depend on one or more variables.

Predicates

Definition

A predicate is a proposition whose truth value may depend on one or more variables.
Examples:

- " n is a perfect square" where n is a positive integer. This is true if $n=1$, but false if $n=2$.

Predicates

Definition

A predicate is a proposition whose truth value may depend on one or more variables.

Examples:

- " n is a perfect square" where n is a positive integer.

This is true if $n=1$, but false if $n=2$.

- " $n^{2}+n+41$ is a prime number" where n is a positive integer.

This is true for $n=1,2, \ldots, 39$, but $40^{2}+40+41=41^{2}$.

Predicates

Definition

A predicate is a proposition whose truth value may depend on one or more variables.

Examples:

- " n is a perfect square" where n is a positive integer.

This is true if $n=1$, but false if $n=2$.

- " $n^{2}+n+41$ is a prime number" where n is a positive integer.

This is true for $n=1,2, \ldots, 39$, but $40^{2}+40+41=41^{2}$.

- "It is raining now."

This is also a predicate, whose truth value depends on the variable "now".

Next section

2 The Axiomatic Method
Logical deductions
Proving an Implication
Proving an "If and Only If" Proof by Cases

Euclidean geometry

The Greek mathematician Euclid (IV-III century BC) based his treatise on plane geometry on the following five axioms:
(here we give an equivalent, more modern formulation)
1 Through any two points there is a unique straight line.
2 Every segment can be extended to a straight line.
3 There is always a circle with given center and radius.
4 All right angles are equal to each other.
5 Given a straight line and a point not on it, there exists a unique line parallel to the first and passing through the point.
All other propositions are deduced from those five axioms by means of proofs.

So, What Is a Proof?

Definition (following the textbook)

A proof of a proposition is a sequence of logical deductions which, starting from taken-for-granted axioms and reusing previously proved statements, ends with the proposition itself.

There is a sort of informal nomenclature for propositions which have a proof:

- Theorem: a proposition which is "important" somehow.

Example: Pythagoras' theorem on the side of a right triangle.

- Lemma: a proposition which is "useful" somehow.

Example: Euclid's lemma on divisibility by a prime.

- Corollary: a proposition which follows "in few steps" from a theorem or lemma.

The axiomatic method

1 Start from the axioms.
2 Apply logical deduction.
3 End with the proposition you wanted to prove.

Next subsection

2 The Axiomatic Method

- Logical deductions

Proving an Implication Proving an "If and Only If" Proof by Cases

Inference rules

These have the form:

$$
\frac{\text { list of premises }}{\text { conclusion }}
$$

meaning:
If all the premises are true, then the conclusion is true.

- A premise can also be called an antecedent or a hypothesis.
- The conclusion can also be called the consequent or the thesis.

Inference rules

These have the form:

$$
\begin{gathered}
\text { list of premises } \\
\hline \text { conclusion }
\end{gathered}
$$

Modus ponens ${ }^{1}$

Example:
it is raining, if it is raining, then I take my umbrella
I take my umbrella
${ }^{1}$ meaning "way of adding"; pronounced: MAW-doos PAWN-ens

Inference rules

These have the form:

$$
\frac{\text { list of premises }}{\text { conclusion }}
$$

Contraction of implications

$$
\frac{P \text { implies } Q, \quad Q \text { implies } R}{P \text { implies } R}
$$

Example:
if Bob is a man, then Bob is an animal, if Bob is an animal, then Bob is mortal if Bob is a man, then Bob is mortal

Inference rules

These have the form:

$$
\frac{\text { list of premises }}{\text { conclusion }}
$$

Contraposition

$$
\frac{P \text { implies } Q}{\operatorname{not}(Q) \text { implies } \operatorname{not}(P)}
$$

Example:

> if it is raining, then I take my umbrella
> if I do not take my umbrella, then it is not raining

Inference rules

These have the form:

$$
\frac{\text { list of premises }}{\text { conclusion }}
$$

Conjunction

$$
\frac{P, \quad Q}{P \text { and } Q}
$$

Example:

> the sky is blue, the rose is red
> the sky is blue and the rose is red

Inference rules

These have the form:

$$
\frac{\text { list of premises }}{\text { conclusion }}
$$

Disjunction

$$
\frac{P}{P \text { or } Q}, \quad \frac{Q}{P \text { or } Q}
$$

Example:
the sky is blue
the sky is blue or the rose is green

Inference rules

These have the form:

$$
\frac{\text { list of premises }}{\text { conclusion }}
$$

Law of Non-Contradiction

$$
\operatorname{not}(P \text { and } \operatorname{not}(P))
$$

Example:

A non-rule

$$
\frac{P \text { implies } Q}{\operatorname{not}(P) \text { implies } \operatorname{not}(Q)}
$$

A non-rule

$$
\frac{P \text { implies } Q}{\operatorname{not}(P) \text { implies } \operatorname{not}(Q)}
$$

It might be that both "if P, then Q " and "if not- P, then not- Q ".

- But more often than not, this is not the case:

$$
\frac{P \text { implies } Q}{\operatorname{not}(P) \text { implies } \operatorname{not}(Q)}
$$

It might be that both "if P, then Q " and "if not- P, then not- Q ".

- But more often than not, this is not the case:
- If I am under the rain, then I get wet; but I can get wet without being under the rain, e.g., by swimming in the lake.
- And we have stated that a logical rule is valid when the conclusion is true whenever the premises are all true.
Using this "rule" is a logical fallacy, called denying the antecedent.

Next subsection

2 The Axiomatic Method
Logical deductions

- Proving an Implication

Proving an "If and Only If"
Proof by Cases

How to Prove an Implication

Problem

Provide a proof of " P implies Q ".

Method 1: Direct proof

1 Assume P.
2 Show that Q logically follows.

Method 2: Prove the contrapositive

1 State, "We prove the contrapositive".
2 Write down the contrapositive.
3 Write a direct proof of the contrapositive.

Method 1: Example

Claim

If $0 \leq x \leq 2$, then $1+4 x-x^{3} \geq 0$.

Method 1: Example

Claim

If $0 \leq x \leq 2$, then $1+4 x-x^{3} \geq 0$.

- We assume $0 \leq x \leq 2$.

Method 1: Example

Claim

If $0 \leq x \leq 2$, then $1+4 x-x^{3} \geq 0$.

- We assume $0 \leq x \leq 2$.
- We isolate the part $4 x-x^{3}$, which contains the variable.
- We observe that we can factorize this as follows:

$$
4 x-x^{3}=x \cdot\left(4-x^{2}\right)=x \cdot(2+x) \cdot(2-x)
$$

Method 1: Example

Claim

If $0 \leq x \leq 2$, then $1+4 x-x^{3} \geq 0$.

- We assume $0 \leq x \leq 2$.
- We isolate the part $4 x-x^{3}$, which contains the variable.
- We observe that we can factorize this as follows:

$$
4 x-x^{3}=x \cdot\left(4-x^{2}\right)=x \cdot(2+x) \cdot(2-x)
$$

- For x between 0 and 2, each of those factors is nonnegative.
- Then the product is nonnegative too, and we get:

$$
1+4 x-x^{3}>4 x-x^{3} \geq 0
$$

Method 2: Example

Claim

If $r \geq 0$ is irrational, then \sqrt{r} is irrational.

Method 2: Example

Claim

If $r \geq 0$ is irrational, then \sqrt{r} is irrational.

- We prove the contrapositive:

If \sqrt{r} is rational, then r is rational.

Method 2: Example

Claim

If $r \geq 0$ is irrational, then \sqrt{r} is irrational.

- We prove the contrapositive:

If \sqrt{r} is rational, then r is rational.

- Assume there exist integers m, n such that $\sqrt{r}=\frac{m}{n}$.

Method 2: Example

Claim

If $r \geq 0$ is irrational, then \sqrt{r} is irrational.

- We prove the contrapositive:

If \sqrt{r} is rational, then r is rational.

- Assume there exist integers m, n such that $\sqrt{r}=\frac{m}{n}$.
- By squaring both sides, as $r \geq 0$, we get $r=\frac{m^{2}}{n^{2}}$
- As m^{2} and n^{2} are also integers, r is rational.

The Law of Excluded Middle

The technique of proof by contraposition works because of:

Law of Excluded Middle

Given any proposition P, one between P and $\operatorname{not}(P)$ is true.
Expressed as a logical rule: (" iff" is a shortcut for 'if and only if")

$$
\overline{P \operatorname{or} \operatorname{not}(P)}, \text { or equivalently }, \overline{P \text { iff } \operatorname{not}(\operatorname{not}(P))}
$$

- Technically, if we iterate the rule of contraposition, we get:

$$
\frac{\operatorname{not}(Q) \text { implies } \operatorname{not}(P)}{\operatorname{not}(\operatorname{not}(P)) \text { implies } \operatorname{not}(\operatorname{not}(Q))}
$$

- We then need the Law of Excluded Middle to substitute $\operatorname{not}(\operatorname{not}(P))$ and $\operatorname{not}(\operatorname{not}(Q))$ with P and Q, respectively.
- There are some logics in which the Law of Excluded Middle is not valid.

Next subsection

2 The Axiomatic Method
Logical deductions
Proving an Implication
■ Proving an "If and Only If"
Proof by Cases

How to Prove an "If and Only If"

Problem

Provide a proof of " P iff Q ".

Method 1: Prove each implication separately

1 First, prove P implies Q.
2 Then, prove Q implies P.

Method 2: Construct a chain of iff 's
1 Write down a sequence P_{1}, \ldots, P_{n} of propositions such that $P_{1}=P$ and $P_{n}=Q$.
2 For every i from 1 to $n-1$, prove: P_{i} iff P_{i+1}.

Example: The standard deviation

Recall that the mean of the values $x_{1}, x_{2}, \ldots, x_{n}$ is the quantity:

$$
\mu=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

Theorem

However given values x_{1}, \ldots, x_{n}, their standard deviation

$$
\sigma=\sqrt{\frac{\left(x_{1}-\mu\right)^{2}+\left(x_{2}-\mu\right)^{2}+\ldots+\left(x_{n}-\mu\right)^{2}}{n}}
$$

is zero if and only if all the x_{i} 's are equal.

Example: The standard deviation

Theorem

However given values x_{1}, \ldots, x_{n}, their standard deviation

$$
\sigma=\sqrt{\frac{\left(x_{1}-\mu\right)^{2}+\left(x_{2}-\mu\right)^{2}+\ldots+\left(x_{n}-\mu\right)^{2}}{n}}
$$

is zero if and only if all the x_{i} 's are equal.
We construct the following chain of propositions:
$1 \quad \sigma=0$.
$2\left(x_{1}-\mu\right)^{2}+\left(x_{2}-\mu\right)^{2}+\ldots+\left(x_{n}-\mu\right)^{2}=0$.
$3 x_{1}-\mu=x_{2}-\mu=\ldots=x_{n}-\mu=0$.
$4 x_{1}=x_{2}=\ldots=x_{n}=\mu$.

Example: The standard deviation

Theorem

However given values x_{1}, \ldots, x_{n}, their standard deviation

$$
\sigma=\sqrt{\frac{\left(x_{1}-\mu\right)^{2}+\left(x_{2}-\mu\right)^{2}+\ldots+\left(x_{n}-\mu\right)^{2}}{n}}
$$

is zero if and only if all the x_{i} 's are equal.
Then:

- P_{1} iff P_{2}, because a square root is 0 iff its argument is 0 .
- P_{2} iff P_{3}, because a sum of squares is 0 iff each square is 0 .
- P_{3} iff P_{4} in an obvious ${ }^{1}$ way.

[^0]
Next subsection

2 The Axiomatic Method
Logical deductions
Proving an Implication

- Proving an "If and Only If"
- Proof by Cases

Proof by Cases

Suppose we have a predicate $P(x)$ depending on a variable x.
1 Identify a finite number of cases such that, for each value k of the variable x, the proposition $P(\mathrm{k})$ belongs to some case (maybe more than one, but at least one).
2 Construct a proof for each of those cases.
This works because, if $C_{1}, C_{2}, \ldots, C_{n}$ are all the possible cases, then $P(x)$ is equivalent to:

$$
\left(C_{1} \text { and } P(x)\right) \text { or }\left(C_{2} \text { and } P(x)\right) \text { or } \ldots \text { or }\left(C_{n} \text { and } P(x)\right)
$$

Example: Ramsey's Theorem for $(3,3)$

Statement

Among any six people there is
1 either a club of three people who all know each other,
2 or a group of three strangers none of whom knows any of the others.

Example: Ramsey's Theorem for $(3,3)$

Statement

Among any six people there is
1 either a club of three people who all know each other,
2 or a group of three strangers none of whom knows any of the others.

Part 1: Identify the Cases

Call A, B, C, D, E, F the six people. Exactly one of the following happens:
a. At least three between B, C, D, E, and F know A.
b. At most two between B, C, D, E, and F know A.

Example: Ramsey's Theorem for $(3,3)$

Statement

Among any six people there is
1 either a club of three people who all know each other,
2 or a group of three strangers none of whom knows any of the others.

Part 2a: Prove the First Case

Call R, S, and T three people who know A.

- If none of R, S, and T know each other, then they form a group of strangers.
- If two of them know each other, call them U and V : then A, U, and V form a club.

Note that we used a proof by cases inside a proof by cases.

Example: Ramsey's Theorem for $(3,3)$

Statement

Among any six people there is
1 either a club of three people who all know each other,
2 or a group of three strangers none of whom knows any of the others.

Part 2b: Prove the Next Case

Call R, S, and T three people who don't know A.

- If R, S, and T know each other, then they form a club.
- If two of them don't know each other, call them U and V : then A, U, and V form a group of three strangers.

Again, we used a proof by cases inside a proof by cases.

Example: Ramsey's Theorem for $(3,3)$

Statement

Among any six people there is
1 either a club of three people who all know each other,
2 or a group of three strangers none of whom knows any of the others.
Note that the options in the thesis are not mutually exclusive:

- It might be that A, B, and C form a club, while D, E, and F form a group of three strangers.

Next section

1

2

> Logical deductions
> Proving an Implication
> Proving an "If and Only If" Proof by Cases

3 Good Proof Guidelines

Good proof guidelines

- State your plan.
- Keep a linear flow.
- A proof is an essay, rather than a calculation.
- Use notation consistently and sparingly.
- Structure a long proof as you would do with a long program.
- Make multiple revisions.

■ "Obvious" is a relative concept.

- Write down conclusions explicitly.

[^0]: ${ }^{1}$ Use this word VERY carefully!

