ITB8832 Mathematics for Computer Science Lecture 4 – 19 September 2022

Chapter Four

Sets

Sequences

Functions

Binary Relations

Finite Cardinality

Contents

3 Functions

- 4 Binary Relations
- 5 Finite Cardinality

Next section

2 Sequences

3 Functions

4 Binary Relations

5 Finite Cardinality

Definition (informal)

A set is an aggregate of objects, called the elements of the set.

Sets can be given as *lists* or as *descriptions*:

Α	::=	$\{2,3,5,7,11,13,17,19\}$	primes smaller than 20
В	::=	$\{\{T\}, \{F\}, \{T, F\}\}$	nonempty sets of Booleans
С	::=	$\{1, 2, 3, 4, \ldots\}$	positive integers
D	::=	{Sephiroth, Bowser, Diablo, }	villains from video games

The symbol ::= is read "is equal by definition to", or "is defined as". Order and repetition *do not* matter, only elements do:

{Sephiroth, Bowser, Diablo}	=	{Bowser, Diablo, Sephiroth}
{Bowser, Bowser, Bowser}	=	{Bowser}

Notation

" $x \in X$ " means "the object x is an element of the set X". " $x \notin X$ " means "the object x is not an element of the set X".

Usually, when given generic names:

- elements are denoted by uncapitalized letters;
- sets are denoted by capitalized letters.

Examples:

- **1**7 \in {2,3,5,7,11,13,17,19}.
- $\{T\} \in \{\{T\}, \{F\}, \{T, F\}\}.$
- Bowser \in {Bowser, Diablo, Sephiroth}.

Non-examples:

- $T \notin \{\{T\}, \{F\}, \{T, F\}\}$. Do not confuse the *object* T with the *singleton* $\{T\}$ whose only element is T.
- Bowser $\notin \{2, 3, 5, 7, 11, 13, 17, 19\}.$

Commonly used sets

Symbol	Name	
Ø	empty set	
$\mathbb B$	Boolean values	
\mathbb{N}	natural numbers	1
\mathbb{Z}	integers	
Q	rational numbers	1
\mathbb{R}	real numbers	1
\mathbb{C}	complex numbers	
\mathbb{Z}^+	positive integers	
\mathbb{R}^+	positive reals	
$\mathbb{R}^{\geq 0}$	non-negative reals	1
\mathbb{Z}^{-}	negative integers	
\mathbb{R}^{-}	negative reals	

Elements

T, F 0, 1, 2, 3,, -2, -1, 0, 1, 2, 3, ... 0, 1, -1, $\frac{1}{2}$, $-\frac{3}{7}$, 17, ... 0, 1, -1, $\frac{1}{2}$, $-\frac{3}{7}$, 17, $\sqrt{2}$, π , ... *i*, $\frac{1}{2}$, 17, 1 + *i* $\sqrt{2}$, $e^{i\pi}$ + 1, ... 1, 2, 3, ..., 17, ... 1, *e*, π , 17, 10¹⁰¹⁰⁰, ... 0, 1, *e*, π , 17, 10¹⁰¹⁰⁰, ... -1, -2, -3, ..., -17, ... -1, -*e*, $-\pi$, -17, -10¹⁰¹⁰⁰, ...

Definition

A set X is a subset of a set Y if every object which is an element of X is also an element of Y.

In this case, we write: $X \subseteq Y$.

If $X \subseteq Y$ but some elements of Y are not elements of X, we may write $X \subset Y$. Examples:

- $\emptyset \subseteq X$ for every set X. Otherwise, there would exist $z \in \emptyset$ such that $z \notin X$...
- $\blacksquare \ \mathbb{Z}^+ \subseteq \mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}.$
- $\{2,3,5\} \subset \{2,3,5,7\}.$
- $\{2,3,5\} \not\subseteq \{2,3,7\}$ But $\{2,3,7\} \not\subseteq \{2,3,5\}$ either

Set construction: Union

Definition 4.1.1.

The *union* of the sets X and Y is the set $X \cup Y$ such that:

 $x \in X \cup Y$ iff $x \in X$ or $x \in Y$

- $\bullet \{2,3,5\} \cup \{2,3,7\} = \{2,3,5,7\}.$
- $[2,3,5] \cup \{Bowser, Sephiroth\} = \{2,3,5,Bowser, Sephiroth\}.$
- $X \cup \emptyset = \emptyset \cup X = X$ whatever the set X is. In particular: $\emptyset \cup \emptyset = \emptyset$.

Definition 4.1.1. (cont)

The *intersection* of the sets X and Y is the set $X \cap Y$ such that:

 $x \in X \cap Y$ iff $x \in X$ and $x \in Y$

- $\bullet \{2,3,5\} \cap \{2,3,7\} = \{2,3\}.$
- $\{2,3,5\} \cap \{\text{Bowser, Sephiroth}\} = \emptyset$.
- X∩Ø=Ø∩X=Ø whatever the set X is. In particular: Ø∩Ø=Ø.

Definition 4.1.1. (cont)

The *difference* of the sets X and Y is the set X - Y such that:

$$x \in X - Y$$
 iff $x \in X$ and $not(x \in Y)$

- $\{2,3,5\} \{2,3,7\} = \{5\}.$
- $\{2,3,5\} \{Bowser, Sephiroth\} = \{2,3,5\}.$
- $X \emptyset = X$ and $\emptyset X = \emptyset$ whatever the set X is. In particular: $\emptyset - \emptyset = \emptyset$.
- If X and Y are any two sets, then:

$$X = (X \cap Y) \cup (X - Y)$$

$$X \cup Y = (X \cap Y) \cup (X - Y) \cup (Y - X)$$

For this construction, it is necessary that a *domain* D be defined, such that every object which is element of any set is also an element of D.

Definition

The *complement* of the set X with respect to the domain D is the difference set

$$\overline{X} = D - X$$

- If $D = \mathbb{Z}$ then $\overline{\mathbb{N}} = \mathbb{Z}^-$.
- If $D = \{Bowser, Diablo, Sephiroth\}$ then $\overline{\{Bowser, Sephiroth\}} = \{Diablo\}$.

Construction: Power set

Definition

The *power set* of a set X is the set pow(X) whose elements are all and only the subsets of X.

Examples:

- $pow(\emptyset) = \{\emptyset\}.$
- $pow({T,F}) = {\emptyset, {T}, {F}, {T,F}}.$
- $pow(\{1,2,3\}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}.$

Note: power sets are never empty as $\emptyset \in pow(X)$ for every set X.

The notation

$$S ::= \{x \in X \mid P(x)\}$$

means:

S is defined as the set of all and only those elements x of the set X such that the predicate P(x) is true

- $D ::= \{ z \in \mathbb{C} \mid \Re z = \Im z \}.$ This is the *main diagonal* of the complex plane.
- $E ::= \{z \in \mathbb{C} \mid \exists x, y \in \mathbb{R} : (z = x + iy \land x^2 + 4y^2 = 1)\}$. This is the *ellipse* of width 2 and height 1.
- Primes ::= { $x \in \mathbb{N} | x > 1 \land \forall a, b \in \mathbb{N} . ((a \le b \land ab = x) \longrightarrow (a = 1 \land b = x))$ }.

Let E(x) be an expression that, for every $x \in X$, represents an element of Y. Then:

 $S ::= \{E(x) \mid x \in X\}$

means the same as:

$$S ::= \{y \in Y \mid \exists x \in X . y = E(x)\}$$

Examples:

 $D ::= \{t + it \mid t \in \mathbb{R}\}$

This is again the main diagonal of the complex plane.

• $\mathbb{N} ::= \{0\} \cup \{x+1 \mid x \in \mathbb{N}\}.$ This is a first example of a *recursive* definition.

Definition

Two sets are equal if and only if they have the same elements.

Equivalently¹:

X = Y iff $X \subseteq Y$ and $Y \subseteq X$

- $\bullet \quad \emptyset = \{ x \in \mathbb{N} \mid x \neq x \}.$
- $\blacksquare \mathbb{N} = \{ x \in \mathbb{Z} \mid x \ge 0 \}.$
- { $x \in \mathbb{R} \mid x^2 3x + 2 < 0$ } = { $x \in \mathbb{R} \mid 1 < x < 2$ }.
- { $p \in \text{Primes} | p = 2 \text{ or } \exists k \in \mathbb{Z} . p = 4k + 1$ } = { $p \in \text{Primes} | \exists a, b \in \mathbb{Z} . p = a^2 + b^2$ }. (This nontrivial result is due to *Pierre de Fermat*.)

¹Check that the equivalence is true!

Proving Set Equalities

A set equality is, in its essence, an "if and only if" proposition.

Theorem 4.1.2. (Distributive law for sets)

However given three sets A, B, and C,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

1 Translate the set equality into an "if and only if" proposition:

 $\forall x. (x \in A \cap (B \cup C) \text{ iff } x \in (A \cap B) \cup (A \cap C))$

2 Prove the "if and only if" proposition: however chosen x,

$$\begin{aligned} x \in A \cap (B \cup C) & \text{iff} \quad x \in A \text{ and } (x \in B \text{ or } x \in C) \\ & \text{iff} \quad (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C) \\ & \text{iff} \quad x \in (A \cap B) \cup (A \cap C) \end{aligned}$$

There is a good correspondence between operations on sets and operations on propositions:

- Logical or corresponds to set union.
- Logical and corresponds to set *intersection*.
- Logical not() corresponds to set complementation. (For this, a domain must have been defined.)
- Logical implies corresponds to set inclusion.
- Logical iff corresponds to set equality.

However, *do not* mix the two things, as they have different *types*:

- You can do an intersection of sets: not a conjunction of sets.
- You can do a conjunction of propositions: not an intersection of propositions.

Next section

1 Sets

3 Functions

- 4 Binary Relations
- 5 Finite Cardinality

Definition

A *sequence* of *length* n is a list of n objects

 (x_1, x_2, \ldots, x_n)

Where a set is a *collection*, a sequence is a *list*:

Order counts:

 $(Sephiroth, Bowser, Diablo) \neq (Bowser, Diablo, Sephiroth).$

■ Entry values can be repeated: (Bowser, Bowser, Bowser) ≠ (Bowser).

As there is an empty set, so there is an empty sequence of length 0: we denote it as λ .

Definition

The Cartesian product of the sets S_1, S_2, \ldots, S_n is the set

 $S_1 \times S_2 \times \ldots \times S_n$

of the sequences of length n where, for each i from 1 to n, the ith object is an element of S_i .

If $S_1 = S_2 = \ldots = S_n = S$ we denote the Cartesian product as S^n . Examples:

- $\mathbb{N} \times \mathbb{B} = \{(n, b) \mid n \in \mathbb{N}, b \in \mathbb{B}\} = \{(0, T), (0, F), (1, T), (1, F), ...\}$
- $(17, \text{Diablo}) \in \mathbb{N} \times \{\text{video game villains}\}.$
- (1, e,π) $\in \mathbb{R}^3$.

Next section

1 Sets

- 2 Sequences
- 3 Functions
 - 4 Binary Relations
- 5 Finite Cardinality

Functions

Definition

A function with domain A and codomain B is a rule f which assigns to each element x of the set A a unique element f(x) (read "f of x") of the set B.

Notation:

- $f: A \rightarrow B$ means: f is a function with domain A and codomain B.
- f(a) = b means: f assigns value b to object a.
 We can also say: b is the value of f at argument a.

Functions can be given by a formula:

- $f_1(x) ::= 1/x^2$ where $x \in \mathbb{R}$. Here, $f_1(x)$ is not defined for x = 0: f_1 is a *partial* function.
- $f_2(x,y) ::= y \cdot 10x$ where x and y are binary strings of finite length. For example: $f_2(10,001) = 0011010$.
- $f_3(x,n)$::= the length of the sequence (x,x,...,x) (*n* repetitions) where $x \in \mathbb{R}$ and $n \in \mathbb{N}$.

You can think of a function with many arguments as a function with a single argument defined on a Cartesian product.

 [P] ::= the truth value of P where P is a proposition. These are sometimes called *lverson brackets*. A function with finite domain can be defined via its *look-up table*.

Suppose f₄(P, Q), where P and Q are Boolean variables, has the following look-up table:

Ρ	Q	$f_4(P,Q)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

The look-up table above is the truth table of implication, so:

 $f_4(P,Q) = [P \text{ implies } Q]$

Let x vary in the binary strings and let f_5 return the length of a left-to-right search on x until the first 1 is found. That is:

$$f_5(x) ::= \begin{cases} 1 & \text{if } x = 1y, \\ 1 + f_5(y) & \text{if } x = 0y. \end{cases}$$

Then:

$$f_5(100) = 1$$

$$f_5(00111) = 3$$

$$f_5(00000) = ???$$

So this is a partial function too. Exercise: how to make it total?

Definition

If $f: A \rightarrow B$ and $S \subseteq A$, then:

$$f(S) = \{b \in B \mid \exists a \in S \, . \, f(a) = b\}$$

is the *image* of S under f.

- If $S = [1,2] = \{x \in \mathbb{R} \mid 1 \le x \le 2\}$, then $f_1(S) = [1/4,1]$.
- If $S = \mathbb{R}$, then $f_1(S) = \mathbb{R}^+$.
- If $S = \{(T,T), (F,T), (F,F)\}$, then $f_4(S) = \{T\}$.
- If $S = \{100, 00111, 0010, 00000\}$, then $f_5(S) = \{1, 3\}$.

Definition 4.3.1.

If $f: A \rightarrow B$ and $g: B \rightarrow C$, the *composition* of g and f (in this order) is defined as:

$$(g \circ f)(x) ::= g(f(x))$$

(read: g after f) at every $x \in A$ such that f is defined on x and g is defined on f(x).

Order matters:

- Wearing first your socks, then your shoes is not the same as wearing first your shoes, then your socks.
- If $A = B = C = \mathbb{R}$, $f(x) = x^2 + 1$, and g(x) = 3x + 2, then $g(f(x)) = 3(x^2 + 1) + 2 = 3x^2 + 5$, but $f(g(x)) = (3x + 2)^2 + 1 = 9x^2 + 12x + 5$.

Next section

1 Sets

- 2 Sequences
- 3 Functions
- 4 Binary Relations
- 5 Finite Cardinality

Binary relations

Definition 4.4.1.

A binary relation with domain A, codomain B, and graph R is a subset of the Cartesian product $A \times B$.

- A relation is "a function without the unique image requirement".
- If the domain and codomain are given, we may identify the relation with its graph.
- $R: A \rightarrow B$ means: "R is a relation from A to B".
- If $a \in A$ and $b \in B$, then a R b means: "a is in relation R with b".

A binary relation $R: A \rightarrow B$ can be represented as two columns linked by arrows, where:

- The first column contains a list of elements of A.
- The second column contains a list of elements of *B*.
- There is an arrow from $a \in A$ to $b \in B$ if and only if aRb.

Example: What is taught by whom?

From the 2018-2019 course list:

Let $R: A \rightarrow B$ be a binary relation. We say that:

R has the ... property if each object in its ... has ... arrows ... it

in the relation diagram, according to the following table:

[≤ <i>n</i> in]	codomain	at most <i>n</i>	coming into
[≥ <i>m</i> in]	codomain	at least <i>m</i>	coming into
[= <i>k</i> in]	codomain	exactly <i>k</i>	coming into
[≤ <i>n</i> out]	domain	at most <i>n</i>	going out of
[≥ <i>m</i> out]	domain	at least <i>m</i>	going out of
[= <i>k</i> out]	domain	exactly <i>k</i>	going out of

Let $R: A \rightarrow B$ be a binary relation. We say that:

R has the ... property if each object in its ... has ... arrows ... it

in the relation diagram, according to the following table:

[≤ <i>n</i> in]	codomain	at most <i>n</i>	coming into
$[\geq m \text{ in }]$	codomain	at least m	coming into
[= <i>k</i> in]	codomain	exactly <i>k</i>	coming into
[≤ <i>n</i> out]	domain	at most <i>n</i>	going out of
$[\geq m \text{ out }]$	domain	at least <i>m</i>	going out of
[= <i>k</i> out]	domain	exactly <i>k</i>	going out of

Note that this depend on how domain and codomain are chosen:

- f(x) = 1/x² has both [= 1 in] and [= 1 out] if the choice for both its domain and codomain is ℝ⁺...
- ... but if it is \mathbb{R} instead, then f(x) has neither $[\leq 1 \text{ in }]$, nor $[\geq 1 \text{ in }]$, nor $[\geq 1 \text{ out }]$.

Definition 4.4.2.

Let	$R: A \rightarrow B$	be a	binary	relation	We say	t hat:
R	is	if it	has			

a function	the [\leq 1 out] property
tota	the [\geq 1 out] property
injective	the [\leq 1 in] property
surjective	the $[\geq 1 ext{ in }]$ property
bijective	both the $[=1 ext{ out }]$ and the $[=1 ext{ in }]$ property

Important:

- Bijective relations are total.
- If A = Ø then R is a total function: Otherwise, there would exist x ∈ Ø with either no outgoing arrow, or more than one outgoing arrow...
- If B = Ø then R is both injective and surjective: Otherwise, there would exist y ∈ Ø with either more than one incoming arrow, or no incoming arrow...

Let R be a relation with domain A and codomain B.

Definition 4.4.4.

The *image* of $S \subseteq A$ under R is:

$$R(S) ::= \{y \in B \mid \exists x \in S . xRy\}$$

For example, let $A = B = \mathbb{N}$ and let *aRb* if and only if *b* is a prime factor of *a*. Then:

- $R(\{2,4,6,8,10,17,26\}) = \{2,3,5,13,17\}.$
- $R({0}) = Primes.$

Remember that m is a factor of n if and only if there exists an integer k such that km = n; for n = 0 we can choose k = 0.

Composition of relations is defined similarly to composition of functions:

Definition

If $R: A \to B$ and $S: B \to C$, the *composition* of S and R (in this order) is the relation $S \circ R: A \to C$ (read: S after R) defined as:

 $a(S \circ R)c$ iff $\exists b \in B.aRb$ and bSc

Again, order matters:

The mother of the father is not the father of the mother.

Let $R: A \rightarrow B$ be a binary relation.

Definitions 4.4.5 and 4.4.6.

The *inverse* of R is the binary relation $R^{-1}: B \rightarrow A$ defined by:

 $yR^{-1}x$ iff xRy

The *inverse image* of $T \subseteq B$ according to R is then its image under the inverse relation:

 $R^{-1}(T) = \{x \in A \mid \exists y \in T . xRy\}$

Example: Who teaches what?

Let $E: A \to B$ be the *empty relation* such that $not((x, y) \in E)$ for any $x \in A$ and $y \in B$.

E is a function:

E clearly has the [= 0 in] property, so it has the [≤ 1 in] property too.

E is injective:

E clearly has the [= 0 out] property, so it has the [≤ 1 out] property too.

• E is total if and only if $A = \emptyset$:

If A is nonempty then E doesn't have the $[\ge 1 \text{ out }]$ property. If E wasn't total with $A = \emptyset$, there would exist $x \in \emptyset$ such that $not((x, y) \in E)$ for any $y \in B$; but there is no $x \in \emptyset$.

• E is surjective if and only if $B = \emptyset$:

If B is nonempty then E doesn't have the $[\ge 1 \text{ in }]$ property. If E wasn't surjective with $B = \emptyset$, there would exist $y \in \emptyset$ such that $\operatorname{not}((x, y) \in E)$ for any $x \in A$; but there is no $y \in \emptyset$.

Next section

1 Sets

- 2 Sequences
- 3 Functions
- 4 Binary Relations
- 5 Finite Cardinality

The cardinality of a finite set

Definition 4.5.1.

If A is a finite set, the *cardinality* of A is the number |A| of its elements.

Examples:

- $|\{\text{Sephiroth, Bowser, Diablo}\}| = 3$.
- $|\{p \in \text{Primes} \mid p \le 20\}| = 8.$
- |Ø| = 0.

Let A and B be finite sets and R a relation from A to B. Suppose the relation diagram of R has n arrows.

1 If R is a function, then it has the [≤ 1 out] property, so $|A| \geq n$.

2 If R is surjective, then it has the $[\geq 1 \text{ in }]$ property, so $n \geq |B|$.

We conclude that:

If A and B are finite sets and $f : A \rightarrow B$ is a surjective function, then $|A| \ge |B|$.

Surjectivity, injectivity, bijectivity

Definition 4.5.2.

Given any two (finite or infinite) sets A and B, we write:

- A surj B iff there exists a surjective function from A to B;
- A inj B iff there exists a total injective relation from A to B;
- A bij B iff there exists a bijection from A to B.

Read: A surject B, A inject B, A biject B.

Surjectivity, injectivity, bijectivity

Definition 4.5.2.

Given any two (finite or infinite) sets A and B, we write:

- A surj B iff there exists a *surjective function* from A to B;
- A inj B iff there exists a total injective relation from A to B;
- A bij B iff there exists a bijection from A to B.

Read: A surject B, A inject B, A biject B.

Examples:

If A is the set of video games and B = {Bowser, Diablo, Sephiroth}, then A surj B:

V	Super Mario	Diablo II	Final Fantasy VII	Tetris	Diablo III	
f(v)	Bowser	Diablo	Sephiroth	undefined	Diablo	

where f(v) is the Big Bad Evil Guy of video game v, is a surjective function (but neither total nor injective).

- If $A \subseteq B$, then A inj B: f(x) = x for every $x \in A$ is injective and total (and also a function).
- If $A = \{p \in \text{Primes} \mid p \le 20\}$ and $B = \{n \in \mathbb{N} \mid 1 \le n \le 8\}$, then A bij B:

р	2	3	5	7	11	13	17	19
f(p)	1	2	3	4	5	6	7	8

Definition 4.5.2.

Given any two (finite or infinite) sets A and B, we write:

- A surj B iff there exists a *surjective function* from A to B;
- A inj B iff there exists a total injective relation from A to B;
- A bij B iff there exists a bijection from A to B.

Read: A surject B, A inject B, A biject B.

Important note:

- If B = Ø then A surj B whatever A is: In this case, the empty relation is a surjective function.
- If A = Ø then A inj B whatever B is: In this case, the empty relation is total and injective.

Lemma 4.5.3

Let A and B be *finite* sets. Then:

- 1 If A surj B, then $|A| \ge |B|$.
- 2 If A inj B, then $|A| \leq |B|$.
- 3 If A bij B, then |A| = |B|.

Proof:

- We proved this on the second slide of the section.
- 2 If $R: A \rightarrow B$ is injective and total, then R^{-1} is a surjective function, so $|B| \ge |A|$. Bonus: prove that A inj B iff B surj A.
- 3 If $f: A \rightarrow B$ is a bijection, then it is a total function which is both injective and surjective.

Function and arrow properties: Summary

Theorem 4.5.4

Let A and B be finite sets. Then:

- 1 $|A| \ge |B|$ iff there exists a surjective function from A to B.
- 2 $|A| \leq |B|$ iff there exists an injective total relation from A to B.
- 3 |A| = |B| iff there exists a bijection from A to B.

How Many Subsets of a Finite Set?

Theorem

A finite set with n elements has 2^n subsets.

Proof:

- 1 The thesis is true for the empty set, so let $n \ge 1$.
- 2 Let a_1, \ldots, a_n be the elements of the set A.
- 3 Let B be the set of binary strings of length n.
- 4 Define $f : pow(A) \to B$ so that the *i*th bit of f(S) is 1 if and only if $a_i \in S$.
- 5 Then f is a bijection, because subsets with the same image have the same elements, and each string describes a subset. Alternatively: f is a bijection, because it is a total function whose inverse:

$$g(s) = \{a_i \in A \mid b_i = 1\}$$
 where $s = b_1 b_2 \dots b_n$

is also a total function.

6 Since there are 2ⁿ binary strings of length n, the thesis follows.