ITB8832 Mathematics for Computer Science

 Lecture 4-19 September 2022```
Chapter Four
 Sets
 Sequences
 Functions
 Binary Relations
 Finite Cardinality
```


## Contents

## 1 Sets

2 Sequences

3 Functions

4 Binary Relations

5 Finite Cardinality

Next section

1 Sets

2

3

4

5

## Sets

## Definition (informal)

A set is an aggregate of objects, called the elements of the set.
Sets can be given as lists or as descriptions:

| $A$ | $::=\{2,3,5,7,11,13,17,19\}$ | primes smaller than 20 |
| :--- | :--- | :--- |
| $B:$ | $:=\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$ | nonempty sets of Booleans |
| $C$ | $:=\{1,2,3,4, \ldots\}$ | positive integers |
| $D::=\{$ Sephiroth, Bowser, Diablo, $\ldots\}$ | villains from video games |  |

The symbol $::=$ is read "is equal by definition to", or "is defined as". Order and repetition do not matter, only elements do:

$$
\begin{aligned}
\{\text { Sephiroth, Bowser, Diablo }\} & =\{\text { Bowser, Diablo, Sephiroth }\} \\
\{\text { Bowser, Bowser, Bowser }\} & =\{\text { Bowser }\}
\end{aligned}
$$

## Elements of a set

## Notation

" $x \in X$ " means "the object $x$ is an element of the set $X$ ".
" $x \notin X$ " means "the object $x$ is not an element of the set $X$ ".
Usually, when given generic names:

- elements are denoted by uncapitalized letters;
- sets are denoted by capitalized letters.

Examples:

- $17 \in\{2,3,5,7,11,13,17,19\}$.
- $\{\mathbf{T}\} \in\{\{\mathbf{T}\},\{\mathbf{F}\},\{\mathbf{T}, \mathbf{F}\}\}$.
- Bowser $\in\{$ Bowser, Diablo, Sephiroth $\}$.

Non-examples:

- $\mathbf{T} \notin\{\{\mathbf{T}\},\{\mathbf{F}\},\{\mathbf{T}, \mathbf{F}\}\}$.

Do not confuse the object T with the singleton $\{\mathrm{T}\}$ whose only element is T .

- Bowser $\notin\{2,3,5,7,11,13,17,19\}$.


## Commonly used sets

Symbo
$\emptyset$
$\mathbb{B}$
$\mathbb{N}$
$\mathbb{Z}$
$\mathbb{Q}$
$\mathbb{R}$
$\mathbb{C}$
$\mathbb{Z}^{+}$
$\mathbb{R}^{+}$
$\mathbb{R}^{\geq 0}$
$\mathbb{Z}^{-}$
$\mathbb{R}^{-}$

## Name

empty set
Boolean values
natural numbers
integers
rational numbers
real numbers
complex numbers
positive integers
positive reals
non-negative reals
negative integers
negative reals

## Elements

T, F
$0,1,2,3, \ldots$
$\ldots,-2,-1,0,1,2,3, \ldots$
$0,1,-1, \frac{1}{2},-\frac{3}{7}, 17, \ldots$
$0,1,-1, \frac{1}{2},-\frac{3}{7}, 17, \sqrt{2}, \pi, \ldots$
$i, \frac{1}{2}, 17,1+i \sqrt{2}, e^{i \pi}+1, \ldots$
$1,2,3, \ldots, 17, \ldots$
$1, e, \pi, 17,10^{10^{100}}, \ldots$
$0,1, e, \pi, 17,10^{10^{100}}$
$-1,-2,-3, \ldots,-17, \ldots$
$-1,-e,-\pi,-17,-10^{10^{100}}, \ldots$

## Comparisons between sets

## Definition

A set $X$ is a subset of a set $Y$ if every object which is an element of $X$ is also an element of $Y$.
In this case, we write: $X \subseteq Y$.
If $X \subseteq Y$ but some elements of $Y$ are not elements of $X$, we may write $X \subset Y$.
Examples:

- $\emptyset \subseteq X$ for every set $X$. Otherwise, there would exist $z \in \emptyset$ such that $z \notin X \ldots$
- $\mathbb{Z}^{+} \subseteq \mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.
- $\{2,3,5\} \subset\{2,3,5,7\}$.
- $\{2,3,5\} \nsubseteq\{2,3,7\}$. But $\{2,3,7\} \nsubseteq\{2,3,5\}$ either.


## Set construction: Union

## Definition 4.1.1.

The union of the sets $X$ and $Y$ is the set $X \cup Y$ such that:

$$
x \in X \cup Y \text { iff } x \in X \text { or } x \in Y
$$

## Examples:

- $\{2,3,5\} \cup\{2,3,7\}=\{2,3,5,7\}$.
- $\{2,3,5\} \cup\{$ Bowser, Sephiroth $\}=\{2,3,5$, Bowser, Sephiroth $\}$.
- $X \cup \emptyset=\emptyset \cup X=X$ whatever the set $X$ is. In particular: $\emptyset \cup \emptyset=\emptyset$.


## Set construction: Intersection

## Definition 4.1.1. (cont)

The intersection of the sets $X$ and $Y$ is the set $X \cap Y$ such that:

$$
x \in X \cap Y \text { iff } x \in X \text { and } x \in Y
$$

Examples:

- $\{2,3,5\} \cap\{2,3,7\}=\{2,3\}$.
- $\{2,3,5\} \cap\{$ Bowser, Sephiroth $\}=\emptyset$.
- $X \cap \emptyset=\emptyset \cap X=\emptyset$ whatever the set $X$ is. In particular: $\emptyset \cap \emptyset=\emptyset$.


## Set construction: Difference

## Definition 4.1.1. (cont)

The difference of the sets $X$ and $Y$ is the set $X-Y$ such that:

$$
x \in X-Y \text { iff } x \in X \text { and } \operatorname{not}(x \in Y)
$$

Examples:

- $\{2,3,5\}-\{2,3,7\}=\{5\}$.
- $\{2,3,5\}-\{$ Bowser, Sephiroth $\}=\{2,3,5\}$.
- $X-\emptyset=X$ and $\emptyset-X=\emptyset$ whatever the set $X$ is. In particular: $\emptyset-\emptyset=\emptyset$.
- If $X$ and $Y$ are any two sets, then:

$$
\begin{aligned}
X & =(X \cap Y) \cup(X-Y) \\
X \cup Y & =(X \cap Y) \cup(X-Y) \cup(Y-X)
\end{aligned}
$$

## Set construction: Complement

For this construction, it is necessary that a domain $D$ be defined, such that every object which is element of any set is also an element of $D$.

## Definition

The complement of the set $X$ with respect to the domain $D$ is the difference set

$$
\bar{X}=D-X
$$

Examples:

- If $D=\mathbb{Z}$ then $\overline{\mathbb{N}}=\mathbb{Z}^{-}$.
- If $D=\{$ Bowser, Diablo, Sephiroth $\}$ then $\overline{\{B o w s e r, ~ S e p h i r o t h ~}\}=\{$ Diablo $\}$.


## Construction: Power set

## Definition

The power set of a set $X$ is the set $\operatorname{pow}(X)$ whose elements are all and only the subsets of $X$.

Examples:

- $\operatorname{pow}(\emptyset)=\{\emptyset\}$.
- $\operatorname{pow}(\{\mathbf{T}, \boldsymbol{F}\})=\{\emptyset,\{\mathbf{T}\},\{\mathbf{F}\},\{\mathbf{T}, \boldsymbol{F}\}\}$.
- $\operatorname{pow}(\{1,2,3\})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$.

Note: power sets are never empty as $\emptyset \in \operatorname{pow}(X)$ for every set $X$.

## Set builder notation

The notation

$$
S::=\{x \in X \mid P(x)\}
$$

means:
$S$ is defined as the set of all and only those elements $x$ of the set $X$ such that the predicate $P(x)$ is true

Examples:

- $D::=\{z \in \mathbb{C} \mid \Re z=\mathfrak{I} z\}$.

This is the main diagonal of the complex plane.

- $E::=\left\{z \in \mathbb{C} \mid \exists x, y \in \mathbb{R} .\left(z=x+i y \wedge x^{2}+4 y^{2}=1\right)\right\}$.

This is the ellipse of width 2 and height 1 .

- Primes $::=\{x \in \mathbb{N} \mid x>1 \wedge \forall a, b \in \mathbb{N} .((a \leq b \wedge a b=x) \longrightarrow(a=1 \wedge b=x))\}$.


## A variant of the set builder notation

Let $E(x)$ be an expression that, for every $x \in X$, represents an element of $Y$. Then:

$$
S::=\{E(x) \mid x \in X\}
$$

means the same as:

$$
S::=\{y \in Y \mid \exists x \in X . y=E(x)\}
$$

Examples:

- $D::=\{t+i t \mid t \in \mathbb{R}\}$.

This is again the main diagonal of the complex plane.

- $\mathbb{N}::=\{0\} \cup\{x+1 \mid x \in \mathbb{N}\}$.

This is a first example of a recursive definition.

## Equality between sets

## Definition

Two sets are equal if and only if they have the same elements.
Equivalently ${ }^{1}$ :

$$
X=Y \text { iff } X \subseteq Y \text { and } Y \subseteq X
$$

Examples:

- $\emptyset=\{x \in \mathbb{N} \mid x \neq x\}$.
- $\mathbb{N}=\{x \in \mathbb{Z} \mid x \geq 0\}$.
- $\left\{x \in \mathbb{R} \mid x^{2}-3 x+2<0\right\}=\{x \in \mathbb{R} \mid 1<x<2\}$.
- $\{p \in$ Primes $\mid p=2$ or $\exists k \in \mathbb{Z} \cdot p=4 k+1\}=\left\{p \in\right.$ Primes $\left.\mid \exists a, b \in \mathbb{Z} \cdot p=a^{2}+b^{2}\right\}$.
(This nontrivial result is due to Pierre de Fermat.)


## Proving Set Equalities

A set equality is, in its essence, an "if and only if" proposition.

## Theorem 4.1.2. (Distributive law for sets)

However given three sets $A, B$, and $C$,

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

1 Translate the set equality into an "if and only if" proposition:

$$
\forall x \cdot(x \in A \cap(B \cup C) \text { iff } x \in(A \cap B) \cup(A \cap C))
$$

2 Prove the "if and only if" proposition: however chosen $x$,

$$
\begin{array}{lll}
x \in A \cap(B \cup C) & \text { iff } & x \in A \text { and }(x \in B \text { or } x \in C) \\
& \text { iff } & (x \in A \text { and } x \in B) \text { or }(x \in A \text { and } x \in C) \\
& \text { iff } & x \in(A \cap B) \cup(A \cap C)
\end{array}
$$

## Cheat sheet for set equality

There is a good correspondence between operations on sets and operations on propositions:

- Logical or corresponds to set union.
- Logical and corresponds to set intersection.
- Logical not() corresponds to set complementation. (For this, a domain must have been defined.)
- Logical implies corresponds to set inclusion.
- Logical iff corresponds to set equality.

However, do not mix the two things, as they have different types:

- You can do an intersection of sets: not a conjunction of sets.
- You can do a conjunction of propositions: not an intersection of propositions.


## Next section

2 Sequences

## Sequences

## Definition

A sequence of length $n$ is a list of $n$ objects

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Where a set is a collection, a sequence is a list:

- Order counts:
$($ Sephiroth, Bowser, Diablo) $\neq($ Bowser, Diablo, Sephiroth $)$.
- Entry values can be repeated: (Bowser, Bowser, Bowser) $\neq$ (Bowser).
As there is an empty set, so there is an empty sequence of length 0 : we denote it as $\lambda$.


## Cartesian products

## Definition

The Cartesian product of the sets $S_{1}, S_{2}, \ldots, S_{n}$ is the set

$$
S_{1} \times S_{2} \times \ldots \times S_{n}
$$

of the sequences of length $n$ where, for each $i$ from 1 to $n$, the $i$ th object is an element of $S_{i}$.

If $S_{1}=S_{2}=\ldots=S_{n}=S$ we denote the Cartesian product as $S^{n}$.
Examples:

- $\mathbb{N} \times \mathbb{B}=\{(n, b) \mid n \in \mathbb{N}, b \in \mathbb{B}\}=\{(0, \mathrm{~T}),(0, \mathcal{F}),(1, \mathrm{~T}),(1, \mathcal{F}), \ldots\}$
- (17, Diablo) $\in \mathbb{N} \times\{$ video game villains $\}$.
- $(1, e, \pi) \in \mathbb{R}^{3}$.


## Next section

1

2

3 Functions

## Functions

## Definition

A function with domain $A$ and codomain $B$ is a rule $f$ which assigns to each element $x$ of the set $A$ a unique element $f(x)$ (read " $f$ of $x$ ") of the set $B$.

Notation:

- $f: A \rightarrow B$ means: $f$ is a function with domain $A$ and codomain $B$.
- $f(a)=b$ means: $f$ assigns value $b$ to object $a$. We can also say: $b$ is the value of $f$ at argument $a$.


## Function definition: Formula

Functions can be given by a formula:

- $f_{1}(x)::=1 / x^{2}$ where $x \in \mathbb{R}$.

Here, $f_{1}(x)$ is not defined for $x=0: f_{1}$ is a partial function.

- $f_{2}(x, y)::=y 10 x$ where $x$ and $y$ are binary strings of finite length.

For example: $f_{2}(10,001)=0011010$.

- $f_{3}(x, n)::=$ the length of the sequence $(x, x, \ldots, x)$ ( $n$ repetitions) where $x \in \mathbb{R}$ and $n \in \mathbb{N}$.
You can think of a function with many arguments as a function with a single argument defined on a Cartesian product.
- $[P]::=$ the truth value of $P$ where $P$ is a proposition.

These are sometimes called Iverson brackets.

## Function definition: Look-Up Table

A function with finite domain can be defined via its look-up table.

- Suppose $f_{4}(P, Q)$, where $P$ and $Q$ are Boolean variables, has the following look-up table:

| $P$ | $Q$ | $f_{4}(P, Q)$ |
| :---: | :---: | :---: |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |

The look-up table above is the truth table of implication, so:

$$
f_{4}(P, Q)=[P \text { implies } Q]
$$

## Function definition: Procedure

Let $x$ vary in the binary strings and let $f_{5}$ return the length of a left-to-right search on $x$ until the first 1 is found.
That is:

$$
f_{5}(x)::= \begin{cases}1 & \text { if } x=1 y \\ 1+f_{5}(y) & \text { if } x=0 y\end{cases}
$$

Then:

$$
\begin{aligned}
f_{5}(100) & =1 \\
f_{5}(00111) & =3 \\
f_{5}(00000) & =? ? ?
\end{aligned}
$$

So this is a partial function too. Exercise: how to make it total?

## Image of a set by a function

## Definition

If $f: A \rightarrow B$ and $S \subseteq A$, then:

$$
f(S)=\{b \in B \mid \exists a \in S . f(a)=b\}
$$

is the image of $S$ under $f$.
Examples:

- If $S=[1,2]=\{x \in \mathbb{R} \mid 1 \leq x \leq 2\}$, then $f_{1}(S)=[1 / 4,1]$.
- If $S=\mathbb{R}$, then $f_{1}(S)=\mathbb{R}^{+}$.
- If $S=\{(\mathbf{T}, \mathbf{T}),(\mathbf{F}, \mathbf{T}),(\mathrm{F}, \mathrm{F})\}$, then $f_{4}(S)=\{\mathbf{T}\}$.
- If $S=\{100,00111,0010,00000\}$, then $f_{5}(S)=\{1,3\}$.


## Function composition

## Definition 4.3.1.

If $f: A \rightarrow B$ and $g: B \rightarrow C$, the composition of $g$ and $f$ (in this order) is defined as:

$$
(g \circ f)(x)::=g(f(x))
$$

(read: $g$ after $f$ ) at every $x \in A$ such that $f$ is defined on $x$ and $g$ is defined on $f(x)$.


Order matters:

- Wearing first your socks, then your shoes is not the same as wearing first your shoes, then your socks.
- If $A=B=C=\mathbb{R}, f(x)=x^{2}+1$, and $g(x)=3 x+2$, then $g(f(x))=3\left(x^{2}+1\right)+2=3 x^{2}+5$, but $f(g(x))=(3 x+2)^{2}+1=9 x^{2}+12 x+5$.


## Next section

1

2

3

4 Binary Relations

5

## Binary relations

## Definition 4.4.1.

A binary relation with domain $A$, codomain $B$, and graph $R$ is a subset of the Cartesian product $A \times B$.

- A relation is "a function without the unique image requirement".
- If the domain and codomain are given, we may identify the relation with its graph.
- $R: A \rightarrow B$ means: " $R$ is a relation from $A$ to $B$ ".
- If $a \in A$ and $b \in B$, then $a R b$ means: " $a$ is in relation $R$ with $b$ ".


## Relation diagrams

A binary relation $R: A \rightarrow B$ can be represented as two columns linked by arrows, where:

- The first column contains a list of elements of $A$.
- The second column contains a list of elements of $B$.
- There is an arrow from $a \in A$ to $b \in B$ if and only if $a R b$.


## Example: What is taught by whom?

From the 2018-2019 course list:


## Arrow properties

Let $R: A \rightarrow B$ be a binary relation. We say that: $R$ has the ... property if each object in its ... has ... arrows ... it
in the relation diagram, according to the following table:

$$
\begin{array}{llll}
{[\leq n \text { in }]} & \text { codomain } & \text { at most } n & \text { coming into } \\
{[\geq m \text { in }]} & \text { codomain } & \text { at least } m & \text { coming into } \\
{[=k \text { in }]} & \text { codomain } & \text { exactly } k & \text { coming into } \\
{[\leq n \text { out }]} & \text { domain } & \text { at most } n & \text { going out of } \\
{[\geq m \text { out }]} & \text { domain } & \text { at least } m & \text { going out of } \\
{[=k \text { out }]} & \text { domain } & \text { exactly } k & \text { going out of }
\end{array}
$$

## Arrow properties

Let $R: A \rightarrow B$ be a binary relation. We say that:
$R$ has the ... property if each object in its ... has ... arrows ... it
in the relation diagram, according to the following table:

$$
\begin{array}{llll}
{[\leq n \text { in }]} & \text { codomain } & \text { at most } n & \text { coming into } \\
{[\geq m \text { in }]} & \text { codomain } & \text { at least } m & \text { coming into } \\
{[=k \text { in }]} & \text { codomain } & \text { exactly } k & \text { coming into } \\
{[\leq n \text { out }]} & \text { domain } & \text { at most } n & \text { going out of } \\
{[\geq m \text { out }]} & \text { domain } & \text { at least } m & \text { going out of } \\
{[=k \text { out }]} & \text { domain } & \text { exactly } k & \text { going out of }
\end{array}
$$

Note that this depend on how domain and codomain are chosen:

- $f(x)=1 / x^{2}$ has both [ $=1$ in ] and [=1 out ] if the choice for both its domain and codomain is $\mathbb{R}^{+} \ldots$
- ... but if it is $\mathbb{R}$ instead, then $f(x)$ has neither [ $\leq 1$ in ], nor [ $\geq 1$ in ], nor [ $\geq 1$ out ].


## Relation properties

## Definition 4.4.2.

Let $R: A \rightarrow B$ be a binary relation. We say that:
$R$ is ... if it has
a function the [ $\leq 1$ out ] property
total the [ $\geq 1$ out ] property
injective the $[\leq 1$ in ] property
surjective the $[\geq 1$ in $]$ property
bijective both the [=1 out ] and the [=1 in ] property
Important:

- Bijective relations are total.
- If $A=\emptyset$ then $R$ is a total function:

Otherwise, there would exist $x \in \emptyset$ with either no outgoing arrow, or more than one outgoing arrow...

- If $B=\emptyset$ then $R$ is both injective and surjective:

Otherwise, there would exist $y \in \emptyset$ with either more than one incoming arrow, or no incoming arrow...

## Relational images

Let $R$ be a relation with domain $A$ and codomain $B$.
Definition 4.4.4.
The image of $S \subseteq A$ under $R$ is:

$$
R(S)::=\{y \in B \mid \exists x \in S . x R y\}
$$

For example, let $A=B=\mathbb{N}$ and let $a R b$ if and only if $b$ is a prime factor of $a$. Then:

- $R(\{2,4,6,8,10,17,26\})=\{2,3,5,13,17\}$.
- $R(\{0\})=$ Primes.

Remember that $m$ is a factor of $n$ if and only if there exists an integer $k$ such that $k m=n ;$ for $n=0$ we can choose $k=0$.

## Relation composition

Composition of relations is defined similarly to composition of functions:

## Definition

If $R: A \rightarrow B$ and $S: B \rightarrow C$, the composition of $S$ and $R$ (in this order) is the relation $S \circ R: A \rightarrow C$ (read: $S$ after $R$ ) defined as:

$$
a(S \circ R) c \text { iff } \exists b \in B . a R b \text { and } b S c
$$

Again, order matters:

- The mother of the father is not the father of the mother.


## Inverse relations and inverse images

Let $R: A \rightarrow B$ be a binary relation.

## Definitions 4.4.5 and 4.4.6.

The inverse of $R$ is the binary relation $R^{-1}: B \rightarrow A$ defined by:

$$
y R^{-1} x \text { iff } x R y
$$

The inverse image of $T \subseteq B$ according to $R$ is then its image under the inverse relation:

$$
R^{-1}(T)=\{x \in A \mid \exists y \in T . x R y\}
$$

## Example: Who teaches what?



## The empty relation

Let $E: A \rightarrow B$ be the empty relation such that $\operatorname{not}((x, y) \in E)$ for any $x \in A$ and $y \in B$.

- $E$ is a function:
$E$ clearly has the [ $=0 \mathrm{in}$ ] property, so it has the [ $\leq 1$ in ] property too.
- $E$ is injective:
$E$ clearly has the [ $=0$ out ] property, so it has the [ $\leq 1$ out ] property too.
- $E$ is total if and only if $A=\emptyset$ :

If $A$ is nonempty then $E$ doesn't have the [ $\geq 1$ out ] property. If $E$ wasn't total with $A=\emptyset$, there would exist $x \in \emptyset$ such that $\operatorname{not}((x, y) \in E)$ for any $y \in B$; but there is no $x \in \emptyset$.

- $E$ is surjective if and only if $B=\emptyset$ :

If $B$ is nonempty then $E$ doesn't have the [ $\geq 1$ in ] property. If $E$ wasn't surjective with $B=\emptyset$, there would exist $y \in \emptyset$ such that $\operatorname{not}((x, y) \in E)$ for any $x \in A$; but there is no $y \in \emptyset$.

## Next section

1

2

3

4

5 Finite Cardinality

## The cardinality of a finite set

## Definition 4.5.1.

If $A$ is a finite set, the cardinality of $A$ is the number $|A|$ of its elements.
Examples:

- $\mid\{$ Sephiroth, Bowser, Diablo $\} \mid=3$.
- $\mid\{p \in$ Primes $\mid p \leq 20\} \mid=8$.
- $|\emptyset|=0$.


## Functions between finite sets

Let $A$ and $B$ be finite sets and $R$ a relation from $A$ to $B$.
Suppose the relation diagram of $R$ has $n$ arrows.
1 If $R$ is a function, then it has the [ $\leq 1$ out ] property, so $|A| \geq n$.
2 If $R$ is surjective, then it has the [ $\geq 1$ in ] property, so $n \geq|B|$.
We conclude that:
If $A$ and $B$ are finite sets and $f: A \rightarrow B$ is a surjective function, then $|A| \geq|B|$.

## Surjectivity, injectivity, bijectivity

## Definition 4.5.2.

Given any two (finite or infinite) sets $A$ and $B$, we write:

- $A$ surj $B$ iff there exists a surjective function from $A$ to $B$;
- $A \operatorname{inj} B$ iff there exists a total injective relation from $A$ to $B$;
- $A$ bij $B$ iff there exists a bijection from $A$ to $B$.

Read: $A$ surject $B, A$ inject $B, A$ biject $B$.

## Surjectivity, injectivity, bijectivity

## Definition 4.5.2.

Given any two (finite or infinite) sets $A$ and $B$, we write:

- $A$ surj $B$ iff there exists a surjective function from $A$ to $B$;
- $A$ inj $B$ iff there exists a total injective relation from $A$ to $B$;
- $A$ bij $B$ iff there exists a bijection from $A$ to $B$.

Read: $A$ surject $B, A$ inject $B, A$ biject $B$.

## Examples:

- If $A$ is the set of video games and $B=\{$ Bowser, Diablo, Sephiroth $\}$, then $A$ surj $B$ :

| $v$ | Super Mario | Diablo II | Final Fantasy VII | Tetris | Diablo III | $\ldots$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(v)$ | Bowser | Diablo | Sephiroth | undefined | Diablo | $\ldots$ |

where $f(v)$ is the Big Bad Evil Guy of video game $v$, is a surjective function (but neither total nor injective).

- If $A \subseteq B$, then $A$ inj $B$ :
$f(x)=x$ for every $x \in A$ is injective and total (and also a function).
- If $A=\{p \in \operatorname{Primes} \mid p \leq 20\}$ and $B=\{n \in \mathbb{N} \mid 1 \leq n \leq 8\}$, then $A$ bij $B$ :

| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $f(p)$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

## Surjectivity, injectivity, bijectivity

## Definition 4.5.2.

Given any two (finite or infinite) sets $A$ and $B$, we write:

- $A$ surj $B$ iff there exists a surjective function from $A$ to $B$;
- $A \operatorname{inj} B$ iff there exists a total injective relation from $A$ to $B$;
- $A$ bij $B$ iff there exists a bijection from $A$ to $B$.

Read: $A$ surject $B, A$ inject $B, A$ biject $B$.
Important note:

- If $B=\emptyset$ then $A$ surj $B$ whatever $A$ is:

In this case, the empty relation is a surjective function.

- If $A=\emptyset$ then $A \operatorname{inj} B$ whatever $B$ is:

In this case, the empty relation is total and injective.

## Finite sets and arrow properties

## Lemma 4.5.3

Let $A$ and $B$ be finite sets. Then:
1 If $A$ surj $B$, then $|A| \geq|B|$.
2 If $A$ inj $B$, then $|A| \leq|B|$.
3 If $A$ bij $B$, then $|A|=|B|$.
Proof:
1 We proved this on the second slide of the section.
2 If $R: A \rightarrow B$ is injective and total, then $R^{-\mathbf{1}}$ is a surjective function, so $|B| \geq|A|$. Bonus: prove that $A \operatorname{inj} B$ iff $B \operatorname{surj} A$.
3 If $f: A \rightarrow B$ is a bijection, then it is a total function which is both injective and surjective.

## Function and arrow properties: Summary

Theorem 4.5.4
Let $A$ and $B$ be finite sets. Then:
$1|A| \geq|B|$ iff there exists a surjective function from $A$ to $B$.
$2|A| \leq|B|$ iff there exists an injective total relation from $A$ to $B$.
$3|A|=|B|$ iff there exists a bijection from $A$ to $B$.

## How Many Subsets of a Finite Set?

## Theorem

A finite set with $n$ elements has $2^{n}$ subsets.
Proof:
1 The thesis is true for the empty set, so let $n \geq 1$.
2 Let $a_{1}, \ldots, a_{n}$ be the elements of the set $A$.
3 Let $B$ be the set of binary strings of length $n$.
4 Define $f: \operatorname{pow}(A) \rightarrow B$ so that the $i$ th bit of $f(S)$ is 1 if and only if $a_{i} \in S$.
5 Then $f$ is a bijection, because subsets with the same image have the same elements, and each string describes a subset.
Alternatively: $f$ is a bijection, because it is a total function whose inverse:

$$
g(s)=\left\{a_{i} \in A \mid b_{i}=1\right\} \text { where } s=b_{1} b_{2} \ldots b_{n}
$$

is also a total function.
6 Since there are $2^{n}$ binary strings of length $n$, the thesis follows.

