ITB8832 Mathematics for Computer Science First midterm test: 30 September 2022

Last modified: 21 August 2023

Exercise 1 (3 points)

Use the Well Ordering Principle to prove that:

$$
\begin{equation*}
\sum_{k=1}^{n}(2 k-1)=n^{2} \tag{1}
\end{equation*}
$$

for every integer $n \geq 1$. Important: Any solution which does not use the Well Ordering Principle will receive zero points.

Exercise 2 (2 points)

Determine a disjunctive normal form for the following propositional formula:

$$
\begin{equation*}
(P \vee Q) \wedge(P \vee(\bar{Q} \wedge R)) \wedge(P \vee(\bar{Q} \wedge \bar{R})) \tag{2}
\end{equation*}
$$

Any DNF for (2) will be accepted as a solution; it doesn't need to be full.

Exercise 3 (4 points total)

1. (2 points) Let A and B be finite sets such that $|A|=|B|$, and let $f: A \rightarrow B$ be a total function. Prove that f is injective if and only if it is surjective. Hint: any relation R with domain A is surjective if considered as a relation from A to $R(A)$.
2. (1 point) Give an example of a function $g:\{1,2,3\} \rightarrow\{1,2,3\}$ which is injective, but not surjective.
3. (1 point) Give an example of a total relation $R:\{1,2,3\} \rightarrow\{1,2,3\}$ which is surjective, but not injective.

You can solve the three points independently of each other; for example, you can solve points 2 and 3 without having solved point 1.

Exercise 4 (6 points overall)

For each of the following questions, mark the only correct answer:

1. Which one of the following numbers is irrational?
(a) $\log _{4} 7$.
(b) $\log _{4} 32$.
(c) $\log _{4} 16$.
2. Which one of the following sets is well ordered?
(a) $A::=\left\{x \in \mathbb{Z} \mid \exists n \in \mathbb{N} . x^{2}-n=0\right\}$.
(b) $B::=\left\{x \in \mathbb{R} \left\lvert\, \exists n \in \mathbb{N} . x=\frac{1}{n+1}\right.\right\}$. ${ }^{1}$
(c) $C::=\{x \in \mathbb{Z} \mid x>-400 \sqrt{17}\}$.
3. Which one of the following formulas is equivalent to P implies (Q implies P)?
(a) (P implies Q) implies P.
(b) $((P$ implies $Q)$ implies $P)$ implies P.
(c) $(P$ or $Q)$ implies P.
4. Given as the domain of the discourse the arithmetics of natural numbers and as type for the variable x the set of natural numbers, which one of the following interpretations of $P(x)$ determines a counter-model for the predicate formula $(\exists x . P(x))$ implies $(\forall x . P(x))$?
(a) " $x \geq 0$ ".
(b) " $x+1=0$ ".
(c) " $x=0$

[^0]5. Which one of the following relations is surjective?
(a) $R: \mathbb{N} \rightarrow \mathbb{N}, x R y$ iff $y=x^{3}+1$.
(b) $S: \mathbb{Z} \rightarrow \mathbb{Z}, x S y$ iff $y=x^{3}+1$.
(c) $T: \mathbb{R} \rightarrow \mathbb{R}, x T y$ iff $y=x^{3}+1$.
6. Let A and B be finite sets and let $f: A \rightarrow B$ be a surjective function. Under these hypotheses, which one of the following is always true?
(a) $|f(A)|=|B|$.
(b) $|A|=|B|$.
(c) $|f(A)|>|B|$.

This page intentionally left blank.

This page too.

Solutions

Exercise 1

Let

$$
C::=\left\{n \in \mathbb{N} \mid n \geq 1 \text { and } \sum_{k=1}^{n}(2 k-1) \neq n^{2}\right\}
$$

be the set of counterexamples to (1). By contradiction, assume C is nonempty: by the Well Ordering Principle, C has a smallest element m which, by construction, is a positive integer. It cannot be $m=1$, because:

$$
\sum_{k=1}^{1}(2 k-1)=2-1=1=1^{2}
$$

Then $m \geq 2$, so $m-1$ is still a positive integer, and as it is smaller than m, it is not a counterexample to (1). But then:

$$
\begin{aligned}
\sum_{k=1}^{m}(2 k-1) & =\left(\sum_{k=1}^{m-1}(2 k-1)\right)+(2 m-1) \\
& =(m-1)^{2}+2 m-1 \\
& =m^{2}-2 m+1+2 m-1=m^{2}
\end{aligned}
$$

Then the minimum counterexample m is not a counterexample after all. This is a contradiction, so C is empty and (1) holds for every positive integer n.

Exercise 2

We examine a solution with truth tables, and one with Boolean algebra.

- Truth table:

P	Q	R	$((P \vee Q)$	\wedge	$(P \vee$	$(\bar{Q} \wedge R)))$	\wedge	$(P \vee$	$(\bar{Q} \wedge \bar{R}))$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}						
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}							

This gives the full DNF:

$$
(P \wedge Q \wedge R) \vee(P \wedge Q \wedge \bar{R}) \vee(P \wedge \bar{Q} \wedge R) \vee(P \wedge \bar{Q} \wedge \bar{R})
$$

It can also be observed from the truth table that the formula (1) is true if and only if P is true, so it is equivalent to P, which is already a DNF.

- Boolean algebra:

$$
\begin{aligned}
& (P \vee Q) \wedge(P \vee(\bar{Q} \wedge R)) \wedge(P \vee(\bar{Q} \wedge \bar{R})) \\
\longleftrightarrow & (P \wedge(Q \vee(\bar{Q} \vee R))) \wedge(P \vee(\bar{Q} \wedge \bar{R})) \\
\longleftrightarrow & (P \wedge((Q \vee \bar{Q}) \vee R)) \wedge(P \vee(\bar{Q} \wedge \bar{R})) \\
\longleftrightarrow & (P \wedge(\mathbf{T} \vee R)) \wedge(P \vee(\bar{Q} \wedge \bar{R})) \\
\longleftrightarrow & (P \wedge \mathbf{T}) \wedge(P \vee(\bar{Q} \wedge \bar{R})) \\
\longleftrightarrow & P \wedge(P \vee(\bar{Q} \wedge \bar{R})) \\
\longleftrightarrow & P
\end{aligned}
$$

Exercise 3

1. To simplify notation, let $|A|=|B|=n$.

Many of the proofs from your discussions are based on the following argument, which is correct:

- As f is a function, it has the $[\leq 1$ out $]$ property, and as it is total, it has the $[\geq 1$ out $]$ property. Then the relational diagram of f has exactly $|A|=n$ arrows.
If f is injective, then it has the [≤ 1 in] property. As there are n arrows and n elements of the codomain, the only possibility is that each $b \in B$ has exactly one arrow entering: then f also has the [=1 in] property, so it is a bjection, so it is surjective.
If f is surjective, then it has the $[\geq 1 \mathrm{in}]$ property. As there are n arrows and n elements of the codomain, the only possibility is that each $b \in B$ has exactly one arrow entering: then f also has the [= 1 in] property, so it is a bjection, so it is injective.

Of course, me being me, I had devised a much more complicated one:

- First, assume that f is injective. Then f, considered as a function from A to $f(A)$, is a bijection, so $|f(A)|=|A|=n=|B|$. As $f(A) \subseteq B$, the only possibility is that $f(A)=B$, which in turn means that f is surjective. Note that we are using both facts that f is a function, and that it is total.
Now, assume that f is not injective. Then there must be two elements a_{1}, a_{2} of A such that $f\left(a_{1}\right)=f\left(a_{2}\right)$. Then:

$$
\begin{aligned}
|f(A)| & =\left|f\left(\left\{a_{1}, a_{2}\right\}\right) \cup f\left(A \backslash\left\{a_{1}, a_{2}\right\}\right)\right| \\
& \leq\left|f\left(\left\{a_{1}, a_{2}\right\}\right)\right|+\left|f\left(A \backslash\left\{a_{1}, a_{2}\right\}\right)\right| \\
& \leq 1+\left|A \backslash\left\{a_{1}, a_{2}\right\}\right| \\
& =1+(n-2)=n-1<n=|B|
\end{aligned}
$$

so f cannot be surjective. Note that we have used the fact that f is a function (where?) but not that it is total.
2. There are many examples possible. For one, the function $g:\{1,2,3\} \rightarrow$ $\{1,2,3\}$ such that $g(1)=2$ and $g(2)$ and $g(3)$ are undefined, is an injective function which is not surjective: this is possible because g is not total. In fact, the empty relation works as an example in this case.
3. There are many examples possible. For one, the "full relation" R : $\{1,2,3\} \rightarrow\{1,2,3\}$ such that $x R y$ whatever $x, y \in\{1,2,3\}$ are, is a total relation which is surjective but not injective; this is possible because R is not a function.

Exercise 4

1. (a) Yes: $\log _{4} 7=\frac{1}{\log _{7} 4}$ is the reciprocal of an irrational number, so it is irrational.
(b) No: $32^{2}=4^{5}$, so $\log _{4} 32=5 / 2$.
(c) No: $16=4^{2}$, so $\log _{4} 16=2$.
2. (a) No: in fact: $A=\mathbb{Z}$.
(b) No: B itself doesn't have a minimum, because if $x=\frac{1}{n+1} \in B$, then $y=\frac{1}{(n+1)+1}$ is an element of B smaller than x.
(c) Yes: every subset of the set of integers which is bounded from below is well ordered.
3. (a) No: if P is false and Q is true, then P implies $(Q \operatorname{implies} P)$ is true and P implies (Q implies P) is false.
(b) Yes: the two formulas are both valid. This one is called Peirce's law; Charles Sanders Peirce (1839-1914) was an American philosopher, logician, and scientist.
(c) No: if P is false but Q is true, then P implies $(Q$ implies $P)$ is true, but (P or Q) implies P is false.
4. (a) No: $\forall x \in \mathbb{N} . x \geq 0$ is true, and so is $(\exists x \in \mathbb{N} . x \geq 0)$ implies $(\forall x \in \mathbb{N} . x \geq 0)$.
(b) No: $\exists x \in \mathbb{N} . x+1=0$ is false, so $(\exists x \in \mathbb{N} . x+1=0)$ implies $(\forall x \in \mathbb{N} . x+1=0)$ is true.
(c) Yes: $\exists x \in \mathbb{N} . x=0$ is true, but $\forall x \in \mathbb{N} . x=0$ is false, so $(\exists x \in \mathbb{N} . x=0)$ implies $(\forall x \in \mathbb{N} . x=0)$ is false.
5. (a) No: there is no $x \in \mathbb{N}$ such that $x R 3$.
(b) No: there is no $x \in \mathbb{Z}$ such that $x S 3$.
(c) Yes: given y, let x be the unique real solution of $x^{3}-(y-1)=0$; then $x T y$.
6. (a) Yes: by definition of surjectivity, $f(A)=\{b \in B \mid \exists a \in A . f(a)=b\}$ is the entire set B. Actually, f doesn't even need to be a function.
(b) No: it might be $A=\{1,2\}, B=\{1\}, f(1)=f(2)=1$.
(c) No: $f(A)$ is a subset of B, and cannot have more elements than B has.

[^0]: ${ }^{1}$ The original test incorrectly had $x \in \mathbb{Z}$: in that case, $B=\{1\}$ is well ordered.

