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Exercise 2.1 (from the classroom test of 03.10.2018)

1. Prove that log20 50 is irrational.

2. Let a > 1 and b > 1 be integers. Can loga b be rational if b is not a
power of a?

Exercise 2.2 (from the midterm test of 07.10.2019)

Let a be a real number, different from 1. Use the Well Ordering Principle to
prove that, for every nonnegative integer n,

1 + a+ . . .+ an =
1− an+1

1− a
. (1)

Important: solutions which do not use the Well Ordering Principle will
receive zero points.

Exercise 2.3 (cf. Problem 2.21(a)-(d))

Indicate which of the following sets of numbers have a minimum element and
which are well ordered. For those that are not well ordered, give an example
of a subset with no minimum element.

(a) The integers ≥ −
√
2.

(b) The rational numbers ≥
√
2.

(c) The set of rationals of the form 1/n where n is a positive integer.

(d) The set G of rationals of the form m/n where m,n > 0 and n ≤ g,
where g is a googol 10100.
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Exercise 2.4 (cf. Lemma 2.4.6 and Problem 2.20)

We have seen in Lecture 2 that the set:

F =

{
n

n+ 1
| n ∈ N

}
is well ordered. Prove that the set:

N+ F = {n+ f | n ∈ N, f ∈ F}

is also well ordered. Hint: start with considering:

T = {n ∈ N | there exists f ∈ F such that n+ f ∈ S} , (2)

where S is a nonempty set of N+ F.

Exercise 2.5 (cf. problem 2.23)

Let S be a subset of the set of real numbers. An infinite descent in S is an
infinite sequence {sn | n ∈ N} of elements of S such that:

sn > sn+1 for every n ∈ N . (3)

Prove that S is well ordered if and only if it does not have an infinite descent.

Exercise 2.6 (from Raymond Smullyan’s “The Gödelian
Puzzle Book”)

You meet a man whom you know to be either a knight who only makes true
statements, or a knave who only makes false statements (but you don’t know
which of the two). The man makes the following statement:

“Today is not the first day on which I make this statement.”

Is he a knight or a knave? Hint: choose a “good” subset of the set of natural
numbers and use the Well Ordering Principle.

Exercise 2.7 (also from “The Gödelian Puzzle Book”)

The Greek philosopher Zeno (489 BC–431 BC) proposed the following argu-
ment to “prove” that motion is impossible:
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Consider someone walking in a straight line from a starting point A
to an end point B, distant from it a stadion (ancient measure unit
corresponding to about 177 meters). Before they can reach B, they
need to reach the middle point between A and B: call it A1. Then
they must reach the middle point between A1 and B: call it A2. Then
they must reach the middle point between A and A2: call it A3. And so
on. After any finite number of steps, the person will not have reached
B. Then no finite number of steps will let them reach B, and this
proves that motion is impossible.

Given that motion is actually possible, Zeno’s argument must contain some
mistakes. What is the first of them?
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Solutions

Exercise 2.1

1. By contradiction, assume log20 50 =
m

n
with m and n integers. As

both the base and the argument are larger than 1, the logarithm is
positive, so we may suppose m and n positive; also, we can assume
that gcd(m,n) = 1.

By hypothesis, 20m/n = 50, that is, 20m = 50n. But 20 = 22 · 5 and
50 = 2 · 52, so the equality becomes:

22m · 5m = 2n · 52n .

This is only possible is n = 2m and m = 2n: but then, n = 4n, which
is only possible if m = n = 0 against the fact that n is the denominator
in a fraction.

2. Yes, it is: it is sufficient that a and b are both powers of the same
integer c. For example, if a = 4 = 22 and b = 8 = 23, then:

log4 8 =
log2 8

log2 4
=

3

2
.

Exercise 2.2

Let C be the set of counterexamples to (1):

C =

{
n ∈ N | 1 + a+ . . .+ an ̸= 1− an+1

1− a

}
.

By contradiction, assume that C is nonempty: by the Well Ordering Prin-
ciple, it has a smallest element c0. This smallest element must be positive,
because for n = 0 the sum on the left-hand side of (1) is 1 and the fraction

on the right-hand side is
1− a0+1

1− a
= 1. But if c0 is positive, then c0 − 1 is

nonnegative, and as it is smaller than c0, it satisfies (1), that is:

1 + a+ . . .+ ac0−1 =
1− ac0

1− a
.
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But by adding ac0 to both sides of the equality we get:

1 + a+ . . .+ ac0 =
1− ac0

1− a
+ ac0

=
1− ac0 + (1− a)ac0

1− a

=
1− ac0 + ac0 − ac0+1

1− a

=
1− ac0+1

1− a
;

that is, the minimum counterexample is not a counterexample after all. We
have reached this contradiction because we had supposed that C is nonempty:
therefore, C is empty, and (1) is true for every nonnegative integer n.

Exercise 2.3

(a) An integer m is greater or equal to −
√
2 if and only if it is greater or

equal to −1. We know from the lecture that {m ∈ Z | m ≥ −1} is well
ordered.

(b) This set is not well ordered. To see why, put x0 = 2, x1 = 1.5, x2 =
1.42, x3 = 1.415, x4 = 1.4143, and so on: in general, let xn be made
of the decimal writing of

√
2 up to the nth decimal digit rounded up.

Then xn >
√
2 for every n ∈ N, but the set S = {xn | n ∈ N} does not

have a minimum, because for every element there is a strictly smaller
element.

Alternatively: for every n ≥ 0 let an be the truncation to the nth
decimal digit of the decimal expansion of

√
2, so that a0 = 1, a1 = 1.4,

a2 = 1.41, a3 = 1.414, and so on. Let xn = 3 − an: then xn >
√
2 for

every n ≥ 0, because

3− an > 3−
√
2 > 3− 3

2
=

3

2
>

√
2 .

But the set {xn | n ≥ 0} does not have a minimum, because if m < n
then xm > xn.

(c) This set is not well ordered: no point x = 1/n can be the minimum,
because 1/(n+ 1) < 1/n if n is a positive integer.

(d) The set G is well ordered! To see this, let:

a = 1 · 2 · · · (g − 1) · g = g!
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be the factorial of g, that is, the product of all positive integers from
1 to g included. Then, since n ≤ g when x = m/n ∈ G, for every such
x the number ax is a positive integer; also, if x ≤ y, then ax ≤ ay. So,
however given a nonempty subset S of G, the set T = {ax | x ∈ S} is a
nonempty subset of positive integers: if m is the minimum of T , then
m/a is the minimum of S.

Exercise 2.4

Let S be a nonempty subset of N + F. Define T according to (2). As S is
nonempty, T is nonempty: let n0 be the smallest element of T . Now let:

U = {f ∈ F | n0 + f ∈ S} .

By construction, U is nonempty: let f0 be its smallest element. We will prove
that n0 + f0 is the smallest element of S.

To do this, let s ∈ S. By definition, there exist n ∈ N and f ∈ F such
that s = n+ f . By definition of n0, it must be n0 ≤ n. We have two cases:

1. n0 < n. Then n0 + f0 < n0 + 1 ≤ n ≤ n+ f = s.

2. n0 = n. Then f0 ≤ f by definition of f0, so again n0 + f0 ≤ n0 + f =
n+ f = s.

Exercise 2.5 (cf. problem 2.23)

If a sequence such as in (3) exists, then the set of its terms does not have a
minimum: however given an element, there will be another element which is
strictly smaller. In this case, S has a subset which is not well ordered, so it
is not well ordered.

If S is not well ordered, take a nonempty subset T of S which has no
minimum. Choose s0 ∈ T : as s0 is not the minimum of T , there exists
s1 ∈ T which is strictly smaller than s0. Similarly, as s1 is not the minimum
of T , there exists s2 ∈ T which is strictly smaller than s1. Iterating the
procedure, we obtain a sequence of elements of S such as in (3). More in
detail:

1. We choose the starting element s0 ∈ T as we want.

2. For every n ∈ N, after we have chosen sn ∈ T , we choose sn+1 ∈ T so
that it is smaller than sn: this is possible, because T has no minimum,
so in particular sn is not the minimum of T .
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The sequence {sn | n ∈ N} which we obtained is an infinite descent in T ,
thus in S too.

Note that our proof made the silent assumption that the set S is nonempty.
This is not problematic, because the definition of well-ordered set is that ev-
ery nonempty subset has a minimum. As the empty set does not have any
nonempty subset, it doesn’t have nonempty subsets without a minimum ei-
ther, so it is well ordered; it has no infinite descents either.

Exercise 2.6

Even if the statement is self-referential, we know that it has been made by
either a knight or a knave, so it must have a truth value.

Count the days since the birth of the man, starting with day 0. Since
there is a day (namely, today) when he made that statement, by the Well
Ordering Principle there must have been a first day when he made it. But
on that first day, the statement was false! Since knights only make true
statements, the man is a knave.

Exercise 2.7

Raymond Smullyan explains it better than I ever could:

This is about the only argument I know in which the first false step is
the conclusion! Everything up there is correct—it is indeed true that
to get from A to B one must go through infinitely many steps of the
sort that Zeno describes, but so what? Zeno never proved that you
cannot go through infinitely many points in a finite length of time, and
it cannot be proved, because it is false!
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