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1 Introduction
Retrieving global properties of cellular automata (CA) has been a main topic of research since the field was
established. Indeed, the Garden-of-Eden theorem by Moore [Moo62] and its converse by Myhill [Myh62],
which link surjectivity of the global map of 2D CA to pre-injectivity (a property that may be described as
the impossibility of erasing finitely many errors in finite time) also have the distinction of being the first
rigorous results of cellular automata theory. Several more properties were later proved to be equivalent
to surjectivity in d-dimensional CA, such as balancedness of the local map [MK76] and the sending of
algorithmically random configurations into algorithmically random configurations [CHJW01].

With the subsequent efforts to extend the definition of CA to more general situations than the usual
Euclidean lattices, an unexpected phenomenon appeared: the Garden-of-Eden property actually depends
on properties of the involved groups! In particular, counterexamples to both Moore’s and Myhill’s theorem
are well known for CA on the free group on two generators (cf. [CSMS99]). However, from a reading
of the original proofs, a key fact emerges, which is crucial for the proofs themselves: in Zd, the size of
a hypercube is a d-th power of the side, but the number of sites on its outer surface is a polynomial of
degree d− 1. In other words, it seems that, to get Moore’s or Myhill’s theorem for CA on a group G, we
need that in G the sphere grows more slowly than the ball. What is actually sufficient is a slightly weaker
property called amenability, which can be stated as the existence of a translation-invariant finitely additive
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234 Silvio Capobianco, Pierre Guillon and Jarkko Kari

probability measure on G. Bartholdi’s theorem [Bar10] states then that the amenable groups are precisely
those where surjective CA are pre-injective, and preserve the product measure on configurations.

In this paper, which illustrates work in progress, we extend the range of Bartholdi’s theorem by charac-
terizing amenable groups as those where surjective CA have additional properties. We start by considering
balancedness [MK76], which is the combinatorial variant of measure preservation. We then include the
nonwandering property, an important feature of dynamical systems. Finally, and for groups that have a
decidable word problem, we prove that amenable groups are those where, in line with [CHJW01], CA
preserve descriptional complexity.

To sum up, we get the following statement.

Theorem 1 Let G be a finitely generated group. The following are equivalent.

1. G is amenable.

2. Every surjective CA on G is pre-injective.

3. Every surjective CA on G preserves the uniform product measure.

4. Every surjective CA on G is balanced.

5. Every surjective CA on G is nonwandering.

If, in addition, G has decidable word problem, then the above are equivalent to the following:

• Every surjective CA sends random configurations into random configurations.

2 Preliminaries
2.1 Groups
Let G be a group. We call 1G, or simply 1, its identity element. Given a set X , the family σ = {σg}g∈G
of transformations of XG, called translations, defined by

σg(c)(z) = cg(z) = c(gz) ∀g ∈ G (1)

is a right action of G on XG, that is, σgh = σh ◦ σg for every g, h ∈ G. This is consistent with defining
the product φψ of functions as the composition ψ ◦ φ. Other authors (cf. [CSC10]) define σg(c)(x) as
c(g−1x), so that σ becomes a left action. However, most of the definitions and properties we deal with do
not depend on the “side” of the multiplication: we will therefore stick to (1).

A set of generators for G is a subset S ⊆ G such that for each g ∈ G there is a word w = w1 . . . wn
on S ∪ S−1 such that g = w1 · · ·wn. The minimum length of such a word is called length of g w.r.t.
S, and indicated by ‖g‖S , or simply ‖g‖. G is finitely generated (briefly, f.g.) if S can be chosen finite.
A group G is free on a set S if it is isomorphic to the group of reduced words on S ∪ S−1. For r ≥ 0,
g ∈ G the disk of radius r centered in g is Dr(g) = {h ∈ G | ‖g−1h‖ ≤ r}. The points of Dr(g) can
be “reached” from the “origin” 1G by first “walking” up to g, then making up to r steps: this is consistent
with the definition of translations by (1), where to determine cg(z) we first move from 1 to g, then from g
to gz. We write Dr for Dr(1). We also put U−r = {z ∈ G | Dr(z) ⊆ U} and ∂−rU = U \ U−r. For
our purposes, we will only consider f.g. groups.

ha
l-0

06
54

70
6,

 v
er

si
on

 1
 - 

22
 D

ec
 2

01
1



Garden-of-Eden-like theorems for amenable groups 235

A group G is residually finite (briefly, r.f.) if for every g 6= 1 there exists a homomorphism φ : G→ H
such that H is finite and φ(g) 6= 1. Equivalently, G is r.f. if the intersection of all its subgroups of finite
index is trivial. It follows from the definitions that, if G is r.f. and U ⊆ G is finite, then there exists
H ≤ G s.t. [G : H] ≤ ∞ and U ∩H ⊆ {1G}.
Lemma 2 ([Fio00, Lemma 2.3.2]) Let G be a residually finite (not necessarily f.g.) group and let F be
a finite subset of G not containing 1G. Then there exists a subgroup HF of finite index in G, which does
not intersect F , and such that the HFu, u ∈ F , are pairwise disjoint.

The word problem (briefly, w.p.) for a group G with a set of generators S is the set of words on S ∪ S−1

that represent the identity element of G. Although this set may depend on the choice of the presentation,
its decidability does not; and although the problem is not decidable even for finitely generated groups, it
is for the Euclidean groups Zd, the free groups, and more.

The stabilizer of c is the subgroup st(c) = {g ∈ G | cg = c}: be aware, that st(c) might not be a
normal subgroup. c is periodic if [G : st(c)] < ∞. If [G : H] < ∞ and H ≤ st(c) we say that c is
H-periodic. The family of periodic configurations in QG is indicated by Per(G,Q).

A group G is amenable if it satisfies one of the following equivalent conditions:

1. There exists a finitely additive probability measure µ on G with ∀A ⊆ G,∀g ∈ G,µ(gA) = µ(A).

2. For every finite U ⊆ G and ε > 0 there exists a finite K ⊆ G such that

|UK \K| < ε|K| (2)

Similar definitions want µ right-invariant and (2) replaced by |KU \ K| < ε|K|, or µ both left- and
right-invariant and difference in (2) replaced by symmetric difference: in fact, all these definitions are
equivalent. Also, if every f.g. subgroup of a given group is amenable, then the group is itself amenable.

A bounded-propagation 2 : 1 compressing map over a group G is a map φ : G → G such that, for
some finite propagation set S ⊆ G, φ(g)−1g ∈ S for every g ∈ G, and |φ−1(g)| = 2 for every g ∈ G.
In particular, such a map must be surjective, and |S| ≥ 2. By [CSC10, Theorem 4.9.2], a group has a
bounded-propagation 2 : 1 compressing map if and only if it is not amenable. For instance, in the case
of the free group over generators a, b, one can define: φ(x) = y if x /∈ {an|n ∈ N} is written in an
irreducible way as yc for some c ∈ {a, b}; φ(x) = x otherwise. Here S = {1, a, b} and any point y has
two preimages: y and yb if y is written in an irreducible way as wa−1 or an; y and ya if y is written in an
irreducible way as wb−1; ya and yb otherwise.

2.2 Cellular automata
A cellular automaton (briefly, CA) on a group G is a triple A = 〈Q,N , f〉 where the alphabet Q is a
finite set, the neighborhood index N ⊆ G is finite and nonempty, and f : QN → Q is a local function.
This, in turn, induces a global function on any configuration c : G→ Q, defined by

FA(c)(g) = f (cg|N ) = f
(
c|gN

)
. (3)

Through (3) we also consider, for every finite E ⊆ G, a function between patterns f : QEN → QE

defined by f(p)j = f(p|jN ). Hedlund’s theorem [CSC10, Theorem 1.8.1] states that global functions
of CA are exactly those functions from QG to itself that commute with translations and are continuous
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236 Silvio Capobianco, Pierre Guillon and Jarkko Kari

in the product topology. We recall that a base for this topology is given by the cylinders of the form
C(E, p) = {c ∈ QG | c|E = p}, with E a finite shape of G and p : E → Q a pattern: observe that, for
countable groups, this base is countable. Also, the cylinders of the form C(q, z) = {c | c(z) = q} form a
(countable) subbase. If p = c|E we may write C(p) instead of C(c, E).

An occurrence of a pattern p : E → Q in c ∈ QG is an element g ∈ G such that cg|E = p; the pattern
pg : gE → Q defined by pg(gz) = p(z) is then a copy of p. For compactness reasons, a CA A has no
Garden-of-Eden configurations (i.e., c ∈ QG \ FA(QG)) if and only if it has no orphan patterns, i.e., if
every pattern has an occurrence in some FA(c). Two configurations are asymptotic if they differ on at
most finitely many points; a CA is pre-injective if distinct asymptotic configurations have distinct images.
Moore’s Garden-of-Eden theorem [Moo62] states that surjective CA on Zd are pre-injective; Myhill’s
theorem [Myh62] states the converse implication.

A cellular automaton A over QG is nonwandering if for any open set U ⊂ QG there exists t ≥ 1 such
that F tA(U) ∩ U 6= ∅; it is transitive if for any two open sets U and V there exists some t ≥ 1 such
that F tA(U) ∩ V 6= ∅. (In particular, a transitive CA is nonwandering). A state q0 ∈ Q is spreading for
A = 〈Q,N , f〉 if for any u ∈ QN such that ui = q0 for some i ∈ N we have f(u) = q0.

Remark 3 A nonwandering non-trivial CA has no spreading state.

By non-trivial, we mean that |N | > 1 and |Q| > 1. Indeed, take a cylinder U = C(N ∪ {1G}, c) where
ci = q0 6= c1G

for some i ∈ N \ {1G}: then F t(U) ∩ U = ∅ for any t ≥ 1.
Let N ⊆ G ≤ Γ and f : QN → Q. The triple 〈Q,N , f〉 describes both a CA A over G and a CA A′

on Γ. We then say that A′ is the CA induced by A on Γ, or that A is the restriction of A′ to G.

2.3 Measures and randomness
Let Σ be a σ-algebra on QG. If µ : Σ→ [0, 1] is a measure on QG, a measurable function F : QG → QG

determines a new measure Fµ : Σ → [0, 1] defined as Fµ(U) = µ(F−1(U)). We say that F preserves
µ if Fµ = µ. If Q is finite, G is countable, and Σ is the Borel σ-algebra generated by the open sets,
by standard facts in measure theory, a measure µ is completely determined by its value on the cylinders.
In particular, the measure defined by µΠ(C(E, p)) = |Q|−|E| is called the uniform product measure,
because it is a product of independent uniform measures on the alphabet. Bartholdi’s theorem [Bar10]
states that the amenable groups are precisely those where surjective CA preserve µΠ and are pre-injective.

Let µ be some probability measure over QG. We say that a continuous function F : QG → QG is
µ-recurrent if for any measurable set A ⊂ QG of measure µ(A) > 0, there exists some time step t ≥ 1
such that µ(A ∩ F t(A)) > 0. If µ has full support, then this implies that F is nonwandering. Moreover,
the Poincaré recurrence theorem states that any F that preserves µ is µ-recurrent.

We say that µ is F -ergodic (or F is µ-ergodic) if F preserves µ and every F -invariant set U (i.e.,
F−1(U) = U ) has µ(U) ∈ {0, 1}. In that case, the Birkhoff ergodic theorem gives that µ-almost every
point is µ-typical for F , that is,

µ

({
x ∈ QG | ∀A ∈ Σ, lim

n→∞

1

n

∣∣A ∩ {F t(x)|0 ≤ t < n}
∣∣ = µ(A)

})
= 1 . (4)

Let µ and ν be F -ergodic measures; suppose they have a typical point x in common. Then for any
measurable set A, µ(A) = limn→∞

1
n |A ∩ {F

t(x)|0 ≤ t < n}| = ν(A) : we have thus

Lemma 4 Any two distinct F -ergodic measures have no typical point in common.
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Garden-of-Eden-like theorems for amenable groups 237

Let φ : N → G be a total computable enumeration. It is easy to see that it induces a computable
enumeration of the cylinders, which we call B′ = {B′i}i≥0 in accordance with [CHJW01].

Given any two sequences of open sets U = {Ui}i≥0, V = {Vj}j≥0, we say that U is V-computable if
there is a recursively enumerable set A ⊆ N s.t.

Ui =
⋃

j∈N:π(i,j)∈A

Vj ∀i ≥ 0 , (5)

where π(i, j) = (i + j)(i + j + 1)/2 + i is the standard primitive recursive bijection from N × N to N.
A B′-computable family U of open sets is a Martin-Löf µ-test (briefly, a M-L µ-test) if µ(Un) ≤ 2n for
every n ≥ 0. A configuration c ∈ QG fails a M-L µ-test U if c ∈

⋂
n≥0 Un. c ∈ QG is µ-random (in

the sense of Martin-Löf) if it does not fail any M-L µ-test. Note that, since the number of M-L µ-tests is
countable, the set of µ-random configurations has full measure.

Given any pattern p, the set of configurations where p has no occurrence is an intersection of a countably
infinite, computable family of cylinders Ui having equal product measure µΠ(Ui) = m < 1. It is
then straightforward to construct a M-L µΠ-test that every such configuration fails. If we call rich a
configuration in which any pattern occurs (or, equivalently, whose orbit under the shift action is dense),
we then have the following.

Remark 5 Any µΠ-random configuration is rich.

Note that φ : N → G induces φ∗ : QG → QN defined by φ∗(c)(n) = c(φ(n)). If φ is a computable
bijection, then so is φ∗: in this case (cf. [GHR10, Proposition 2.5.2]) φ∗ is continuous and preserves the
product measure. In particular, c is random for the product measure on QG if and only if φ∗(c) is random
for the product measure on QN, and the set of random configurations has measure 1.

3 Results
According to Maruoka and Kimura [MK76], a d-dimensional CA with neighborhood a hypercube of radius
r is n-balanced if each pattern on a hypercube of side n has |Q|(n+2r)d−nd

pre-images. The authors then
prove that a d-dimensional CA is surjective if and only if it is n-balanced for every n. On the other hand,
the majority rule is 1-balanced but has the Garden-of-Eden pattern 01001.

The balancedness condition means that each pattern on a given shape has the same number of pre-
images. (Just “patch” arbitrary shapes to “fill” a hypercube.) This works for CA over arbitrary groups.

Definition 6 Let G be a group and let A = 〈Q,N , f〉 be a CA on G. A is balanced if for every finite
nonempty E ⊆ G and pattern p : E → Q,

|f−1(p)| = |Q||EN|−|E|. (6)

Since the r.h.s. in (6) is always positive, no pattern is an orphan for a balanced CA. In [CSMS99], two CA
on the free group on two generators are shown, one being surjective but not pre-injective, the other pre-
injective but not surjective: both have an unbalanced local function. Therefore, balancedness in general
groups is strictly stronger than surjectivity, and possibly uncorrelated with pre-injectivity.

Remark 7 A cellular automaton is balanced if and only if it preserves the uniform product measure.
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238 Silvio Capobianco, Pierre Guillon and Jarkko Kari

The proof is similar to that in [CHJW01]. In fact, letA = 〈Q,N , f〉 and p : E → Q: then µΠ(F−1
A (C(E, p))) =∑

f(p′)=p |Q|−|EN|. But balancedness means r.h.s. has |Q||EN|−|E| summands whatever p is, while
preservation of µΠ means l.h.s. equals |Q|−|E| whatever p is.

By [CSC09, Theorem 1.2] several important properties, including injectivity and surjectivity, are pre-
served by induction and restriction: this is also true for balancedness.

Remark 8 LetA = 〈Q,N , f〉 be a CA on G ≤ Γ andA′ the CA induced byA on Γ. ThenA is balanced
if and only if A′ is balanced.

Proof: IfA′ is balanced, thenA clearly is. Suppose thenA is balanced; let J be a set of representatives of
the left cosets of G in Γ. Let E ⊆ Γ: put JE = {j ∈ J | jG ∩ E 6= ∅}. Then E =

⊔
j∈JE (jG ∩ E) and,

sinceN ⊆ G, EN =
⊔
j∈JE (jG∩EN ), with JE finite since E is. Given p : E → Q, call pj = p|jG∩E

for j ∈ JE . Then, since A′ operates slicewise and A is balanced,

|f−1(p)| =
∏
j∈JE

|f−1(pj)| =
∏
j∈JE

|Q||jG∩EN|−|jG∩E| = |Q|
∑

j∈JE
|jG∩EN|−

∑
j∈JE

|jG∩E|
,

which is precisely |Q||EN|−|E|. Since E and p are arbitrary, A′ is balanced. 2

With the next statement, we strengthen [Wei00, Theorem 1.3], which states that injective CA on r.f.
groups are surjective. We rely on a lemma which is immediate to prove.

Lemma 9 If F : QG → QG commutes with translations, then st(c) ⊆ st(F (c)) for every c ∈ QG. In
particular, if F is bijective then st(c) = st(F (c)).

Theorem 10 Let G be a residually finite group and A = 〈Q,N , f〉 an injective CA over G. Then A is
balanced.

Proof: Let E be a finite subset of G: it is not restrictive to suppose 1 ∈ E ∩ N , so that E,N ⊆ EN .
Suppose, for the sake of contradiction, that p : E → Q satisfies |F−1

A (p)| = M > |Q||EN|−|E|. Since
G is residually finite, by Lemma 2 there exists a subgroup H ≤ G of finite index such that H ∩ EN =
H ∩N = {1} : if J is a set of representatives of the right cosets of H such that EN ⊆ J , then

|{π : J → Q | FA(π)|E = p}| = M · |Q|[G:H]−|EN| > |Q|[G:H]−|E| . (7)

The r.h.s. in (7) is the number of H-periodic configurations that coincide with p on E. Since A is
injective and G is r.f., by [Wei00, Theorem 1.3] A is reversible, and by Lemma 9, FA sends H-periodic
configurations intoH-periodic configurations. But because of (7) and the pigeonhole principle, there must
exist two H-periodic configurations with the same image according to FA: which contradicts injectivity
of A. 2

The proof of Moore’s and Myhill’s theorems for CA on amenable groups given in [CSMS99] is based
on the following lemma.

Lemma 11 ([CSMS99, Step 1 in proof of Theorem 3]) Let G be an amenable group, q ≥ 2, and n >
r > 0. For L = Dn there exist m > 0 and B ⊆ G such that B contains m disjoint copies of L and

(q|L| − 1)m · q|B|−m|L| < q|B
−r| . (8)

ha
l-0

06
54

70
6,

 v
er

si
on

 1
 - 

22
 D

ec
 2

01
1



Garden-of-Eden-like theorems for amenable groups 239

We use Lemma 11 to get a combinatorial proof of the equivalence between surjectivity and balancedness,
that was already essentially stated in [Bar10].

Theorem 12 Let G be an amenable group and let A a CA on G. If A is surjective then A is balanced.

Proof: Put L = Dn, L′ = Dn−r, q = |Q|. Suppose, for the sake of contradiction, that A is not balanced.
Then, for suitable n, there is a pattern p : L′ → Q that has at most q|L|−|L

′|− 1 pre-images. Let m and B
be as by Lemma 11. Consider the patterns on B whose image under the global rule of A coincides with p
on each of the m copies of L′ contained in those of L: their number t is at most(

q|L|−|L
′| − 1

)m
q|B|−m|L| .

However,
(
q|L|−|L

′| − 1
)
≤ q−|L′|

(
q|L| − 1

)
, so that, by Lemma 11,

t ≤ q−m|L
′|
(
q|L| − 1

)m
q|B|−m|L| < q|B

−r|−m|L′| .

But the last term is precisely the number of patterns on B−r that coincide with p on each of the given m
copies of L′. There are more of these than available pre-images, so one of them must be an orphan. 2

Thanks again to Lemma 11, [CHJW01, Point 1 of Theorem 4.4] generalizes to amenable groups.

Proposition 13 Let G be an amenable group and let A = 〈Q,Dr, f〉, r > 0, be a CA on G. If c is not
rich then FA(c) is not rich.

Proof: Suppose there is a pattern with support L = Dn, n > r, that does not occur in c. Choose m and B
according to Lemma 11. By hypothesis, the number of patterns with support B that occur in c is at most
(q|L|− 1)mq|B|−m|L|, with q = |Q|; therefore, the number of patterns with support B \ ∂rB which occur
in FA(c) cannot exceed this number too. By Lemma 11, this is strictly less than q|B|−|∂rB|, which is the
total number of patterns with support B \ ∂rB: hence, some of those patterns do not occur in FA(c). 2

We now consider another property that, for CA on Zd, is equivalent to surjectivity: sending µΠ-random
configurations into µΠ-random configurations. Before going ahead, we must remember that, according
to [CHJW01], the definition of a random configuration on Zd depends on the existence (and choice!) of
a total computable bijection from N to Zd. This is still ensured for a general group G when it has a
decidable word problem: we thus can first enumerate D0 = {1G}, then D1 \D0, then D2 \D1, and so
on.

The proofs of the following two statements are then similar to the original ones in [CHJW01]

Lemma 14 Let G be a group with decidable word problem, U a B′-computable sequence, and A a CA
on G. Then F−1

A (U) is a B′-computable sequence.

Proof: Let A be a r.e. set such that Ui =
⋃
π(i,j)∈AB

′
j for every i ≥ 0, where the B′j are cylinders. Since

A is a CA, F−1
A (Ui) is itself a union of cylinders: such union is computable because G has decidable

word problem. By exploiting these facts and the primitive recursive functions L,K : N → N such that
π(L(n),K(n)) = n for every n ≥ 0, we can construct a r.e. set Z such that F−1

A (Ui) =
⋃
π(i,j)∈Z B

′
j

for every i ≥ 0. 2
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240 Silvio Capobianco, Pierre Guillon and Jarkko Kari

Proposition 15 Let G be a group with decidable word problem and A a CA over G. If FA(c) is µΠ-
random whenever c is, then A is surjective. If A preserves µΠ, then FA(c) is µΠ-random when c is.

Proof: Since µΠ-random configurations form a set of measure 1 and contain occurrences of any pattern,
the first part is immediate. For the second part, if FAµΠ = µΠ, then by Lemma 14 the preimage of a M-L
µΠ-test is still a M-L µΠ-test: but if FA(c) fails U , then c fails F−1

A (U). 2

From Proposition 15 combined with Theorem 12 follows

Corollary 16 Let G be an amenable group with decidable word problem andA be a surjective CA on G.
If c is µΠ-random then FA(c) is µΠ-random.

What is the role of amenability in all this? Could this happen on non-amenable groups as well? The
following counterexample shows that this is not the case.

Example 17 (Surjective CA with a spreading state) LetG be a non-amenable group; let φ be a bounded-
propagation 2 : 1 compressing map with propagation set S. Let � be a total ordering of S and let
Q = S × {0, 1} × S t {q0}, where q0 /∈ S × {0, 1} × S. Let A = 〈Q,S, f〉 with:

f : QS → Q

u 7→

∣∣∣∣∣∣
q0 if ∃s ∈ S, us = q0,
(p, α, q) if ∃!(s, t) ∈ S × S, s ≺ t, us = (s, α, p), ut = (t, 1, q),
q0 otherwise.

Then A admits the spreading state q0, and at least one other state, hence it is not nonwandering. Never-
theless, it is surjective.

Proof: Let x ∈ QG, i ∈ G, j = φ(i): then i = js for some s ∈ S, and there exists a unique t ∈ S \ {s}
such that φ(jt) = j. If xj = q0, then set yi = (s, 0, s): otherwise, we can write xj = (p, α, q). If s ≺ t,
then set yi = (s, α, p); otherwise set yi = (s, 1, q). This definition has the property that for any i ∈ G,
yi ∈ {φ(i)−1i} × {0, 1} × S. Let us prove that the configuration y is a preimage of x by the global map
of the CA. Let j ∈ G and s, t ∈ S such that s ≺ t, yjs ∈ {s} × {0, 1} × S, and yjt ∈ {t} × {0, 1} × S.
Then s = φ(js)−1js and t = φ(jt)−1jt, and φ(js) = φ(jt) = j: hence, there exists exactly one such
pair (s, t). If xj = q0, then the definition of y gives yjt = (t, 0, t), and f will apply its third subrule. If
xj is written (p, α, q), then yjs = (s, α, p) and yjt = (t, 1, q), and f will apply its second subrule. 2

Now, let G be a non-amenable group with decidable w.p., A the CA from Example 17, and c a µΠ-
random configuration. By Remark 5, there are some points g ∈ G where c(g) = q0: since |S| ≥ 2, FA(c)
cannot have isolated q0’s, and by the same Remark 5, it cannot be µΠ-random. On the other hand, as a
consequence of the Poincaré recurrence theorem, a CA that preserves µΠ is nonwandering: we have thus
yet another characterization of amenable groups as those where surjective CA are nonwandering.

A general scheme of the implications is provided by Figure 1. By joining Bartholdi’s theorem, Re-
mark 7, Corollary 16, Example 17, and the observations above we get Theorem 1.

We conclude this section with some results involving general measures for the configuration space.

Proposition 18 LetA = 〈Q,N , f〉 be a CA over groupG, and µ a σk-ergodic Borel probability measure
on QG for some k ∈ G. Then for t ≥ 1, F tAµ is also σk-ergodic. Moreover, FA is µ-recurrent if and only
if F tA preserves µ for some t ≥ 1.
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Figure 1: A diagram of implications between cellular automata properties. Full lines hold for every group; dotted
lines hold for amenable groups; dashed lines hold for residually finite groups; wavy lines hold for countable groups
with decidable word problem. Starred implications are proved in the present paper. Implications with a question mark
are conjectured.

Proof: Since σk and FA commute, if σ−1
k (U) = U then σ−1

k (F−tA (U)) = F−tA (U) as well, hence
F tAµ(U) ∈ {0, 1}; also, for any Borel set U , F tAµ(σ−1

k (U)) = µ(σ−1
k (F−t(U))) = F tAµ(U).

By the Poincaré recurrence theorem, if F tA preserves µ then it is µ-recurrent, and this trivially implies
that F also is. For the converse implication, let U be the set of µ-typical configurations for σk: then
µ(U) = 1, so t ≥ 1 exists such that µ(U ∩ F tA(U)) > 0. But since σk and FA commute, if x is µ-typical
for σk, then F tA(x) is (F tAµ)-typical for σk: thus, µ and F tAµ are two σk-ergodic measures having a
common typical point for σk, so they are equal by Lemma 4. 2

If F is a µ-recurrent system where µ is σk-ergodic for some k ∈ G, then for suitable t ≥ 1 the mean
of F iµ for 0 ≤ i < t is F -invariant. Note that this does not imply that F is µ-invariant: a simple
counter-example is a CA performing a simple state permutation, over a non-uniform Bernoulli measure.

Example 19 Let Q = {0, 1} and let µ be a product of independent identical measures µ(0) = 1/3,
µ(1) = 2/3; let A = 〈Q, {1G}, f〉 with f(z) = 1 − z. Then F 2

Aµ = µ but FAµ 6= µ. However, if
µ̄2 = (µ+ FAµ)/2, then FAµ̄2 = µ̄2.

4 Conclusions
We have shown that several characterizations of surjective CA which are known to hold on Euclidean
groups also hold in the more general case of amenable groups.

This is a work in progress, and many more questions arise. Among those:

1. Does Myhill’s theorem only hold on amenable groups?
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2. What is the actual role of the word problem in Lemma 14 and Proposition 15? Can we find some
amenable groups with undecidable word problem but where surjective CA still send µΠ-random to
µΠ-random?

3. For the uniform product measure, is every recurrent CA invariant?
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