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Abstract. We discuss cellular automata over arbitrary finitely gener-
ated groups. We call a cellular automaton post-surjective if for any pair
of asymptotic configurations, every preimage of one is asymptotic to a
preimage of the other. The well known dual concept is pre-injectivity: a
cellular automaton is pre-injective if distinct asymptotic configurations
have distinct images. We prove that pre-injective, post-surjective cellu-
lar automata over surjunctive groups are reversible. In particular, post-
surjectivity and reversibility are equivalent notions on amenable groups.
We also prove that reversible cellular automata over arbitrary groups are
balanced, that is, they preserve the uniform measure on the configuration
space.
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1 Introduction

Cellular automata (briefly, ca) are parallel synchronous systems on regular grids
where the next state of a point depends on the current state of a finite neighbor-
hood. The grid is determined by a finitely generated group and can be visualized
as the Cayley graph of the group. In addition to being a useful tool for simula-
tions, ca also raise important and interesting questions, such as how properties
of the global transition function (obtained by synchronous application of the
local update rule at each point) are linked to each other.

One such relation is provided by Bartholdi’s theorem [1], which links surjec-
tivity of cellular automata to the preservation of the product measure on the
space of global configurations: the latter implies the former, but is only implied
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by it if the grid satisfies additional properties. Under the same assumptions, the
Garden of Eden theorem equates surjectivity with pre-injectivity, that is, the
property that two asymptotic configurations (i.e., two configurations differing
on at most finitely many points) with the same image must be equal. In the
general case, the preservation of the product measure can always be expressed
combinatorially by the so-called balancedness property. Furthermore, bijectivity
is always equivalent to reversibility, that is, the existence of an inverse that is
itself a ca.

A parallel to pre-injectivity is post-surjectivity, which is described as follows:
given a configuration e and its image c, every configuration c′ asymptotic to c has
a preimage e′ asymptotic to e. While pre-injectivity is weaker than injectivity,
post-surjectivity turns out to be stronger than surjectivity.It is natural to ask
whether such trade-off between injectivity and surjectivity preserves bijectivity.

In this paper, which constitutes work in progress, we discuss the two prop-
erties above, and their links with reversibility. First, we prove that a reversible
cellular automaton over any group is balanced. This gives an “almost positive”
answer to a conjecture proposed in [2]. Next, we show that, in a broad set-
ting that includes classical d-dimensional ca, post-surjectivity is equivalent to
reversibility.

2 Background

If X is a set, we indicate by PF(X) the collection of all finite subsets of X.
Let G be a group and let U, V ⊆ G. We put UV = {x · y | x ∈ U, y ∈ V },

and U−1 = {x−1 | x ∈ U}. If U = {g} we write gV for {g}V .
A subset V of G is a set of generators for G if every g ∈ G can be written as

g = w0 · · ·wn−1 for some w = w0 . . . wn−1 ∈ (V ∪ V −1)∗ : G is finitely generated
(briefly, f.g.) if V can be chosen finite. The length of g ∈ G w.r.t. V is the
minimum length n = ‖g‖V of such a word w. The distance of g and h with
respect to V is the length dV (g, h) of g−1 ·h, i.e., the length of the shortest path
from g to h in the Cayley graph of G w.r.t. V , whose vertices are the elements
of G and the edges are precisely the pairs (g, gx) with g ∈ G and x ∈ V ∪ V −1.
The disk of center g and radius r w.r.t. V is the set DV,r(g) of those h ∈ G such
that dV (g, h) ≤ r: we omit g if it is the identity element 1G of G. The function
γV (r) = |DV,r| is the growth rate of G w.r.t. V . We omit V if irrelevant or clear
from the context.

A group G is amenable if there exists a finitely additive probability measure
µ, defined on every subset of G, such that µ(gU) = µ(U) for every g ∈ G and
U ⊆ G. The groups Zd are amenable whereas the free groups on two or more
generators are not. For an introduction to amenability see, e.g., [3, Chapter 4].

Let S be a finite set and let G be a group. The elements of the set C = SG

are called configurations. The space of configurations is given the prodiscrete
topology by considering S as a discrete set. This makes C a compact space by
Tychonoff’s theorem. In the prodiscrete topology, two configurations are “near”
if they coincide on a “large” finite subset of G: indeed, if G is f.g., then setting
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dV (c, e) = 2−n, where n is the smallest r ≥ 0 such that c and e differ on DV,r,
defines a distance that induces the prodiscrete topology. Two configurations are
asymptotic if they differ at most on finitely many points of G. A pattern is a
function p : E → S where E is a finite subset of G.

For g ∈ G, the translation by g is the function σg : C → C that sends an
arbitrary configuration c into the configuration σg(c) defined by

σg(c)(x) = c(g · x) ∀x ∈ G . (1)

A cellular automaton (briefly, ca) on a group G is a triple A = 〈S,N , f〉
where the alphabet S is a finite set, the neighborhood N is a finite subset of G, and
the local update rule is a function that associates to every pattern p : N → S a
state f(p) ∈ S. The global transition function of A is the function FA : SG → SG

defined by

FA(c)(g) = f
(

(σg(c))|N
)
∀g ∈ G : (2)

that is, if N = {n1, . . . , nm}, then FA(c)(g) = f (c(g · n1), . . . , c(g · nm)) . Ob-
serve that (2) is continuous in the prodiscrete topology and commutes with
translations, i.e., FA ◦σg = σg ◦FA for every g ∈ G: the Curtis-Hedlund-Lyndon
theorem states that the continuous and translation-commuting functions from C
to itself are precisely the ca global transition functions.

We may refer to injectivity, surjectivity, etc. of A meaning the corresponding
properties of FA. From basic facts about compact spaces follows that the inverse
of the global transition function of a bijective cellular automaton A is itself the
global transition function of some cellular automaton: we then say that A is
reversible. A group G is surjunctive if every injective cellular automaton on G
is surjective: currently, there are no known examples of non-surjunctive groups.

If G is a subgroup of Γ and A = 〈S,N , f〉 is a cellular automaton on G, the
cellular automaton AΓ induced by A on Γ has the same set of states, neigh-
borhood, and local update rule as A, and maps SΓ (instead of SG) into itself
via FAΓ (c)(γ) = f (c(γ · n1), . . . , c(γ · nm)) for every γ ∈ Γ . We may also say
that A is the restriction of AΓ to G. It is easily seen (cf. [3, Section 1.7]) that
injectivity and surjectivity are preserved by both induction and restriction.

Let A = 〈S,N , f〉 be a ca on a group G, let p : E → S be a pattern and
let EN ⊆ M ∈ PF(G). A preimage of p on M for A is a pattern q : M → S
such that FA(c)|E = p for any c ∈ C such that c|M = q. An orphan is a pattern
that has no preimage. Similarly, a configuration which is not in the image of C
by FA is a garden of Eden for A. By a compactness argument, every garden of
Eden contains an orphan. A cellular automaton A is pre-injective if every two
asymptotic configurations c, e satisfying FA(c) = FA(e) are equal. The Garden
of Eden theorem (cf. [4]) states that, for ca on amenable groups, pre-injectivity
is equivalent to surjectivity; on non-amenable groups, the two properties appear
to be independent of each other.
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3 Balancedness

Definition 1. A cellular automaton A = 〈S,N , f〉 on a group G is balanced
if it satisfies the following property: For every two finite E,M ⊆ G such that
EN ⊆M , every pattern p : E → A has |S||M |−|E| preimages on M .

If G is finitely generated, it is easy to see that Definition 1 is equivalent to the
following property: for every n ≥ 0 and for every r ≥ 0 such that N ⊆ Dr,
every pattern on Dn has exactly |S|γ(n+r)−γ(n) preimages on Dn+r. In addition
(cf. [2, Remark 18]) balancedness is preserved by both induction and restriction,
hence, it can be determined by only checking it on the subgroup generated by
the neighborhood.

Lemma 1. Let G be a group, let S be a finite set, and let F,H : SG → SG be
ca global transition functions.

1. If F and H are both balanced, then so is F ◦H.
2. If F and F ◦H are both balanced, then so is H.
3. If H and F ◦H are both balanced, and in addition H is reversible, then F

is balanced.

Proof. It is sufficient to consider the case when G is finitely generated, e.g., by
the union of the neighborhoods of the two ca. Let r ≥ 0 be large enough that
the next value of a point according to both F and H only depends on the current
state of a neighborhood of radius r of the point.

First, suppose F and H are both balanced. Let p : Dn → S: by balancedness,
p has exactly |S|γ(n+r)−γ(n) preimages over Dn+r according to H. In turn, every
such preimage ha |S|γ(n+2r)−γ(n+r) preimages over Dn+2r according to F , again
by balancedness. All the preimages of p on Dn+2r by F ◦H have this form, so p
has |S|γ(n+2r)−γ(n) preimages on Dn+2r according to F ◦H. This holds for every
n ≥ 0 and p : Dn → S: thus, F ◦H is balanced.

Now, suppose F is balanced but H is not. Take n ≥ 0 and p : Dn → S
having M > |S|γ(n+r)−γ(n) preimages according to H: by balancedness of F ,
each of these M preimages has exactly |S|γ(n+2r)−γ(n+r) preimages according
to F . Then p has overall M · |S|γ(n+2r)−γ(n+r) > |S|γ(n+2r)−γ(n) preimages on
Dn+2r according to F ◦H, which is thus not balanced.

Finally, suppose H and F ◦H are balanced and H is reversible. As the identity
ca is clearly balanced, by the previous point (with H taking the role of F and
H−1 that of H) H−1 is balanced. By the first point, as F ◦H and H−1 are both
balanced, so is their composition F = F ◦H ◦H−1.

Corollary 1. A reversible ca and its inverse are either both balanced or both
unbalanced.

Definition 1 states that balanced ca give at least one preimage to each pat-
tern, thus are surjective. On amenable groups (cf. [1]) the converse is also true;
on non-amenable groups (ibid.) some surjective cellular automata are not bal-
anced. In the last section of [2], we ask ourselves the question whether injective
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cellular automata are balanced. The answer is that, at least in all cases currently
known, it is so.

Theorem 1. Reversible ca are balanced.

Proof. It is not restrictive to suppose that G is finitely generated. Let A =
〈S,N , f〉 be a reversible cellular automaton on G and let F = FA be its global
transition function. Fix a finite set of generators V for G. For n ≥ 0 let Dn be
the disk of radius n center in the identity element of G. Let N be a neighborhood
for both F and F−1: if r ≥ 0 is large enough that N ⊆ Dr, then for every c ∈ SG
the state of both F (c) and F−1(c) on Dn is determined by the state of c in Dn+r.

Let p1, p2 : Dn → S be two patterns. It is not restrictive to suppose n ≥ r. We
exploit reversibility of F to prove that they have the same number of preimages
on Dn+r by constructing a bijection T1,2 between the set of the preimages of p1
and that of the preimages of p2. As this will hold whatever n, p1, and p2 are, F
will be balanced.

For i = 1, 2 let Qi be the set of the preimages of pi on Dn+r. Given q1 ∈ Q1,
and having fixed a state 0 ∈ S, we proceed as follows:

1. First, we extend q1 to a configuration e1 by setting e1(g) = 0 for every
g 6∈ Dn+r.

2. Then, we apply F to e1, obtaining c1. By construction, c1|Dn = p1.

3. Next, from c1 we construct c2 by replacing p1 with p2 inside Dn.

4. Then, we apply F−1 to get a new configuration e2.

5. Finally, we call q2 the restriction of e2 to Dn+r.

Observe that q2 = e2|Dn+r
∈ Q2. This follows immediately from A being re-

versible: by construction, if we apply F to e2, and restrict the result to D, we
end up with p2. We call T1,2 : Q1 → Q2 the function computed by performing
the steps from 1 to 5, and T2,1 : Q2 → Q1 the one obtained by the same steps
with the roles of q1 and q2 swapped.

Now, by construction, c1 and c2 coincide outside Dn, and their updates e1
and e2 by F−1 coincide outside Dn+r: but e1 is 0 outside Dn+r, so that updating
c2 to e2 is the same as extending q2 with 0 outside Dn+r. This means that T2,1 is
the inverse of T1,2: consequently, Q1 and Q2 have the same number of elements.
As p1 and p2 are arbitrary, any two patterns on Dn have the same number of
preimages on Dn+r. As n ≥ 0 is also arbitrary, A is balanced.

Corollary 2. Injective cellular automata over surjunctive groups are balanced.

4 Post-surjectivity

Definition 2. A cellular automaton is post-surjective if, given a configuration c
and a predecessor e of c, every configuration c′ asymptotic to c has a predecessor
e′ asymptotic to e.
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Post-surjective ca are surjective: if f(a, . . . , a) = b, then we can always find a
predecessor for any pattern by pasting it over the b-uniform configuration. The
vice versa is not true: the xor with the right-hand neighbor is surjective, but
while . . . 000 . . . is a fixed point, . . . 010 . . . only has preimages that take value 1
infinitely often. Also, from the Garden of Eden theorem follows

Proposition 1. Post-surjective ca on amenable groups are pre-injective.

In addition, via a reasoning similar to the one employed in [3, Section 1.7]
and [2, Remark 18], we can prove

Proposition 2. Let A = 〈S,N , f〉 be a cellular automaton on the group G, let
Γ be a group that contains G, and let AΓ be the ca induced by A on Γ . Then
A is post-surjective if and only if AΓ is post-surjective.

In particular, post-surjectivity of arbitrary ca is equivalent to post-surjectivity
on the subgroup generated by the neighborhood.

Theorem 2. One-dimensional post-surjective ca are reversible.

Proof. For u ∈ S∗ let uω : {k, k + 1, . . .} → S and ωu : {. . . , h − 2, h − 1} → S
be obtained by juxtaposing copies of u, without keeping information on h or k;
let then ωuω = ωuuω with h = k.

Suppose, for the sake of contradiction, that A = 〈S,N , f〉 is a post-surjective
one-dimensional ca which is not reversible. As it is well known (cf. [5, Theorem
7]), there exist u, v, w ∈ S∗ such that eu = ωuω and ev = ωvω are different and
have the same image c = ωwω. It is not restrictive to suppose |u| = |v| = k · |w|.

By construction, the two configurations cu,v = F (ωuvω) and cv,u = F (ωvuω)
are both asymptotic to c: by post-surjectivity, there exist x, y ∈ S∗ such that
eu,v = ωuxvω and ev,u = ωvyuω satisfy F (eu,v) = F (ev,u) = c. Again, it is not
restrictive to suppose that |x| = |y| = m · |u| for some m ≥ 1, and that x and y
start at the same point i ∈ Z.

Let now consider the configuration e′ = ωuxvNyuω : by our previous dis-
cussion, for N large enough (e.g., so that x and y do not have overlapping
neighborhoods) FA(e′) cannot help but be c. Now, recall that eu is also a pre-
image of c and note that eu and e′ are asymptotic but distinct. This means that
A, which we know is surjective, is not pre-injective, contradicting the Garden of
Eden theorem.

The proof of Theorem 2 depends critically on dimension 1, where ca that are
injective on periodic configurations are reversible. Moreover, in our final step,
we invoke the Garden of Eden theorem, which we know from [4] not to hold for
ca on generic groups. Not all is lost, however: maybe, by explicitly adding the
pre-injectivity requirement, we can recover Theorem 2 on more general groups?
It turns out that it is so: at least, in all known cases.

Lemma 2 (cf. [6, Lemma 29]). Let A = 〈S,N , f〉 be a pre-injective, post-
surjective ca on the group G. There exists a finite M ∈ PF(G) with the following
property: For every pair (e, e′) of asymptotic configurations, if c = FA(e) and
c′ = FA(e′) disagree only on g ∈ G, then e and e′ disagree at most on gM .
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Proof. It is not restrictive to suppose 1G ∈ N . It is also not restrictive to suppose
g = 1G, the general case being recovered through commutation of FA with
translations.

Let e ∈ C. By pre-injectivity and post-surjectivity, there are precisely |S| − 1
configurations e′ asymptotic to e whose image c′ disagree with c = FA(e) at
most on 1G: let Me ∈ PF(G) contain all the points where any of these e′ differs
from e, i.e., e|G\Me

= e′|G\Me
for all said e′. We claim that there exists a finite

superset Ce of Me with the following property: if e1 coincides with e inside Ce,
e′1 is asymptotic to e1, and c1 = FA(e1) coincides with c′1 = FA(e′1) except at
most on 1G, then e′1 coincides with e1 outside Me.

To prove our claim, let Ce be a suitable finite superset of Ne = MeNN−1.
Let e1 ∈ [e]Ce : let then e′1 be asymptotic to e1 (not necessarily equal outside
Ce) and such that c1 = FA(e1) and c′1 = FA(e′1) coincide outside 1G. Let now
c′ : G → S satisfy c′(1G) = c′1(1G) and c′(x) = c(x) for every x 6= 1G: by pre-
injectivity and post-surjectivity combined, there exists a unique e′ asymptotic
to e such that c′ = FA(e′), and such e′ coincides with e outside Me. But

e′′1(x) =

{
e′(x) if x ∈ Ce
e1(x) otherwise

is also a preimage of c′1 asymptotic to e1: by pre-injectivity, e′′1 = e′1. By con-
struction, e′′1 agrees with e1 outside Me: and so does e′1, which proves our claim.

Now, as e varies in C, the cylinders [e]Ce clearly form a covering of C: as
the latter is compact, there exists U ∈ PF(C) such that

⋃
e∈U [e]Ce = C. Then

M =
⋃
e∈U Me has the property required in the thesis.

Corollary 3. Let A be a pre-injective, post-surjective ca on the group G. There
exists M ∈ PF(G) with the following property: For every pair (e, e′) of asymp-
totic configurations, if c = FA(e) and c′ = FA(e′) disagree at most on D, then e
and e′ disagree at most on DM .

Theorem 3. Let G be a surjunctive group. Every pre-injective, post-surjective
cellular automaton A = 〈S,N , f〉 on G is reversible.

Proof. By Proposition 2, it is sufficient to consider the case where G is countable.
Let F = FA. Let M be as in Lemma 2: we show that F has an inverse H

with neighborhood N = M−1. Actually, we prove that H is a right inverse of F :
but a right inverse of a surjective function is injective, thus H is also surjective
because of surjunctivity of G, so that F is indeed the inverse of H.

To construct the local update rule h : SN → S, we proceed as follows. Fix
a uniform configuration u and let v = F (u). Given g ∈ G and p : N → S, for
every h ∈ G put

yg,p(h) =

{
p(g−1h) if h ∈ gN
v(h) otherwise

(3)

that is, let yg,p be obtained from v by cutting away the piece with support
gN and pasting p as a “patch” for the “hole”. By post-surjectivity and pre-
injectivity combined, there exists a unique xg,p ∈ C asymptotic to u such that
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F (xg,p) = yg,p. Let then
h(p) = xg,p(g) . (4)

Observe that (4) does not depend on g: if g′ = h · g, then yg′,p = σh(F (xg,p)),=
F (σh(xg,p)), so that xg′,p = σh(xg,p) by pre-injectivity, and xg′,p(g

′) = xg,p(g).
Let now y be any configuration asymptotic to v such that y|gN = p, and let

x the unique preimage of y asymptotic to v: we claim that x(g) = h(p). To prove
this, we observe that, as y and yg,p are both asymptotic to v, there exists a finite
sequence y0 = yg,p, y1, . . . , ym = y such that, for every i = 1, . . . ,m, yi disagrees
with yi−1 on a single point `i, which by construction does not belong to gN .
Consider then the unique preimages xi of yi asymptotic to u: by Lemma 2, for
every i = 1, . . . ,m, xi coincides with xi−1 outside `iM , which does not contain g
as g ∈ `iM is equivalent to `i ∈ gN , which is not the case. As x0 = xg,p because
of pre-injectivity, we can conclude that xg,p(g) = h(p).

The argument above holds whatever the pattern p : N → S is. By applying it
finitely many times to arbitrary finitely many points, we determine the following
fact: if y is any configuration which is asymptotic to v, then F (H(y)) = y. But the
set of configurations asymptotic to v is dense in C, so it follows from continuity
of F and H that F (H(y)) = y for every y ∈ C.

Corollary 4. A cellular automaton on an amenable group (in particular, a d-
dimensional ca) is post-surjective if and only if it is reversible.

5 Conclusions

We have given a little contribution to a broad research theme by examining
some links between different properties of cellular automata. In particular, we
have seen how reversibility can still be obtained by weakening injectivity while
strengthening surjectivity. Whether other such “transfers” are possible, is a field
that we believe deserving to be explored. Another interesting issue is whether
post-surjective cellular automata which are not pre-injective do or do not exist:
by Bartholdi’s theorem, any such example would involve non-amenable groups.
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