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Abstract

This is a summary of some notes taken by me during the course given
by Prof. Robin Cockett at the Institute of Cybernetics in February 2013.

1 Restriction categories

We assume familiarity with the basics of category theory. Given a category
X, we write Ob(X) or |X| for the collection of its objects, and HomX(A,B) or
X(A,B) for the collection of the maps in X from A to B. We put HomX =⋃
A,B∈|X| X(A,B). If X is clear from the context, we may omit it from the

Hom-notation.

Definition 1.1 (Restriction category). A restriction category is a category X
together with a restriction operator (·) which associates to every f ∈ X(A,B)
an f ∈ X(A,A) so that the following diagrams commute:

A
f //

f ��

A

f

��

A
f //

g◦f

&&
g

��

A

g

��

A
f //

g◦f
��

B

g

��
B A

f // A A
f // B

(1)

i.e., the following properties are satisfied:

1. f ◦ f = f for every f : A→ B.

2. g ◦ f = f ◦ g for every f : A→ B, g : A→ C.

3. g ◦ f = g ◦ f for every f : A→ B, g : A→ C.

4. g ◦ f = f ◦ g ◦ f for every f : A→ B, g : B → C.

∗The contents of these notes are released under a Creative Commons “Attribution – Non-
Commercial – ShareAlike” 4.0 International license:
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Let us interpret the rules. Rule 1 says that the result of f does not change
if its restriction f is applied first. Rule 2 says that restricted maps with same
domain commute with each other. Rule 3 says that composing two restrictions
is the same as applying a restricted map first, then an ordinary one, and finally
restrict the composition. Rule 4 says that a restriction can be moved from
“after” to “before” an ordinary map, provided the originally restricted map is
pre-composed with the other one.

Example 1.2. The category Par whose objects are sets and whose maps are
partial functions, is a restriction category: the restriction f : A→ A of f : A→
B satisfies f(x) = x if f(x) is defined, and undefined otherwise.

Lemma 1.3. Let X be a restriction category. For every f : A→ B, g : B → C
the following hold:

1. f = f . That is: the restriction operator on X is idempotent.

2. f ◦ f = f . That is: restricted maps are idempotents in X.

3. If f is monic then f = idA. In particular, idA = idA.

4. g ◦ f = g ◦ f for every f : A→ B, g : B → C.

Proof. We first prove point 2. By putting g = f in rule 3 of restriction categories

we get f ◦ f = f ◦ f , which is f by rule 1.
We now prove point 3. By rule 1, f ◦f = f = f ◦ idA: as f is monic, f = idA.
To prove point 4 we use all the rules of restriction categories:

g ◦ f = f ◦ g ◦ f = f ◦ g ◦ f = g ◦ f ◦ f = g ◦ f ◦ f = g ◦ f .

Finally,

f = idA ◦ f = idA ◦ f = idA ◦ f = f :

which proves point 1.

Definition 1.4 (Total map). Let X be a restriction category. A map f : A→ B
in X is total if f = idA.

Monic maps are total. In addition, we have the following

Lemma 1.5. Let X be a restriction category, f ∈ X(A,B), g ∈ X(B,C). If
g ◦ f is total, then so is f .

Proof. If g ◦ f = idA, then

f = idA ◦ f = g ◦ f ◦ f = g ◦ f ◦ f = g ◦ f = idA .

Lemma 1.6. For a restriction category X, the objects of X together with the
total maps of X form a subcategory Total(X).

Proof. By point 3 of Lemma 1.3, identities are total maps. By point 4, if
f : A→ B and g : B → C are total maps, then

g ◦ f = g ◦ f = idB ◦ f = f = idA ,

and g ◦ f : A→ C is a total map.
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Definition 1.7. Let X be a restriction category and let f, g : A → B maps in
X. We write f ≤ g if g ◦ f = f , i.e., if the following diagram commutes:

A
f //

f ��

B

A

g

?? (2)

In the case A = B observe that f ≤ idA for every f : A→ A.

Example 1.8. Let X = Par. Then f ≤ g if and only if g is an extension of f .

Lemma 1.9. The relation introduced in Definition 1.7 is a partial order. More-
over, restriction is monotone with respect to such partial order, i.e., if f ≤ g
then f ≤ g.

Proof. Reflexivity follows by putting g = f and applying the first rule of re-
striction categories. For transitivity, if f ≤ g and g ≤ h, then

h ◦ f = h ◦ g ◦ f = h ◦ g ◦ f = g ◦ f = f ,

so that f ≤ h as well. For antisymmetry, if f ≤ g and g ≤ f , then

f = g ◦ f = f ◦ g ◦ f = f ◦ f ◦ g = f ◦ g = g .

Finally, if g ◦ f = f then g ◦ f = g ◦ f = g ◦ f = f .

Recall that a binary relation R defined on a partial monoid M is enriching
if, for every f, g, h, k ∈ M such that hfk and hgk are defined, if f R g then
hfkRhgk.

Lemma 1.10. The ordering from Definition 1.7 is enriching.

Proof. A relation on maps is enriching if f R g implies (k ◦ f ◦ h)R (k ◦ g ◦ h)
whenever f, g ∈ X(A,B), h ∈ X(Z,A), and k ∈ X(B,C) as Z,A,B,C ∈ |X|.
We will prove separately the two cases h = idA and k = idB , from which the
general case follows easily.

First, suppose C = B and k = idB : if g ◦ f = f , then by rule 4 of restriction
categories g ◦ h ◦ f ◦ h = g ◦ f ◦ h = f ◦ h. Thus, if f ≤ g then f ◦ h ≤ g ◦ h.

Next, suppose Z = A and h = idA: if g ◦ f = f , then

k ◦ g ◦ k ◦ f = k ◦ g ◦ k ◦ f ◦ f by Rule 1

= k ◦ g ◦ k ◦ f ◦ f by Rule 3

= k ◦ g ◦ f ◦ k ◦ f by Rule 2

= k ◦ f ◦ k ◦ f
= k ◦ f by Rule 1 .

Thus, if f ≤ g then k ◦ f ≤ k ◦ g.

Corollary 1.11. Let f : A→ B, h : A→ C, k : B → D. Then k ◦ f ◦ h ≤ f.

Proof. Follows from Lemma 1.10 and h ≤ idA, k ≤ idB .
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Definition 1.12 (Compatible maps). Two maps f, g : A → B in a restriction
category X are compatible, written f ^ g, if g ◦ f = f ◦ g.

Example 1.13. Two maps in Par are compatible if and only if they are equal
on the intersection of their domains.

Lemma 1.14. Let f, g : A→ B, h : Z → A, k : B → C be maps in a restriction
category X.

1. f ^ g if and only if g ◦ f ≤ f and f ◦ g ≤ g. In fact, if either inequality
holds, then f ^ g, and the other one holds too.

2. If f ^ g then k ◦ f ◦ h ^ k ◦ g ◦ h.

Proof. If f ^ g, then

f ◦ g ◦ f = f ◦ g ◦ f = f ◦ f g = f ◦ g = g ◦ f ,

that is, g ◦ f ≤ f ; similarly, f ◦ g ≤ g. On the other hand, if g ◦ f ≤ f , then

g ◦ f = f ◦ g ◦ f = f ◦ g ◦ f = f ◦ f ◦ g = f ◦ g ,

that is, f ^ g; similarly if f ◦ g ≤ g. This proves point 1.
Point 2 is so tricky that we provide two proofs. Recall that f ^ g means

g ◦ f = f ◦ g.

• First proof: (by James Chapman) On the one hand,

k ◦ g ◦ h ◦ k ◦ f ◦ h = k ◦ g ◦ k ◦ f ◦ h
= k ◦ g ◦ g ◦ k ◦ f ◦ h
= k ◦ g ◦ k ◦ f ◦ g ◦ h
= k ◦ g ◦ k ◦ f ◦ g ◦ h
= k ◦ g ◦ k ◦ g ◦ f ◦ h
= k ◦ g ◦ k ◦ g ◦ f ◦ h
= k ◦ g ◦ f ◦ h :

on the other hand,

k ◦ f ◦ h ◦ k ◦ g ◦ h = k ◦ f ◦ k ◦ g ◦ h
= k ◦ f ◦ f ◦ k ◦ g ◦ h
= k ◦ f ◦ k ◦ g ◦ f ◦ h
= k ◦ f ◦ k ◦ g ◦ f ◦ h
= k ◦ f ◦ k ◦ f ◦ g ◦ h
= k ◦ f ◦ k ◦ f ◦ g ◦ h
= k ◦ f ◦ g ◦ h ,

and it follows from the hypothesis that k ◦ g ◦ f ◦ h = k ◦ f ◦ g ◦ h.
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• Second proof: (by Robin Cockett) We prove separately that, if f ^ g,
then f ◦ h ^ g ◦ h and k ◦ f ^ k ◦ g: from which the general case follows
immediately. In fact, if g ◦ f = f ◦ g, then

g ◦ h ◦ f ◦ h = g ◦ f ◦ h = f ◦ g ◦ h = f ◦ h ◦ g ◦ h ,

and

k ◦ g ◦ k ◦ f = k ◦ g ◦ g ◦ k ◦ f ◦ f
= k ◦ g ◦ g ◦ k ◦ f ◦ f
= k ◦ g ◦ f ◦ g ◦ k ◦ f
= k ◦ f ◦ g ◦ g ◦ k ◦ f
= k ◦ f ◦ g ◦ k ◦ f ◦ g
= k ◦ f ◦ g ◦ k ◦ f ◦ g
= k ◦ f ◦ ◦g ◦ k ◦ g ◦ f
= k ◦ f ◦ g ◦ k ◦ g ◦ f
= k ◦ f ◦ k ◦ g ◦ g ◦ f
= k ◦ f ◦ k ◦ g ◦ g ◦ f
= k ◦ f ◦ k ◦ g ◦ f
= k ◦ f ◦ f ◦ k ◦ g
= k ◦ f ◦ k ◦ g .

In the last chain of equalities, the leftmost k is only a placeholder that never
enters the transformations. We thus get

Corollary 1.15. Let X be a restriction category. For every A,B,C ∈ |X|,
f, g ∈ X(A,B), and k ∈ X(B,C), if g ◦ f = f ◦ g, then g ◦ k ◦ f = f ◦ k ◦ g.

2 Examples of restriction categories

Example 2.1 (The trivial restriction). Let X be any category and let f = idA
for every f ∈ X(A,B).

Example 2.1 tells that being a restriction category is additional structure,
not a limitation.

Example 2.2 (The restriction monoid). Let X have N as its only object and
the partial recursive functions as maps. Define restriction as in Par, i.e., if f
is a partial recursive function, then f(n) is n if f(n) is defined, and undefined
otherwise.

Example 2.3 (Meet semilattices). Let X be a meet semilattice, i.e., a set with
a binary operation ∧ satisfying x ∧ y = y ∧ x, x ∧ (y ∧ z) = (x ∧ y) ∧ z, and
x ∧ x = x. Then (X,∧) is easily given a monoid structure, thus making it a
category: define restriction by x = x. The axioms of restricted category follow
then directly from those of meet semilattice.
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Example 2.4 (Trunked trees). Let G = (V,E) be a directed graph. Consider
the path category (or free category) on G, whose objects are the nodes of G,
and whose maps are the finite directed paths from a node to the other, with
identities being the empty paths. We can then indicate the maps in Path(G) as
(A, [a1, . . . , an], B); the composition of (A, [a1, . . . , an], B) and (B, [b1, . . . , bm], C)
will be (A, [a1, . . . , an, b1, . . . , bm], C). In a similar way, the trunked tree on G
is defined as the category TrunkT(G) whose objects are the nodes of G, and
where a map from A to B is a tuple (A, (p, P ), B) where

• p is a finite path in G, and

• P is a finite, prefix-closed set of finite paths on G that contains p.

Then (A, (p, P ), B)(B, (q,Q), C) = (A, (pq, P∪PQ), C), and idA = (A, ([], {[]}), A).
The restriction of (A, (p, P ), B) is defined as (A, ([], P ), A): thus, restriction in
trunked trees is not trivial. The total maps of TrunkT(G) are those where P
is reduced to {[]}, i.e., the identities.

We recall the definition of pullback.

Definition 2.5 (Pullback). Let f : A → B and g : C → B be two convergent
arrows in a category X. A pullback of f along g is a map f ′ : D → C, for which
a map g′ : D → A exists such that the following hold:

1. g ◦ f ′ = f ◦ g′, i.e., the following diagram commutes:

D
f ′ //

g′

��

C

g

��
A

f // B

(3)

2. For every object E and maps u : E → C, v : E → A such that g ◦u = f ◦v
there exists a unique map α : E → D such that f ′ ◦ α = u and g′ ◦ α = v,
i.e., the following diagram commutes:

E

α

  

u

''
v

��

D
f ′
//

g′

��

C

g

��
A

f // B

(4)

Pullbacks are unique, up to the following equivalence: f ′ ∼ f ′′ if and only if
there is an isomorphism α such that the following diagram commutes:

D

g′

��

f ′ //

α

  

C

A D′
g′′
oo

f ′′

OO (5)
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Lemma 2.6. Let X be a category and let m ∈ X(A,B).

1. If m is monic, then every pullback of m along any map is monic.

2. m is monic if and only if A A

m

��
A

m // B

is a pullback diagram.

Proof. Let m be monic and let Z

m′

��

f ′ // A

m

��
C

f // B

be a pullback; let then u, v : X → Z

satisfy m′ ◦ u = m′ ◦ v. Then m ◦ f ′ ◦ u = f ◦m′ ◦ u = f ◦m′ ◦ v = m ◦ f ′ ◦ v, so
f ′ ◦ u = f ′ ◦ v as m is monic. As m′ is a pullback, for h = m′ ◦ u = m′ ◦ v and
k = f ′ ◦ u = f ′ ◦ v, there exists a unique map α : X → Z such that the diagram

X

α

  
h

��

k

''
Z

f ′
//

m′

��

A

m

��
C

f // B

commutes: which implies u = α = v.
Now, surely A A

m

��
A

m // B

commutes. If m is monic and u, v : Z → A

also make Z
v //

u

��

A

m

��
A

m // B

commute, then u = v by monicness of m, and clearly

A A

m

��
A

m // B

is a pullback. On the other hand, if the latter is a pullback and

m ◦ u = m ◦ v, then u = α idA = v for a unique α : Z → A: which is only
possible for u = α = v.

Lemma 2.7. Let

X

g′′

��

h′ // D

g′

��

f ′ // A

g

��
Z

h // B
f // C

(6)

be a commutative diagram.

1. If the inner squares in (6) are pullback diagrams, then so is the outer
rectangle.
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That is: if g′ is the pullback of g along f , and g′′ is the pullback of g′

along h, then g′′ is the pullback of g along f ◦ h.

2. If the outer rectangle and the rightmost square in (6) are pullback dia-
grams, then so is the leftmost square.

That is: if g′ is the pullback of g along f , and g′′ is the pullback of g along
f ◦ h, then g′′ is the pullback of g′ along h.

Point 1 can be stated as such: the pullback of a pullback is a pullback.

Proof. First, suppose that g′ is the pullback of g along f , and g′′ is the pullback
of g′ along h. Suppose that there exist an object Y and two maps u : Y → Z,
v : Y → A such that f ◦ h ◦ u = g ◦ v. As g′ is the pullback of g along f , there
exists a unique β : Y → D such that v = f ◦ β and h ◦ u = g′ ◦ β; as g′′ is the
pullback of g′ along h, there exists a unique α : Y → X such that u = g′′ ◦ α
and β = h′ ◦ α, which in turn implies v = f ◦ β = f ′ ◦ h′ ◦ α. This proves that
g′′ is the pullback of g along f ◦ h.

The situation is summarized by the following commutative diagram:

Y

u

��

v

��

∃!α ''

∃!β

��

X
g′′

~~

h′

  
Z

h

  

D
g′

~~

f ′

  
B

f

  

A
g

��
C

Next, suppose that g′ is the pullback of g along f , and that g′′ is the pullback
of g along f ◦ h. Consider an object Y and two maps u : Y → Z, v : Y → D
such that h ◦ u = g′ ◦ v: then g ◦ f ′ ◦ v = f ◦ h ◦ u as well. As g′′ is the pullback
of g along f ◦ h, there exists a unique α : Y → X such that u = g′′ ◦ α and
f ′ ◦ v = f ′ ◦ h′ ◦ α; as g′ is the pullback of g along f , there exists a unique
β : Y → D such that h ◦ u = g′ ◦ β and f ′ ◦ v = f ′ ◦ β. Then β = v = h′ ◦ α,
which proves that g′′ is the pullback of g′ along f .
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The situation is summarized by the following commutative diagram:

Y

u

��

v

��

∃!α ''

∃!β

��

X
g′′

~~

h′

  
Z

h

  

D
g′

~~

f ′

  
B

f

  

A
g

��
C

We recall that HomX =
⋃
A,B∈|X|X(A,B).

Definition 2.8 (Stable set of monics). A family M ⊆ HomX is a stable set of
monics if it satisfies the following four properties:

1. Every isomorphism of X belongs to M; in particular, idA ∈ M for every
A ∈ |X|.

2. Every m ∈M is monic.

3. M is closed by composition.

4. For every m ∈M, the pullbacks of m along any f exist and belong toM.

Definition 2.9 (Partial map category). Let X be a category and letM⊆ HomX
be a stable set of monics. The partial map category on X by M is the category
Par(X,M) defined as follows:

• The objects of Par(X,M) are the objects of X.

• The maps of Par(X,M) from A to B are the spans

A′

m

~~

f

  
A B

in X from A to B with m ∈M, modulo the following equivalence relation:

A′

m

~~

f

  
A B

is equivalent to A′′

m′

~~

f ′

  
A B
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if and only if there exists an isomorphism α : A′ → A′′ such thatm = m′◦α
and f = f ′ ◦ α, i.e., the diagram

A′

m

~~
α

��

f

  
A B

A′′
m′

``

f ′

>>

(7)

commutes.1

• The identities of Par(X,M) are the upper left corners of the form (idA, idA).

• The composition of (m, f) : A → B with (m′, g) : B → C is defined (up
to equivalence) as (m ◦m′′, g ◦ h), where h is the pullback of f along m′

and m′′ : A′′ → A′ is the corresponding map:

A′′

m′′

}}

h

!!
A′

m

~~

f

!!

B′

m′

}}

g

  
A B C

(8)

That Par(X,M) is indeed a category, follows from Lemma 2.7 and unique-
ness of pullbacks up to equivalence.

Example 2.10. Let X = Set and letM be the family of all injective functions.
Then Par(X,M) = Par.

Example 2.11. Let R be a commutative ring; let Σ ⊆ R not contain the zero,
and let R(Σ−1) be the smallest commutative ring that contains R and where ev-
ery element of Σ has a multiplicative inverse. The embedding ofR intoR(Σ−1) is
called localization, and indicated by Loc: it is known that, if f : R→ S is a ring
homomorphism such that f(x) is a unit for every x ∈ Σ, then there is a unique φ :

R(Σ−1)→ S such that the diagram R
Loc //

f ��

R(Σ−1)

φ

{{
S

commutes. More-

over, Loc is an epic map. It turns out that the category Par(CRingop,Loc)
is the opposite category of commutative rings with rational functions.

Example 2.12. Let X = Top and letM be the family of continuous pushouts
of open sets: that is, a map m ∈M from X to Y is a continuous function from
an open subset U of X into Y . Then Par(X,M) is a restriction category.

1The definition in the February 27, 2013 version of these notes incorrectly assumed the
spans to be pullbacks. Thanks to James Chapman for pointing out this error.
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Theorem 2.13. Par(X,M) is a restriction category, where the restriction of
(m, f) is (m,m).

Proof. If (m, f) is a map in Par(X,M) from A to B, then monicness of m
allows

A′

A′

m

~~

m

  

A′

m

~~

f

  
A A B

so that (m, f) ◦ (m,m) = (m, f): thus, Par(X,M) satisfies Rule 1.
If (m, f) : A→ B and (n, g) : A→ C in Par(X,M), then

A′′′

n′

}}

m′

!!
A′

m

~~

m

!!

A′′

n

}}

n

  
A A A

can be read indifferently from left to right, or from right to left: hence, (n, n) ◦
(m,m) = (m,m) ◦ (n, n). This proves that Rule 2 holds in Par(X,M).

As pullbacks are unique modulo equivalence, the diagram for (n, g) ◦ (m, f)
says that (n, g) ◦ (m, f) can be constructed as

A′′′

n′

}}

m′

!!
A′

m

~~

m

!!

A′′

n

}}

g

  
A A C

whose restriction is (m ◦ n′,m ◦ n′) = (m ◦ n′, n ◦ m′), which we know to be
(n, g) ◦ (m, f). Thus, Par(X,M) satisfies Rule 3.

Finally, let (m, f) : A→ B and (n, g) : B → C. Then (n, g) ◦ (m, f) is given
by

A′′

n′

}}

f ′

!!
A′

m

~~

f

!!

B′

n

}}

n

  
A B B
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By Lemma 2.6 and Lemma 2.7, we can write (m, f) ◦ (n, g) ◦ (m, f) as follows:

A′′

n′

  
A′′

n′

~~

n′

!!

A

A

m

��

A

m

  

A

m

��

f

��
A A B

which yields (m, f) ◦ (n, g) ◦ (m, f) = (m ◦ n′, f ◦ n′): but f ◦ n′ = n ◦ f ′ by the
diagram for (n, g) ◦ (m, f), which proves that Par(X,M) satisfies Rule 4.

3 Idempotents

Definition 3.1 (Split). Let X be a category and let e : A → A be an idem-
potent, i.e., e2 = e ◦ e = e. We say that e splits if there exist an object B, a
monomorphism s : B → A, and an epimorphism r : A→ B such that s ◦ r = e
and r ◦ s = idB , i.e., the diagram

A
r //

e

��

B

s

��
A

r // B

(9)

commutes. We call the map s a split of e, and the equality e = s ◦ r a splitting
of e.

Observe that r is a retraction i.e., an epimorphism with a one-side converse;
dually, s is a section. Also observe that, if e has such a decomposition, then e
is an idempotent.

Lemma 3.2. Let e : A→ A be an idempotent and let e = s ◦ r = s′ ◦ r′ be two
splittings of e. Then there exists a unique isomorphism α : B → B′ such that
s = s′ ◦ α and r′ = α ◦ r, i.e., the diagram

A

r

��

r′ // B′

s′

��
B

s //

α

>>

A

(10)

commutes.

Proof. Set α = r′ ◦ s. Then r ◦ s′ = α−1, as

r ◦ s′ ◦ r′ ◦ s = r ◦ e ◦ s = r ◦ s ◦ r ◦ s = idB ◦ idB = idB

and similarly r′ ◦ s ◦ r ◦ s′ = idB′ . Monicness of s′ ensures uniqueness of α.
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Lemma 3.2 states that splittings of idempotents are unique, up to (a reason-
able notion of) an isomorphism. Therefore, in the rest of these notes, we will
indicate e = s ◦ r as “the” splitting of e.

Recall that the equalizer of f, g : A → B is a map h : Z → A such that
f ◦ h = g ◦ h, and that, for every k : Y → A such that f ◦ k = g ◦ k, there exists
a unique α : Y → Z such that k = h◦α. Dually, the coequalizer of f, g : A→ B
is a map p : B → C such that p ◦ f = p ◦ g and that, for every q : B → D
such that q ◦ f = q ◦ g, there exists a unique β : C → D such that q = β ◦ p.
Equalizers and coequalizers are unique, up to isomorphisms. It follows from the
definition that equalizers are monic, and coequalizers are epic.

Corollary 3.3. If e = s ◦ r is the splitting of an idempotent e : A→ A, then s
is the equalizer of e and idA, and r is the coequalizer of e and idA.

Proof. Clearly, e◦s = s◦ r ◦s = s◦ idB = s = s◦ idA. If h : Z → A also satisfies
e ◦ h = h, then α = r ◦ h satisfies s ◦α = s ◦ r ◦ h = e ◦ h = h; also, if h = s ◦α′,
then s ◦ α′ = e ◦ h = s ◦ r ◦ h, and α′ = r ◦ h = α by monicness of s.

Dually, r ◦ e = r ◦ s ◦ r = idB ◦ r = r = r ◦ idA, and if k : A → C also
satisfies k ◦ e = k ◦ idA, then β = k ◦ s is the unique map from B to C such that
k = β ◦ r.

In arbitrary categories, idempotents need not split. However, it is always
possible to split idempotents.

Definition 3.4. Let X be an arbitrary category and let E be a class of idempo-
tents of X such that idA ∈ E for every e ∈ E∩X(A,A). The category SplitE(X)
is defined as follows:

• The objects of SplitE(X) are the elements of E.

• A map in SplitE(X) from e : A→ A to e′ : A′ → A′, is a map f : A→ A′

in X such that e′ ◦ f ◦ e = f .

• Composition is defined as in X.

• The identity ide of e : A→ A in SplitE(X) is the map e of X.

Then all the elements of E are split in SplitE(X). If X is a restriction
category, the restriction of f : e→ e′ in SplitE(X) is the map f ◦ e of X.

Example 3.5. Let X be a category and let M be a stable set of monics for X.
Then every restriction in Par(X,M) splits.

To see this, let (m, f) : A→ B be a map in Par(X,M)—i.e., let m : A′ → A
and f : A′ → B constitute the pullback of a monic map—and let (m,m) be its
restriction. Put s = (idA′ ,m) and r = (m, idA′): then the pullback diagrams

A′

A′

m

~~

A′

m

  
A A′ A
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and
A′

A′

m

  

A′

m

~~
A′ A A′

show that indeed s ◦ r = (m,m) and r ◦ s = (idA′ , idA′).

Definition 3.6 (Split restriction category). A restriction category where every
restriction map splits is called a split restriction category.

Let X be a split restriction category. We call MX the class of splits of
restrictions: that is, m : A → B belongs to MX if and only if there exist a
map f : B → A and an epic map r = rm : B → A such that m ◦ r = f and

r ◦ m = idA. Observe that, in this case, m ◦ r = f = f = m ◦ r : but then,
m ◦ r = m ◦ r = m ◦ r = r as m is monic.

In words: if f = m ◦ r is the splitting of a restriction, then restricting the
retraction is the same as postcomposing it with the split.

Let us consider some properties of MX. First of all, it is a class of monic
maps of X—actually, of Total(X), because monic maps are total. Also, as every
isomorphism is clearly the split of (the restriction of) an identity, MX contains
every isomorphism. Moreover, if f = m ◦ rm and g = n ◦ rn are splittings of
restrictions, then n◦m is the split of a restriction idempotent and rm ◦ rn is the
corresponding retraction, as

n ◦m ◦ rm ◦ rn = n ◦ rm ◦ rn
= n ◦ rn ◦ rm ◦ rn
= rn ◦ rm ◦ rn
= rm ◦ rn ◦ rn
= rm ◦ rn ◦ rn
= rm ◦ rn

and rm ◦ rn ◦ n ◦m = rm ◦ idB ◦m = rm ◦m = idA.
So, MX is close to being a stable set of monics. The main obstacle to this

is that, in general, elements of MX might not have pullbacks along arbitrary
maps of X. Notably, by relaxing this condition a little bit, we get

Theorem 3.7. If X is a split restriction category, then MX is a stable set of
monics in Total(X).

Proof. We must prove that, if m : A→ B is the split of a restriction idempotent
u = e = em : B → B of X, r = rm is the corresponding retraction, and

f : C → B is a total map in X, then the pullback m′ : D → C of m along f
exists, and is the split of a restriction idempotent of X.

We observe that e′ = e ◦ f is a restriction idempotent: by hypothesis, e′ has
a splitting e′ = m′ ◦ r′ with m′ : D → C monic. Then

f ′ = r ◦ f ◦m′ (11)

14



is such that m ◦ f ′ = f ◦m′, as

m ◦ f ′ = m ◦ r ◦ f ◦m′

= e ◦ f ◦m′

= e ◦ f ◦m′

= f ◦ e ◦ f ◦m′

= f ◦ e′ ◦m′

= f ◦m′ ◦ r′ ◦m′

= f ◦m′ ◦ idD

= f ◦m′ .

We then only need to prove:

1. that f ′ is a total map, and

2. that m′ is a pullback in Total(X).

For point 1, by monicness of m and the fact that e = e we have:

f ′ = r ◦ f ◦m′

= m ◦ r ◦ f ◦m′

= r ◦m ◦ r ◦ f ◦m′

= r ◦ e ◦ f ◦m′

= r ◦ e ◦ f ◦m′ :

but r is the retraction in the splitting of e = m ◦ r, so r = m ◦ r = e, and

f ′ = e ◦ e ◦ f ◦m′

= e ◦ f ◦m′

= m′ ◦ r′ ◦m′

= m′

= idD .

as m′ is monic too.
For point 2, suppose x : X → C and y : X → A satisfy f ◦ x = m ◦ y. As

m′ is monic, if α : X → D exists such that m′ ◦ α = x and f ′ ◦ α = y, then
it is unique. Our candidate is thus α = r′ ◦ x, for which we prove the second
equation by showing that m ◦ f ′ ◦ r′ ◦ x = m ◦ y and exploiting monicness of m:

m ◦ f ′ ◦ r′ ◦ x = m ◦ r ◦ f ◦m′ ◦ r′ ◦ x
= e ◦ f ◦ e ◦ f ◦ x
= e ◦ f ◦ x
= m ◦ r ◦m ◦ y
= m ◦ y .

15



Given this, we get

m′ ◦ r′ ◦ x = e′ ◦ x
= x ◦ e′ ◦ x
= x ◦ e ◦ f ◦ x
= x ◦ e ◦ f ◦ x
= x ◦ e ◦m ◦ y :

but e ◦m ◦ y = m ◦ r ◦m ◦ y = m ◦ y, thus

m′ ◦ r′ ◦ x = x ◦m ◦ y
= x ◦ f ◦ x
= f ◦ x
= x

as f is total.

Theorem 3.8 (The Completeness Theorem). Let X be a split restriction cate-
gory. Then

X ∼= Par (Total(X),MX) (12)

via the equivalence F that sends every object into itself, and every f ∈ Hom(A,B)
into

Ff = (mf , f ◦mf ) ∈ Par(Total(X),MX)(A,B) (13)

where f = mf ◦ rf is the splitting. Moreover,

Ff = Ff ∀f ∈ HomX . (14)

That is: every split restriction category is a full subcategory of a partial map
category, up to equivalence.

Proof. For brevity and clarity, let us put m = mf and r = rf .
Observe that f ◦m : A′ → B is total, because

f ◦m = f ◦m = m ◦ r ◦m = m = idA′ .

If f ∈ Hom(A,B), then A
rf−→ A′

f◦mf−→ B: but f ◦mf ◦ rf = f ◦ f = f.
To show that F is actually a functor, let Ff = (m, f ◦m) and Fg = (n, g◦n),

where g = mg ◦ rg = n ◦ s is the splitting: then (Ff)(Fg) = (m ◦ n′, g ◦ n ◦ h),
where n′ is the pullback of n along f and h is the pullback of f along n′:

A′′

n′

}}

h

!!
A′

m

~~

f◦m

!!

B′

n

}}

g◦n

  
A B C
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Now, we know from the proof of Theorem 3.7 that n′ is the split of g ◦ f ◦m =

g ◦ f ◦m = g ◦ f ◦m: if s′ is the retraction corresponding to n′, then

m ◦ n′ ◦ s′ ◦ r = m ◦ g ◦ f ◦m ◦ r
= g ◦ f ◦m ◦ r
= g ◦ f ◦ f
= g ◦ f ◦ f
= g ◦ f ,

so that m ◦n′ is indeed the split of g ◦ f (and s′ ◦ r is the corresponding retrac-
tion). But h = s ◦ f ◦m ◦ n′, so that

g ◦ n ◦ h = g ◦ n ◦ s ◦ f ◦m ◦ n′

= g ◦ g ◦ f ◦m ◦ n′

= g ◦ f ◦m ◦ n′ :

thus, (m ◦ n′, g ◦ n ◦ h) = (m ◦ n′, g ◦ f ◦m ◦ n′), i.e., Fg ◦ Ff = F (g ◦ f). That
F idA = (idA, idA) for every object A follows immediately from the definitions.

The inverse functor is defined by sending (m, g) ∈ Par(Total(X),MX)(A,B)
into g ◦ r ∈ X(A,B), where m ◦ r = f is the splitting of a restriction. In fact,
(m, f◦m) is sent to f◦m◦r = f◦f = f, while g◦r is sent to (m, g◦r◦m) = (m, g).

Finally, for every f ∈ Hom(A,B) we have

Ff = (mf ,mf )

= (mf ,mf ◦ rf ◦mf )

= (m
f
, f ◦m

f
)

= (mf , f ◦mf )

= Ff .

4 Cartesian restriction categories

Definition 4.1 (Restriction product). Let X be a restriction category and let
A and B be two objects in X. The restriction product of A and B is an object
A×R B together with two total maps π0 : A×R B → A, π1 : A×R B → B such
that, for every object Z and pair of maps f : Z → A, g : Z → B there exists a
unique map 〈f, g〉R : Z → A×R B such that

π0 ◦ 〈f, g〉R = f ◦ g and π1 ◦ 〈f, g〉R = g ◦ f . (15)

Recall that the standard product requires commutativity of the rectangle:

Z

f

��

Z

〈f,g〉

��

Z

g

��
A A×Bπ0oo π1 // B
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Instead, the restriction product demands commutativity of the following rect-
angle:

Z

f

��

Z
goo f //

〈f,g〉R

��

Z

g

��
A A×R B

π0oo π1 // B

(16)

We stress that the “projections” π0 and π1 in Definition 4.1 are total maps.
On the other hand, the “pairing” 〈f, g〉R is not required to be total, as this
would imply f and g to be total too (cf. Lemma 4.2 later on). However, if f
and g are total, then so is 〈f, g〉R by Lemma 1.5, as in this case

π0 ◦ 〈f, g〉R = f ◦ g = f = idZ

and similarly for π1. The noteworthy feature of restriction product is that it
moves non-totality on the component which is not involved in the projection.

Observe that restriction products are unique, up to a unique isomorphism.
In fact, if (C, p0.p1) is another candidate to the restriction product of A and B,
then the pairings 〈π0, π1〉R and 〈p0, p1〉R must be each other’s inverse.

Lemma 4.2. Let X be a restriction category. Every time the compositions and
restriction products are defined, the following hold:

1. 〈f, g〉R = f ◦ g = g ◦ f.
As a consequence: if 〈f, g〉R is total, then so are f and g.

2.
〈
f ◦ h, g

〉
R

= 〈f, g〉R ◦ h =
〈
f, g ◦ h

〉
R
.

3. 〈f, g〉R ◦ h = 〈f ◦ h, g ◦ h〉R .

4. Define f ×R g as 〈f ◦ π0, g ◦ π1〉R . Then f ×R g = f ×R g.

f ×R g for restriction products is the perfect analogous of f ×g for products.
Indeed, f ×R g is the unique map φ such that the following diagram commutes:

A

f

��

A×R B
π0oo π1 //

φ

��

B

g

��
A′ A′ ×R B′

π′0oo π′1 // B′

which is the same as requiring that the following one does:

A×R B

f◦π0

��

A×R B
f◦π0oo g◦π1 //

φ

��

A×R B

g◦π1

��
A′ A′ ×R B′

π′0oo π′1 // B′
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Proof of Lemma 4.2. As π1 is total,

〈f, g〉R = π1 ◦ 〈f, g〉R = π1 ◦ 〈f, g〉R = g ◦ f = g ◦ f .

If, in addition, 〈f, g〉R is total, then f and g are each other’s inverse, so they

are monic, and f = f = idZ = g = g. Point 1 is thus proved.
For point 2, observe that

π0 ◦ 〈f, g〉R ◦ h = f ◦ g ◦ h = f ◦ h ◦ g ,

while
π1 ◦ 〈f, g〉R ◦ h = g ◦ f ◦ h = g ◦ f ◦ h :

the thesis follows by definition and uniqueness of
〈
f ◦ h, g

〉
R
.

Moreover,

π0 ◦ 〈f, g〉R ◦ h = f ◦ g ◦ h = f ◦ h ◦ g ◦ h = π0 ◦ 〈f ◦ h, g ◦ h〉R ,

and similarly,
π1 ◦ 〈f, g〉R ◦ h = π1 ◦ 〈f ◦ h, g ◦ h〉R :

point 3 then follows from uniqueness of 〈f ◦ h, g ◦ h〉R .
Finally, as clearly 〈π0, π1〉R = idA×RB , from point 1 follows

f ×R g = g ◦ π1 ◦ f ◦ π0

= 〈π0, π1〉R ◦ g ◦ π1 ◦ f ◦ π0

=
〈
π0 ◦ f ◦ π0, π1 ◦ g ◦ π1

〉
R

=
〈
f ◦ π0, g ◦ π1

〉
R

= f ×R g :

which proves point 4.

Definition 4.3 (Restriction functor). Let X and Y be restriction categories. A
restriction functor from X to Y is a functor F : X→ Y such that Ff = Ff for
every f ∈ HomX.

Point 4 of Lemma 4.2 can thus be read as such: the functor ×R : X×X→ X
that associates to every pair of objects (A,B) the restriction product A ×R B
and to every pair of maps f : A→ A′, g : B → B′ the restriction product map
〈f ◦ π0, g ◦ π1〉R : A×R B → A′ ×R B′, is a restriction functor.

Definition 4.4 (Restriction final object). A restriction final object in a restric-
tion category X is an object 1R such that every object has a unique total map
!A : A→ 1R with the following property: for every map f : A→ 1R the equality
f =!A ◦ f holds, i.e., f ≤ !A.

If X has a restriction final object 1R, then X(A,1R) is equivalent to O(A) =
{e : A → A | e = e}, the lattice of restriction idempotents at A, which may be
seen as a family of “open sets”.

Definition 4.5 (Cartesian restriction category). A cartesian restriction cate-
gory is a restriction category with a restriction final object 1R where every two
objects (thus, every n objects for arbitrary n ∈ N) have a restriction product.
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Definition 4.6 (Partial isomorphism). A map f : A → B in a restriction
category X is a partial isomorphism if there exists a map g = f (−1) : B → A
such that g ◦ f = f and f ◦ g = g.

Lemma 4.7. Let X be a restriction category and let f : A→ B, g : B → C be
partial isomorphisms.

1. f (−1) is unique (and so is g(−1)).

2. g ◦ f is a partial isomorphism.

Proof. If g and g′ satisfy g ◦ f = g′ ◦ f = f, f ◦ g = g, f ◦ g′ = g′, then

g = g ◦ g = g ◦ f ◦ g = f ◦ g = g′ ◦ f ◦ g = g′ ◦ g :

on the other hand,

g′ ◦ g = g′ ◦ g′ ◦ g
= g′ ◦ g ◦ g′

= g′ ◦ f ◦ g ◦ f ◦ g′

= g′ ◦ f ◦ f ◦ g′

= g′ ◦ f ◦ g′

= g′ ◦ g′

= g′ .

Thus, g = g′, and point 1 is proved. For point 2, the partial inverse of g ◦ f is
simply f (−1) ◦ g(−1), as

f (−1) ◦ g(−1) ◦ g ◦ f = f (−1) ◦ g ◦ f
= f (−1) ◦ f ◦ g ◦ f
= = f ◦ g ◦ f
= g ◦ f ◦ g
= g ◦ f ◦ f
= g ◦ f ,

and similarly, g ◦ f ◦ f (−1) g(−1) = f (−1) ◦ g(−1).

Lemma 4.8. Let X and Y be two restriction categories and let F : X → Y be
a restriction functor. If f ∈ HomX(A,B) is a partial isomorphism, then so is
Ff ∈ HomY(FA,FB).

Proof. If g = f (−1) is the partial inverse of f in X, then

Fg ◦ Ff = F (g ◦ f) = F (f) = Ff

and similarly Ff ◦ Fg = Fg, so Fg is the partial inverse of Ff in Y.

Let f be a partial isomorphism: if f is total, f (−1) needs not be so.

Example 4.9. Let X = Par, A = {a}, B = {b1, b2}, f(a) = b1, g(b1) = a,
g(b2) undefined. Then f is a partial isomorphism, g is its partial inverse, f is
total, and g is not.
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Definition 4.10 (Discrete restriction category). A cartesian restriction cat-
egory X is discrete if for every object A the diagonal ∆A = 〈idA, idA〉R ∈
X(A,A×R A) is a partial isomorphism.

Observe that ∆A is total: hence, ∆
(−1)
A ◦ ∆A = idA. The partial inverses

∆
(−1)
A : A×R A→ A are called equalities.23

Example 4.11. Let X be a discrete cartesian restriction category. Then Total(X)
has ordinary products, which coincide with restriction products in X; and final
object, which is just the restriction final object of X. But Total(X) has pull-
backs, and the equalizer m of f, g : X → A in Total(X) can be constructed as
the pullback of ∆A along 〈f, g〉R as follows:

[[f = g]]

p

��

m // X

〈f,g〉R
��

A
∆A // A×R A

From the existence theorem for limits [6] it then follows that Total(X) has all
limits. So:

if X is a discrete cartesian restriction category,
then Total(X) is a “nice” category.

Definition 4.12 (Meets in a restriction category). A restriction category X
has meets if there exists a binary operator ∧ which associates to every pair of
parallel maps f, g : A→ B a map f ∧g : A→ B so that the following properties
are satisfied:

1. f ∧ f = f .

2. f ∧ g ≤ f, g. That is: f ◦ f ∧ g = g ◦ f ∧ g = f ∧ g.

3. (f ∧ g) ◦ h = (f ◦ h) ∧ (g ◦ h) for every h : Z → A.

Lemma 4.13. Let X be a restriction category with meets and let f, g ∈ X(A,B).

1. For every h ∈ Hom(A,B), if h ≤ f, g, then h ≤ f ∧ g.

That is: the meet in a restriction category is actually a greatest lower
bound.

In particular: the meet operation is commutative.

2. For every f ′ ∈ Hom(A,B), if f ≤ f ′, then f ∧ g ≤ f ′ ∧ g.

From this and the previous point: for every g′ ∈ Hom(A,B), if g ≤ g′,
then f ∧ g ≤ f ∧ g′.

2Versions of these notes earlier that July 16, 2014 incorrectly stated: “It follows from
Lemma 4.8 and point 4 of Lemma 4.2 that in a discrete cartesian restriction category X the

diagonals have partial inverses ∆
(−1)
A : A×R A→ A, which are called equalities.”

3The version from July 16, 2014 contained a wrong “proof” that ∆
(−1)
A is total. On careful

examination, such proof relied on the equalities π0 = π1 = ∆
(−1)
A : which are, in general, false.
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3. For every h ∈
Hom(A,C), (f ∧ g) ◦ h = (f ◦ h) ∧ g = f ∧ (g ◦ h)

4. If f ^ g then f ∧ g = g ◦ f = f ◦ g.

5. For every k ∈ Hom(B,C), k ◦ (f ∧ g) = (k ◦ f) ∧ (k ◦ g).

Proof. Let us prove the points one by one:

1. If f ◦ h = g ◦ h = h, then (f ∧ g) ◦ h = (f ◦ h) ∧ (g ◦ h) = h ∧ h = h .

In particular, as f ∧ g ≤ g, f , we get f ∧ g ≤ g∧ f ; similarly, g∧ f ≤ f ∧ g,
and from antisymmetry we get equality.

2. If f ≤ f ′ then f ∧ g ≤ f ′ too, thus f ∧ g ≤ f ′ ∧ g by point 1.

3. By point 2, (f ∧ g) ◦h = (f ◦h)∧ (g ◦h) ≤ (f ◦h)∧ g. On the other hand,
if k : A→ D is such that k ≤ f ◦ h, g, then

g ◦ h ◦ k = g ◦ k ◦ h
= k ◦ h
= ((f ◦ h) ◦ k) ◦ h
= f ◦ h ◦ h ◦ k
= (f ◦ h) ◦ k ,

so that k ≤ g ◦ h too, and k ≤ (f ◦ h) ∧ (g ◦ h) = (f ∧ g) ◦ h by point 1.
Therefore, (f ∧ g) ◦ h = (f ◦ h)∧ g: this holds for every suitable f , g, and
h, whence (f ∧ g) ◦ h = (g ∧ f) ◦ h = (g ◦ h) ∧ f = f ∧ (g ◦ h).

4. Suppose f ^ g. Then g ◦ f ≤ g and g ◦ f = f ◦ g ≤ f , thus g ◦ f ≤ f ∧ g.

But if h ≤ f, g, then g ◦ f h = g ◦ f ◦ h = g ◦ h = h, i.e., h ≤ g ◦ f : in
particular, f ∧ g ≤ g ◦ f .

5. By exploiting point 3 and f ◦ f ∧ g = g ◦ f ∧ g = f ∧ g, we find:4

k ◦ (f ∧ g) = (f ∧ g) ◦ k ◦ (f ∧ g)

= (f ∧ g) ◦ k ◦ (f ∧ g) ◦ k ◦ (f ∧ g)

= (f ∧ g) ◦ k ◦ g ◦ f ∧ g ◦ k ◦ f ◦ f ∧ g
= (f ∧ g) ◦ k ◦ g ◦ f ∧ g ◦ k ◦ f ◦ f ∧ g
= (f ∧ g) ◦ f ∧ g ◦ f ∧ g ◦ k ◦ g ◦ k ◦ f
= (f ∧ g) ◦ k ◦ g ◦ k ◦ f
= (f ◦ k ◦ f) ∧ (g ◦ k ∧ g)

= (k ◦ f) ∧ (k ◦ g) .

Theorem 4.14. A cartesian restriction category is discrete if and only if it has
meets.

4 Thanks to Prof. Cockett for pointing out this chain of equalities.
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Proof. Let X be a cartesian restriction category.
If X is discrete, for any f, g ∈ HomX(A,B) set

f ∧ g = ∆
(−1)
B ◦ 〈f, g〉R . (17)

Then:

1. By uniqueness, 〈f, f〉R = ∆B ◦ f as the diagram

A

f

��

A
foo f //

f

��

A

f

��
B B

∆B

��

B

B B ×R B
π0oo π1 // B

clearly commutes: whence, ∆B being total,

f ∧ f = ∆
(−1)
B ◦ 〈f, f〉R = ∆

(−1)
B ◦∆B ◦ f = ∆B ◦ f = f .

2. We have5

f ◦ f ∧ g = f ◦∆
(−1)
B ◦ 〈f, g〉R

= f ◦∆
(−1)
B ◦ 〈f, g ◦ g〉R

= f ◦∆
(−1)
B ◦ 〈f, g〉R ◦ g

= f ◦∆
(−1)
B ◦ 〈f, g〉R ◦ g

= f ◦ g ◦∆
(−1)
B ◦ 〈f, g〉R

= π0 ◦ 〈f, g〉R ◦∆
(−1)
B ◦ 〈f, g〉R

= π0 ◦∆
(−1)
B ◦ 〈f, g〉R

= π0 ◦∆B ◦∆
(−1)
B ◦ 〈f, g〉R

= idB ◦ (f ∧ g)

= f ∧ g :

that is, f ∧ g ≤ f . Similarly, f ∧ g ≤ g.

3. In our context, (f ∧ g) ◦ h = (f ◦ h) ∧ (g ◦ h) means

∆
(−1)
B ◦ 〈f, g〉R ◦ h = ∆

(−1)
B ◦ 〈f ◦ h, g ◦ h〉R :

which follows from point 3 of Lemma 4.2

If X has meets, define

∆
(−1)
A = π0 ∧ π1 . (18)

5The proof in the versions before July 17, 2014 contained an error.
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(Recall that ∆A ∈ HomX(A,A ×R A), so that π0, π1 ∈ HomX(A ×R A,A).) In
fact,

(π0 ∧ π1) ◦∆A = (π0 ◦∆A) ∧ (π1 ◦∆A) = idA ∧ idA = idA = ∆A

as ∆A is total, while

∆A ◦ (π0 ∧ π1) = 〈idA, idA〉R ◦ (π0 ∧ π1)

= 〈π0 ∧ π1, π0 ∧ π1〉R
= 〈π0 ◦ π0 ∧ π1, π1 ◦ π0 ∧ π1〉R
= 〈π0, π1〉R ◦ π0 ∧ π1

= idA×RA ◦ π0 ∧ π1

= π0 ∧ π1 .

5 Turing categories

Definition 5.1. A Turing category is a cartesian restriction category X that
has a Turing object T with an associate Turing structure, i.e., a collections of
(partial) maps •X,Y : T×R X → Y satisfying the following property: for every
(partial) map f : A×R X → Y there exists a total map λ∗f : A→ T such that

•X,Y ◦(λ∗f ×R idX) = f , i.e., T×R X
•X,Y // Y

A×R X

λ∗f×RidX

OO

f

66 (19)

Observe that T behaves as a weak exponential object for every pair of objects.
Recall that, in a cartesian category (with standard products) an exponential
object for X and Y is an object Y X together with a map eval : Y X ×X → Y ,
called evaluation, such that for every object A and map f : A×R X → Y there
exists a unique morphism λf : A→ Y X such that eval ◦ (λf ×R idX) = f. Then
T is behaving like Y X , •X,Y like eval, and λ∗f like λf , with two important
differences:

1. The single object T takes the role of Y X whatever the objects X and Y
are.

2. The map λ∗f is required not to be unique, but to be total.

In a Turing category there may be more than one Turing object, and any given
Turing object may have more than one Turing structure.

Example 5.2 (The degenerate Turing category). The category with a single
object and a single morphism is a Turing category.

Example 5.3 (Kleene’s first model). Given a Gödel enumeration of the Turing
machines, consider the partial map • : N×R N → N given by •(n,m) = {n}m,
the result of the computation of the nth Turing machine over the input m. In
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this category, the objects are the powers of N—i.e., the arities—and the Turing
object is T = N, while the Turing structure is defined similarly to • = •N,N
described above. This is a partial model, because application is defined as
computation by Turing machines, and cannot be anything but partial.

Example 5.4 (λ-calculus with β-equality). Consider the category X whose
objects are the natural numbers, 0 is the final object, a map n → m has the
form (x1, . . . , xn) 7→ (t1, . . . , tm), where the ti’s are λ-terms in the xj ’s, and
composition is defined by substitution, up to β-equality.

This is a total model, because application between λ-terms (or combinators)
is total, even modulo β-reduction. Evaluation, on the other hand, corresponds
to reduction to normal form: which is only partial.

The following statement is immediate.

Proposition 5.5. The product of two Turing categories is a Turing category.

Definition 5.6 (Point in a restriction category). Let X be a restriction category
with a restriction final object 1R and let A be an object in X. A point on A is
a total map p : 1R → A.

Definition 5.6 mimics the standard definition of point in categories with a
final object, with the key difference that we require 1R to be a restriction final
object.

Proposition 5.7. Let X be a Turing category with Turing object T and restric-
tion final object 1R. For every f : A→ B there exists a point f̃ on T such that
the following diagram commutes:

T×R A
•A,B // B

1R ×R A

f̃×RidA

OO
f◦π1

66

A
〈!A,idA〉R
oo

f

OO (20)

Proof. Just set f̃ = λ∗(f ◦ π1). Then the upper triangle commutes, while the
lower one does by construction.

Recall that an object A is a retract of an object B if there exist an epic map
r : B → A (the retraction) and a monic map s : A→ B (the section) such that
r ◦ s = idA. An object U is universal if every object is a retract of U .

Proposition 5.8. Let X be a Turing category.

1. The Turing object is universal.

2. Every universal object is a Turing object.

Proof. In the definition of Turing category, set X = 1R and Y = A. Then the
following diagram commutes:

T×R 1R
•1R,A // A

A×R 1R

λ∗π0×Rid1R

OO
π0

66

A
〈idA,!A〉Roo
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Setting rA = •1R,A ◦ 〈idT, !T〉R and sA = λ∗π0 proves point 1.
Let now U be an arbitrary universal object. Then T is a retract of U : let

s : T → U monic and r : U → T epic satisfy r ◦ s = idT. Let X and Y be
arbitrary objects: for every object A and map f : A ×R X → Y there exists a
total map λ∗f : A→ T such that the following diagram commutes:

U ×R X
r×RidX // T×R X

•X,Y // Y

T×R X

s×RidX

OO

A×R X

λ∗f×RidX

OO
f

66

λ∗f×RidX

oo

where • = •T is the Turing structure relative to T. Then a Turing structure •U
relative to U can be defined as •UX,Y = •TX,Y ◦ (r ×R idX): the total map from

A to U corresponding to f : A×R X → Y will be λUf = s ◦ λ∗f .

Corollary 5.9. In a Turing category with Turing object T, an object A is a
Turing object if and only if T is a retract of A.

Corollary 5.10. In Kleene’s first model, every infinite recursively enumerable
set is a Turing object.

Theorem 5.11 (First characterization theorem). A cartesian restriction cat-
egory X is a Turing category if and only if it has a universal object T and a
universal application • : T ×R T → T (also called the Turing map) with the fol-
lowing weak exponential property: for every map f : A×R T → T there exists
a total map λT f : A → T such that • ◦ (λT f ×R idT ) = f, i.e., the following
diagram commutes:

T ×R T
• // T

A×R T

λT f×RidT

OO

f

77 (21)

Shortly: in a cartesian restriction category, being able to perform evaluation
over arbitrary objects, is the same as being able to perform evaluation over a
single universal object.

Proof. Let X and Y be arbitrary objects. We want to construct a map •X,Y :
T ×R X → Y such that, for every object A and map f : A ×R X → Y , there
exists a total map λ∗f : A→ T such that the following diagram commutes:

T ×R X
•X,Y // Y

A×R X

λ∗f×RidX

OO

f

77

As T is universal, X and Y are retracts of T : let sX : X → T, sY : Y → T monic
and rX : T → X, rY : T → Y epic satisfy rX ◦ sX = idX and rY ◦ sY = idY . Set

26



g = sY ◦ f ◦ (idA ×R rX). Then the following diagram commutes:

T ×R X
idT×RsX// T ×R T

• // T
rY // Y

A×R X
idA×RsX//

λT g×RidX

OO

A×R T

λT g×RidT

OO

idA×RrX// A×R X
f // Y

sY

__

But rX ◦ sX = idX , so (idA×R rX) ◦ (idA×R sX) = idA×R idX = idA×RX , and
the diagram above can be shrunk into

T ×R X
idT×RsX// T ×R T

• // T
rY // Y

A×R X

λT g×RidX

OO

f // Y

sY

__

We then put
•X,Y = rY ◦ • ◦ (idT ×R sX) , (22)

which correctly depends only on X and Y and not on A, and

λ∗f = λT g = λT (sY ◦ f ◦ (idA ×R rX)) : (23)

then

•X,Y ◦ (λ∗f ×R idX) = rY ◦ • ◦ (idT ×R sX) ◦ (λT g ×R idX)

= rY ◦ sY ◦ f
= idY ◦ f
= f .

An object which is the retract of its own self-power is called a powerful
object: universal objects, in particular Turing objects, are powerful.

Definition 5.12 (Reduction of maps). Let e = e : A→ A and e′ = e′ : A′ → A′.
We say that e reduces to e′ if there exists a total map f : A → A′ such that
e′ ◦ f = e. We say that e is complete if every e′ reduces to e.

Definition 5.13 (Halting). Let X be a restriction category with Turing object
T. The halting set for X is defined as

∆• = •T,T ◦∆T . (24)

The restriction h = ∆• of the halting set is called the halting predicate.

Lemma 5.14. In every Turing category the halting predicate is complete.

Proof. For simplicity, we write ∆ for ∆T, and • for •T,T.
Let e = e : A → A; let s = sA : A → T monic and r = rA : T → A epic

such that rA ◦ sA = idA. Set p = sA ◦ e ◦ π1 and k = λ∗p. Then the following
diagram commutes:

T
∆ // T×R T

• // T

A

k

OO

〈idA,sA〉R // A×R T
e◦π1 //

k×RidT

OO

A

sA

OO
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Consequently, as sA is monic,

∆ • ◦k = ∆ • ◦k
= sA ◦ e ◦ π1 ◦ 〈idA, sA〉R
= e ◦ π1 ◦ 〈idA, sA〉R
= e ◦ sA
= e ◦ sA
= e .

Definition 5.15 (Partial combinator algebra). Let X be a cartesian restriciton
category with restriction final object 1R. A partial combinator algebra on X
is a quadruple (A, •, k, s) where A ∈ |X|, • ∈ HomX(A ×R A,A), and k, s ∈
HomX(1R, A) are points over A satisfying the following conditions:

1. The following diagram commutes:

1R ×R A×R A

〈k,idA×RA〉
R

��

π1 // A

A×R A×R A
•×RidA // A×R A

•

OO (25)

2. The following diagram commutes:

1R ×R A×R A×R A
〈〈π1,π3〉R,〈π2,π3〉R〉R //

〈s,idA×RidA×RidA〉R
��

A×R A×R A×R A
•×R• // A×R A

•
��

A×R A×R A×R A
•(3) // A

(26)

where (a, b, c, d)
•(3)−→ ((a • b) • c) • d.

3. • ◦ 〈s, idA〉R is total.

Condition 1 in Definition 5.15 can be translated by saying that kxy = x for
every x and y; similarly, condition 2 can be expressed by saying that sxyz =
xz(yz) for every x, y and z. The points k and s thus behave as the combinators
K and S of Curry’s combinatory logic.

Observe that every Turing category is a partial combinator algebra.

Theorem 5.16 (Second characterization theorem). Every Turing category is
the computable functions for some partial combinator algebra.

The “is” in Theorem 5.16 means that one might need to split some idempo-
tents.
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