Introduction to Symbolic Dynamics Part 1: The basics

Silvio Capobianco

Institute of Cybernetics at TUT

April 14, 2010

Revised: April 7, 2010

< □ > < 同 > < 回 >

Overview

- Historical introduction
- Shift subspaces
- Basic constructions on shift subspaces
- Sliding block codes
- A parallel with coding theory

A short history of symbolic dynamics

• 1898:

Hadamard's work on geodetic flows.

• 1930s:

Morse and Hedlund's work.

• 1960s:

Smale introduces the word "subshift".

• 1990s:

Boyle and Handelman make a crucial step towards characterization of nonzero eigenvalues of nonnegative matrices.

Hadamard's problem

Geodesic flows on surfaces of negative curvature

Generally hard problem, but...

What if...

- Partition the space into finitely many regions.
- Discretize time.
- Check the region instead of the exact position.

Discovery!

The complicated dynamics can be described in terms of finitely many forbidden pairs of symbols!

Sequences and blocks

Full shifts

Let A be a finite alphabet. The full A-shift is the set

 $A^{\mathbb{Z}} = \{ \text{bi-infinite words on } A \}.$

The full *r*-shift is the full *A*-shift for $A = \{0, \ldots, r-1\}$.

Blocks

- A block, or word, over A is a finite sequence u of elements of A.
- If $u = a_1 \dots a_k$ then k = |u| is the length of u. If |w| = 0 then $w = \varepsilon$.
- A subblock of $u = a_1 \dots a_k$ has the form $v = a_i \dots a_j$, $1 \le i, j \le k$. If $x \in A^{\mathbb{Z}}$ then $x_{[i,j]}$ is the subblock $x_i \dots x_j$.
- A block *u* occurs in a sequence *x* if $x_{[i,j]} = u$ for some $i, j \in \mathbb{Z}$.

< 日 > < 同 > < 三 > < 三 >

The shift map

$$\sigma(x)_i = x_{i+1}$$
 for all $x \in A^{\mathbb{Z}}$, $i \in \mathbb{Z}$.

Periodic points

- $x \in A^{\mathbb{Z}}$ is periodic if $\sigma^n(x) = x$ for some n > 0.
- Any such *n* is called a period of *x*.
- x is a fixed point for σ if $\sigma(x) = x$.

Consequences

- Definition above is the same as $x_{i+n} = x_i \ \forall i \in \mathbb{Z}$.
- If x has a period, then it also has a least period.

Interpretation

- The group ${\mathbb Z}$ represents time.
- (Bi-infinite) sequences represent (reversible) trajectories.
- The shift represent the passing of time.
- Periodic sequences represent periodic (closed) trajectories.

Shift subspaces

Definition

Let \mathcal{F} be a set of blocks over A and let

$$\mathsf{X}_{\mathcal{F}} = \left\{ x \in \mathsf{A}^{\mathbb{Z}} \mid x_{[i,j]} \neq u \; \forall i, j \in \mathbb{Z} \; \forall u \in \mathcal{F} \right\}$$

A shift subspace, or subshift, over A is a subset of $A^{\mathbb{Z}}$ of the form $X = X_{\mathcal{F}}$ for some set of blocks \mathcal{F} .

Examples of subshifts

- The full shift.
- **2** The golden mean shift $X = X_{\{11\}}$.
- The even shift $X = X_{\mathcal{F}}$ with $\mathcal{F} = \{10^{2k+1}1 \mid k \in \mathbb{N}\}$.
- Solution For S ⊆ N, the S-gap shift X(S) with F = {10ⁿ1 | n ∈ N \ S}. For S = {d,...,k} we have the (d,k) run-length limited shift X(d,k).
- The set of labelings of bi-infinite paths on the graph

- **③** The charge constrained shift over $\{+1, -1\}$ s.t. *x* ∈ *X* iff $\sum_{i=j}^{j+n} x_i \in [-c, c]$ for every $j \in \mathbb{Z}$, $n \ge 0$.
- **O** The context free shift over $\{a, b, c\}$ with

$$\mathcal{F} = \{ab^m c^k a \mid m \neq k\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Basic facts on subshifts

1 Suppose
$$X_1 = X_{\mathcal{F}_1}$$
 and $X_2 = X_{\mathcal{F}_2}$.
Then $X_1 \cap X_2 = X_{\mathcal{F}_1 \cup \mathcal{F}_2}$.

$$\begin{array}{l} \textbf{2} \quad \text{Suppose } \mathcal{F}_1 \subseteq \mathcal{F}_2. \\ \text{Then } \mathsf{X}_{\mathcal{F}_1} \supseteq \mathsf{X}_{\mathcal{F}_2}. \\ \text{In particular, } X_1 \cup X_2 \subseteq \mathsf{X}_{\mathcal{F}_1 \cap \mathcal{F}_2}. \end{array}$$

3 In general,
$$X_1\cup X_2
eq \mathsf{X}_{\mathcal{F}_1\cap\mathcal{F}_2}.$$

- Let $\{X_i\}_{i \in I}$ be a family of subshifts s.t. $\bigcup_{i \in I} X_i = A^{\mathbb{Z}}$. Then $X_i = A^{\mathbb{Z}}$ for some $i \in I$.
- If X is a subshift over A and Y is a subshift over B, then

$$X \times Y = \{z : \mathbb{Z} \to A \times B \mid \exists x \in X, y \in Y \mid \forall i \in \mathbb{Z} : z_i = (x_i, y_i)\}$$

is a subshift over $A \times B$.

Shift invariance

Definition

 $X \subseteq A^{\mathbb{Z}}$ is shift invariant if $\sigma(X) \subseteq X$.

Subshifts are shift invariant

Write σ_X for the restriction of the shift to *X*.

Shift invariance is not enough to make a subshift!

$$X = \left\{ x \in \{0,1\}^{\mathbb{Z}} \mid \exists ! i \mid x_i = 1
ight\}$$

- X is shift invariant.
- And no block of the form 0ⁿ is forbidden.
- Then, if X were a subshift, it would contain $0^{\mathbb{Z}}$ —which it doesn't.

Languages

Definition

Let $X \subseteq A^{\mathbb{Z}}$, not necessarily a subshift. Let $\mathcal{B}_n(X)$ be the set of subblocks of length *n* of elements of *X*. The language of *X* is

$$\mathcal{B}(X) = \bigcup_{n \ge 0} \mathcal{B}_n(X).$$

Characterization of subshift languages

• Let X be a subshift. Let $L = \mathcal{B}(X)$.

- For every $w \in L$, if u is a factor of w, then $u \in L$.
- **②** For every $w \in L$ there exist nonempty $u, v \in L$ s.t. $uwv \in L$.
- Suppose L ⊆ A* satisfies points 1 and 2 above. Then L = B(X) for some subshift X over A.
- In fact, if X is a subshift and L = B(X), then X = X_{A*\L}.
 In particular, the language of a subshift determines the subshift.
- Subshifts over A are precisely those $X \subseteq A^{\mathbb{Z}}$ s.t.

for every $x \in A^{\mathbb{Z}}$, if $x_{[i,j]} \in \mathcal{B}(X)$ for every $i, j \in \mathbb{Z}$, then $x \in X$.

In particular, a finite union of subshifts is a subshift.

・ 同 ト ・ ヨ ト ・ ヨ ト

Irreducibility

Definition

A subshift X is irreducible if for every $u, v \in \mathcal{B}(X)$ there exists $w \in \mathcal{B}(X)$ s.t. $uwv \in \mathcal{B}(X)$.

Meaning

X is irreducible iff the dynamical system (X, σ) is not made of two parts not joined by any orbit.

Examples

- The golden mean shift is irreducible.
- The subshift $X = \{0^{\mathbb{Z}}, 1^{\mathbb{Z}}\}$ is not irreducible.

Higher block shifts

Let X be a subshift over A. Consider $A_X^{[N]} = \mathcal{B}_N(X)$ as an alphabet.

The N-th higher block code

It is the map $\beta_N: X \to (A_X^{[N]})^{\mathbb{Z}}$ defined by

 $(\beta_N(x))_i = x_{[i,i+N-1]}$

The *N*-th higher block shift

It is the subshift $X^{[N]} = \beta_N(X)$.

Higher block shifts are subshifts

Let $X = X_{\mathcal{F}}$. It is not restrictive to suppose $|u| \ge N$ for every $u \in \mathcal{F}$. For $|w| \ge N$ put $w_i^{[N]} = w_{[i:i+N-1]}$. Let

$$\mathcal{F}_1 = \{ w^{[N]} \mid w \in \mathcal{F} \}.$$

Then put

$$\mathcal{F}_2 = \{uv \mid u, v \in A^N, \exists i > 1 \mid u_i \neq v_{i-1}\}$$

Then clearly $X^{[N]} \subseteq X_{\mathcal{F}_1 \cup \mathcal{F}_2}$. On the other hand, any $x \in X_{\mathcal{F}_1 \cup \mathcal{F}_2}$ reconstructs some $y \in X$, so that $x = \beta_N(y) \in X^{[N]}$.

Higher power shifts

Let X be a subshift over A. Consider $A_X^{[N]} = \mathcal{B}_N(X)$ as an alphabet.

The *N*-th higher power code

It is the map $\gamma_N:X o (\mathcal{A}_X^{[N]})^{\mathbb{Z}}$ defined by

 $(\gamma_N(x))_i = x_{[Ni,N(i+1)-1]}$

The *N*-th higher power shift It is the subshift $X^N = \gamma_N(X)$.

Higher block shifts and other operations

Properties

- $(X \cap Y)^{[N]} = X^{[N]} \cap Y^{[N]}.$
- **②** $(X \cup Y)^{[N]} = X^{[N]} \cup Y^{[N]}.$

$$(X \times Y)^{[N]} = X^{[N]} \times Y^{[N]}$$

A note on higher power shifts

 $\gamma_N \circ \sigma_X^N = \sigma_{X^N} \circ \gamma_N.$

Sliding block codes

- Let X be a subshift over A. Let \mathfrak{A} be another alphabet.
- Let $\Phi: \mathcal{B}_{m+n+1}(X) \to \mathfrak{A}$.
- Then $\phi: X \to \mathfrak{A}^{\mathbb{Z}}$ defined by

$$\phi(x)_i = \Phi\left(x_{[i-m,i+n]}\right)$$

is a sliding block code (SBC) with memory m and anticipation n.

- We then write $\varphi = \Phi_\infty^{[-m,n]}$, or just $\varphi = \Phi_\infty$.
- We may also write $\phi: X \to Y$ if Y is a subshift over \mathfrak{A} and $\phi(X) \subseteq Y$.
- It is always possible to increase both memory and anticipation.
- We speak of 1-block code when m = n = 0.

Examples of sliding block codes

- The shift.
- 2 The identity.
- The converse of the shift.
- The *N*-th higher block code map β_N .
- Solution The XOR, induced by $\Phi(x_0x_1) = x_0 + x_1 \mod 2$.
- The map defined by

$$\varphi(00)=1$$
 , $\varphi(01)=0$, $\varphi(10)=0$

is a SBC from the golden mean shift to the even shift.

The key property of ${\rm SBC}$

Let X and Y be shift spaces, and let $\phi: X \to Y$ be a SBC. Then

Meaning

- SBC are shift-commuting.
- SBC represent stationary processes.
- A SBC from X to Y is a morphism from (X, σ) to (Y, σ) .

Shift-commutativity is not enough to make a SBC

Counterexample

Let $\varphi(x): \{0,1\}^{\mathbb{Z}} \to \{0,1\}^{\mathbb{Z}}$ be defined by

$$\phi(x)_i = \begin{cases} 1 - x_i & \text{if } \exists j > i \mid x_j = 1, \\ x_i & \text{otherwise.} \end{cases}$$

Theorem

Let $\phi: X \to Y$ be a map between shift spaces. Then ϕ is a SBC if and only if:

Then ϕ is a SBC II and only II:

() ϕ is shift-commuting, and

3 there exists $N \ge 0$ s.t. $\phi(x)_0$ is a function of $x_{[-N:N]}$.

Consequently, compositions of SBC are SBC.

Factors, embeddings, conjugacies

Let X and Y be subshifts, $\phi: X \to Y$ a SBC.

Factors

- ϕ is a factor code if it is surjective.
- Y is a factor of X if there is a surjective SBC from X to Y.

Embeddings

• ϕ is an embedding if it is injective.

Conjugacies

- ϕ is a conjugacy if it is bijective.
- The Nth higher block code is a conjugacy from X to X^[N], with converse

$$\beta_N^{-1}(y)_i = (y_i)_0 \,.$$

Every SBC can be recoded as a 1-SBC

Theorem

For every SBC $\phi: X \to Y$ there exist an integer N > 0, a conjugacy $\psi: X \to X^{[N]}$, and a 1-block code $\omega: X^{[N]} \to Y$ such that

Reason why

• Suppose
$$\phi = \Phi_{\infty}^{[-m,n]}$$
.

• Put
$$N = m + n + 1$$
, $\psi = \sigma^{-m} \circ \beta_N$.

• Then
$$\omega = \phi \circ \psi^{-1} = \phi \circ \beta_N^{-1} \circ \sigma^m$$
 is a 1-SBC.

Image of a subshift through a SBC is a subshift

Theorem

Let X be a shift space over A Let $\phi: X \to \mathfrak{A}^{\mathbb{Z}}$ be a SBC. Then $Y = \phi(X)$ is a shift space over \mathfrak{A} .

Reason why

• It is not restrictive that ϕ is a 1-block code induced by Φ .

• Put
$$\mathfrak{L} = \{ \Phi(w) \mid w \in \mathcal{B}(X) \}$$
. Clearly $\phi(X) \subseteq X_{\mathfrak{A}^* \setminus \mathfrak{L}}$.

- Let $y \in X_{\mathfrak{A}^* \setminus \mathfrak{L}}$. Then $y_{[-n,n]} = \Phi(x_{[-n,n]}^{(n)})$ for some $x^{(n)} \in X$.
- Since B_{2k+1}(X) is finite for every k, a single x ∈ X can be constructed s.t. y_[-n,n] = Φ(x_[-n,n]) for every n.
- Then $y = \phi(x)$.

- * 同 * * ヨ * * ヨ * - ヨ

Interlude: How to extract x from the $x^{(n)}$'s

$$x_i = x_i^{(n)}$$
 for $n \in S_{|i|}$

is well defined.

3

The converse of a bijective SBC is a SBC

Theorem

Let X be a subshift over A, Y a subshift over \mathfrak{A} . Let $\phi: X \to Y$ be a bijective SBC. Then $\phi^{-1} = \Psi_{\infty}^{[-N,N]}$ for some $N \ge 0$ and $\Psi: \mathcal{B}_{2N+1}(Y) \to A$.

Reason why

- Again, it is not restrictive that φ is a 1-sbc.
- Suppose $\phi^{-1}(y)_0$ is not a function of $y_{[-n,n]}$ whatever *n* is.
- Then, for every *n*, there are $x^{(n)}, \tilde{x}^{(n)} \in X$ s.t. $x_0^{(n)} \neq \tilde{x}_0^{(n)}$ but $\Phi(x^{(n)})_{[-n,n]} = \Phi(\tilde{x}^{(n)})_{[-n,n]}$.
- Similar to the previous theorem, $x \neq \tilde{x}$ can be found s.t. $\Phi(x)_{[-n,n]} = \Phi(\tilde{x})_{[-n,n]}$ for every $n \in \mathbb{N}$.
- Then $\phi(x) = \phi(\tilde{x})$, against bijectivity of ϕ .

<ロ> <同> <同> < 同> < 同>

A parallel with coding theory

In symbolic dynamics

- A subshift is a special subspace of a full shift.
- A code is a special map between subshifts.

In coding theory

- A code is a special submonoid of a free monoid.
- An encoder is a special map between codes.

Laurent series and polynomials

 \bullet A Laurent series on a field ${\mathbb F}$ is an expression

$$f(t) = \sum_{i=-\infty}^{+\infty} a_i t^i = \sum_{i=-\infty}^{+\infty} (f)_i t^i$$

with $a_i \in \mathbb{F}$ for all $i \in \mathbb{Z}$.

- A Laurent polynomial is a Laurent series where only finitely many *a_i*'s are non-zero.
- Laurent series can be multiplied by Laurent polynomials through

$$(f \cdot g)_i = \sum_{j=-\infty}^{+\infty} (f)_j (g)_{i-j}$$

Convolutional encoders and codes

- Let \mathbb{F} be a finite field.
- Identify the Laurent series ∑_i a_itⁱ with coefficients in 𝔽 with the bi-infinite word ... a₋₁a₀a₁... over 𝔽.
- Let $G(t) = [g_{i,j}(t)]$ be a $k \times n$ matrix where each $g_{i,j}(t)$ is a Laurent polynomial over \mathbb{F} .
- A (k, n)-convolutional encoder is a transformation from the full \mathbb{F}^k -shift to the full \mathbb{F}^n -shift of the form

$$O(t) = E(I(t)) = I(t) \cdot G(t)$$

where the elements of I(t) and O(t) are Laurent series over \mathbb{F} .

• A (k, n)-convolutional code is the image of a convolutional encoder.

Example

Let $I(t) = [I_1(t), I_2(t)]$ and

$$G(t) = \left[\begin{array}{rrr} 1 & 0 & 1+t \\ 0 & t & t \end{array} \right]$$

Then

$$O(t) = [I_1(t), tI_2(t), (1+t)I_1(t) + tI_2(t)]$$

so that

$$(O)_{i} = [(I_{1})_{i}, (I_{2})_{i-1}, (I_{1})_{i} + (I_{1})_{i-1} + (I_{2})_{i-1}]$$

Silvio Capobianco (Institute of Cybernetics

э

-

From convolutions to sliding blocks

- Let $O(t) = E(I(t)) = I(t) \cdot G(t)$ be a (k, n)-convolutional encoder.
- 2 Let *M* and *N* be the maximum and minimum power of *t* in G(t).
- ${f 0}$ Identify the array of Laurent series over ${\Bbb F}$

$$[S_1(t),\ldots,S_r(t)]$$

with the bi-infinite word over \mathbb{F}^r

$$\dots [(S_1)_{-1}, \dots, (S_r)_{-1}][(S_1)_0, \dots, (S_r)_0][(S_1)_1, \dots, (S_r)_1]\dots$$

(3) Then $E = \Phi_{\infty}^{[-M,N]}$ with

$$(\Phi((I)_{-M}\dots(I)_N))_s = \sum_{j=-M}^N \sum_{i=1}^k (I_i)_j ((G)_{i,s})_{-j}$$

And there is more ...

Convolutional encoders are linear $_{\rm SBC}$

• Dependence of O(t) from I(t) is given by a set of linear equations.

Convolutional codes are linear irreducible subshifts

- Images of a full shift under a SBC.
- Subspaces of the (infinite-dimensional) 𝔽-vector space (𝔽ⁿ)^ℤ through a linear application.
- It is always possible to join u and v through a long enough w.

The converse also holds

There is a one-to-one correspondence between:

- Linear SBC and convolutional encoders.
- Linear irreducible subshifts and convolutional codes.

... and there shall be more...

- Shifts of finite type.
- Graphs and their shifts.
- Graphs as representations of shifts of finite type.
- State splitting.
- Shifts of finite type and data storage.

Thank you for attention!