Introduction to Symbolic Dynamics

Part 1: The basics

Silvio Capobianco

Institute of Cybernetics at TUT
April 14, 2010

Overview

- Historical introduction
- Shift subspaces
- Basic constructions on shift subspaces
- Sliding block codes
- A parallel with coding theory

A short history of symbolic dynamics

- 1898:

Hadamard's work on geodetic flows.

- 1930s:

Morse and Hedlund's work.

- 1960s:

Smale introduces the word "subshift".

- 1990s:

Boyle and Handelman make a crucial step towards characterization of nonzero eigenvalues of nonnegative matrices.

Hadamard's problem

Geodesic flows on surfaces of negative curvature

Generally hard problem, but...

What if...

- Partition the space into finitely many regions.
- Discretize time.
- Check the region instead of the exact position.

Discovery!

The complicated dynamics can be described in terms of finitely many forbidden pairs of symbols!

Sequences and blocks

Full shifts

Let A be a finite alphabet. The full A-shift is the set

$$
A^{\mathbb{Z}}=\{\text { bi-infinite words on } A\} .
$$

The full r-shift is the full A-shift for $A=\{0, \ldots, r-1\}$.

Blocks

- A block, or word, over A is a finite sequence u of elements of A.
- If $u=a_{1} \ldots a_{k}$ then $k=|u|$ is the length of u. If $|w|=0$ then $w=\varepsilon$.
- A subblock of $u=a_{1} \ldots a_{k}$ has the form $v=a_{i} \ldots a_{j}, 1 \leq i, j \leq k$. If $x \in A^{\mathbb{Z}}$ then $x_{[i, j]}$ is the subblock $x_{i} \ldots x_{j}$.
- A block u occurs in a sequence x if $x_{[i, j]}=u$ for some $i, j \in \mathbb{Z}$.

The shift map

$$
\sigma(x)_{i}=x_{i+1} \text { for all } x \in A^{\mathbb{Z}}, i \in \mathbb{Z}
$$

Periodic points

- $x \in A^{\mathbb{Z}}$ is periodic if $\sigma^{n}(x)=x$ for some $n>0$.
- Any such n is called a period of x.
- x is a fixed point for σ if $\sigma(x)=x$.

Consequences

- Definition above is the same as $x_{i+n}=x_{i} \forall i \in \mathbb{Z}$.
- If x has a period, then it also has a least period.

Interpretation

- The group \mathbb{Z} represents time.
- (Bi-infinite) sequences represent (reversible) trajectories.
- The shift represent the passing of time.
- Periodic sequences represent periodic (closed) trajectories.

Shift subspaces

Definition

Let \mathcal{F} be a set of blocks over A and let

$$
X_{\mathcal{F}}=\left\{x \in A^{\mathbb{Z}} \mid x_{[i, j]} \neq u \forall i, j \in \mathbb{Z} \forall u \in \mathcal{F}\right\}
$$

A shift subspace, or subshift, over A is a subset of $A^{\mathbb{Z}}$ of the form $X=\mathrm{X}_{\mathcal{F}}$ for some set of blocks \mathcal{F}.

Examples of subshifts

(1) The full shift.
(2) The golden mean shift $X=X_{\{11\}}$.
(3) The even shift $X=X_{\mathcal{F}}$ with $\mathcal{F}=\left\{10^{2 k+1} 1 \mid k \in \mathbb{N}\right\}$.
(9) For $S \subseteq \mathbb{N}$, the S-gap shift $\mathrm{X}(S)$ with $\mathcal{F}=\left\{10^{n} 1 \mid n \in \mathbb{N} \backslash S\right\}$.

For $S=\{d, \ldots, k\}$ we have the (d, k) run-length limited shift $X(d, k)$.
(3) The set of labelings of bi-infinite paths on the graph

(0) The charge constrained shift over $\{+1,-1\}$ s.t. $x \in X$ iff $\sum_{i=j}^{j+n} x_{i} \in[-c, c]$ for every $j \in \mathbb{Z}, n \geq 0$.
(0) The context free shift over $\{a, b, c\}$ with

$$
\mathcal{F}=\left\{a b^{m} c^{k} a \mid m \neq k\right\}
$$

Basic facts on subshifts

(1) Suppose $X_{1}=\mathrm{X}_{\mathcal{F}_{1}}$ and $X_{2}=\mathrm{X}_{\mathcal{F}_{2}}$. Then $X_{1} \cap X_{2}=X_{\mathcal{F}_{1} \cup \mathcal{F}_{2}}$.
(2) Suppose $\mathcal{F}_{1} \subseteq \mathcal{F}_{2}$.

Then $X_{\mathcal{F}_{1}} \supseteq \mathrm{X}_{\mathcal{F}_{2}}$.
In particular, $X_{1} \cup X_{2} \subseteq X_{\mathcal{F}_{1} \cap \mathcal{F}_{2}}$.
(3) In general, $X_{1} \cup X_{2} \neq X_{\mathcal{F}_{1} \cap \mathcal{F}_{2}}$.
(9) Let $\left\{X_{i}\right\}_{i \in I}$ be a family of subshifts s.t. $\bigcup_{i \in I} X_{i}=A^{\mathbb{Z}}$.

Then $X_{i}=A^{\mathbb{Z}}$ for some $i \in I$.
(3) If X is a subshift over A and Y is a subshift over B, then

$$
X \times Y=\left\{z: \mathbb{Z} \rightarrow A \times B|\exists x \in X, y \in Y| \forall i \in \mathbb{Z} . z_{i}=\left(x_{i}, y_{i}\right)\right\}
$$

is a subshift over $A \times B$.

Shift invariance

Definition
 $X \subseteq A^{\mathbb{Z}}$ is shift invariant if $\sigma(X) \subseteq X$.

Subshifts are shift invariant
Write σ_{X} for the restriction of the shift to X.

Shift invariance is not enough to make a subshift!

$$
X=\left\{x \in\{0,1\}^{\mathbb{Z}}|\exists!i| x_{i}=1\right\}
$$

- X is shift invariant.
- And no block of the form 0^{n} is forbidden.
- Then, if X were a subshift, it would contain $0^{\mathbb{Z}}$-which it doesn't.

Languages

Definition

Let $X \subseteq A^{\mathbb{Z}}$, not necessarily a subshift.
Let $\mathcal{B}_{n}(X)$ be the set of subblocks of length n of elements of X.
The language of X is

$$
\mathcal{B}(X)=\bigcup_{n \geq 0} \mathcal{B}_{n}(X)
$$

Characterization of subshift languages

(1) Let X be a subshift. Let $L=\mathcal{B}(X)$.
(1) For every $w \in L$, if u is a factor of w, then $u \in L$.
(2) For every $w \in L$ there exist nonempty $u, v \in L$ s.t. $u w v \in L$.
(2) Suppose $L \subseteq A^{*}$ satisfies points 1 and 2 above.

Then $L=\mathcal{B}(X)$ for some subshift X over A.
(3) In fact, if X is a subshift and $L=\mathcal{B}(X)$, then $X=X_{A^{*} \backslash L}$.

In particular, the language of a subshift determines the subshift.
(3) Subshifts over A are precisely those $X \subseteq A^{\mathbb{Z}}$ s.t.

$$
\begin{aligned}
& \text { for every } x \in A^{\mathbb{Z}} \\
& \text { if } x_{[i, j]} \in \mathcal{B}(X) \text { for every } i, j \in \mathbb{Z}, \\
& \text { then } x \in X
\end{aligned}
$$

(3) In particular, a finite union of subshifts is a subshift.

Irreducibility

Definition

A subshift X is irreducible if for every $u, v \in \mathcal{B}(X)$ there exists $w \in \mathcal{B}(X)$ s.t. $u w v \in \mathcal{B}(X)$.

Meaning

X is irreducible iff the dynamical system (X, σ) is not made of two parts not joined by any orbit.

Examples

- The golden mean shift is irreducible.
- The subshift $X=\left\{0^{\mathbb{Z}}, 1^{\mathbb{Z}}\right\}$ is not irreducible.

Higher block shifts

Let X be a subshift over A. Consider $A_{X}^{[N]}=\mathcal{B}_{N}(X)$ as an alphabet.
The N-th higher block code
It is the map $\beta_{N}: X \rightarrow\left(A_{X}^{[N]}\right)^{\mathbb{Z}}$ defined by

$$
\left(\beta_{N}(x)\right)_{i}=x_{[i, i+N-1]}
$$

The N-th higher block shift
It is the subshift $X^{[N]}=\beta_{N}(X)$.

Higher block shifts are subshifts

Let $X=X_{\mathcal{F}}$. It is not restrictive to suppose $|u| \geq N$ for every $u \in \mathcal{F}$. For $|w| \geq N$ put $w_{i}^{[N]}=w_{[i: i+N-1]}$. Let

$$
\mathcal{F}_{1}=\left\{w^{[N]} \mid w \in \mathcal{F}\right\}
$$

Then put

$$
\mathcal{F}_{2}=\left\{u v\left|u, v \in A^{N}, \exists i>1\right| u_{i} \neq v_{i-1}\right\}
$$

Then clearly $X^{[N]} \subseteq X_{\mathcal{F}_{1} \cup \mathcal{F}_{2}}$. On the other hand, any $x \in X_{\mathcal{F}_{1} \cup \mathcal{F}_{2}}$ reconstructs some $y \in X$, so that $x=\beta_{N}(y) \in X^{[N]}$.

Higher power shifts

Let X be a subshift over A. Consider $A_{X}^{[N]}=\mathcal{B}_{N}(X)$ as an alphabet.
The N-th higher power code
It is the map $\gamma_{N}: X \rightarrow\left(A_{X}^{[N]}\right)^{\mathbb{Z}}$ defined by

$$
\left(\gamma_{N}(x)\right)_{i}=x_{[N i, N(i+1)-1]}
$$

The N-th higher power shift
It is the subshift $X^{N}=\gamma_{N}(X)$.

Higher block shifts and other operations

Properties

(1) $(X \cap Y)^{[N]}=X^{[N]} \cap Y^{[N]}$.
(2) $(X \cup Y)^{[N]}=X^{[N]} \cup Y^{[N]}$.
(3) $(X \times Y)^{[N]}=X^{[N]} \times Y^{[N]}$.
(9) $\beta_{N} \circ \sigma_{X}=\sigma_{X^{[N]}} \circ \beta_{N}$

A note on higher power shifts
$\gamma_{N} \circ \sigma_{X}^{N}=\sigma_{X^{N}} \circ \gamma_{N}$.

Sliding block codes

- Let X be a subshift over A. Let \mathfrak{A} be another alphabet.
- Let $\Phi: \mathcal{B}_{m+n+1}(X) \rightarrow \mathfrak{A}$.
- Then $\phi: X \rightarrow \mathfrak{A}^{\mathbb{Z}}$ defined by

$$
\phi(x)_{i}=\Phi\left(x_{[i-m, i+n]}\right)
$$

is a sliding block code (SBC) with memory m and anticipation n.

- We then write $\phi=\Phi_{\infty}^{[-m, n]}$, or just $\phi=\Phi_{\infty}$.
- We may also write $\phi: X \rightarrow Y$ if Y is a subshift over \mathfrak{A} and $\phi(X) \subseteq Y$.
- It is always possible to increase both memory and anticipation.
- We speak of 1 -block code when $m=n=0$.

Examples of sliding block codes

(1) The shift.
(2) The identity.
(3) The converse of the shift.
(9) The N-th higher block code map β_{N}.
(5) The xor, induced by $\Phi\left(x_{0} x_{1}\right)=x_{0}+x_{1} \bmod 2$.
(0) The map defined by

$$
\phi(00)=1, \phi(01)=0, \phi(10)=0
$$

is a SBC from the golden mean shift to the even shift.

The key property of SBC

Let X and Y be shift spaces, and let $\phi: X \rightarrow Y$ be a sBC. Then

Meaning

- SBC are shift-commuting.
- SBC represent stationary processes.
- A sbc from X to Y is a morphism from (X, σ) to (Y, σ).

Shift-commutativity is not enough to make a SBC

Counterexample

Let $\phi(x):\{0,1\}^{\mathbb{Z}} \rightarrow\{0,1\}^{\mathbb{Z}}$ be defined by

$$
\phi(x)_{i}= \begin{cases}1-x_{i} & \text { if } \exists j>i \mid x_{j}=1, \\ x_{i} & \text { otherwise } .\end{cases}
$$

Theorem

Let $\phi: X \rightarrow Y$ be a map between shift spaces.
Then ϕ is a SBC if and only if:
(1) ϕ is shift-commuting, and
(2) there exists $N \geq 0$ s.t. $\phi(x)_{0}$ is a function of $x_{[-N: N]}$.

Consequently, compositions of SBC are SBC.

Factors, embeddings, conjugacies
Let X and Y be subshifts, $\phi: X \rightarrow Y$ a sBC.

Factors

- ϕ is a factor code if it is surjective.
- Y is a factor of X if there is a surjective sBC from X to Y.

Embeddings

- ϕ is an embedding if it is injective.

Conjugacies

- ϕ is a conjugacy if it is bijective.
- The Nth higher block code is a conjugacy from X to $X^{[N]}$, with converse

$$
\beta_{N}^{-1}(y)_{i}=\left(y_{i}\right)_{0}
$$

Every SBC can be recoded as a $1-\mathrm{SBC}$

Theorem

For every $\operatorname{sBC} \phi: X \rightarrow Y$ there exist an integer $N>0$, a conjugacy $\psi: X \rightarrow X^{[N]}$, and a 1-block code $\omega: X^{[N]} \rightarrow Y$ such that

Reason why

- Suppose $\phi=\Phi_{\infty}^{[-m, n]}$.
- Put $N=m+n+1, \psi=\sigma^{-m} \circ \beta_{N}$.
- Then $\omega=\phi \circ \psi^{-1}=\phi \circ \beta_{N}^{-1} \circ \sigma^{m}$ is a 1 -SBC.

Image of a subshift through a SBC is a subshift

Theorem

Let X be a shift space over A
Let $\phi: X \rightarrow \mathfrak{A}^{\mathbb{Z}}$ be a SBC.
Then $Y=\phi(X)$ is a shift space over \mathfrak{A}.

Reason why

- It is not restrictive that ϕ is a 1-block code induced by Φ.
- Put $\mathfrak{L}=\{\Phi(w) \mid w \in \mathcal{B}(X)\}$. Clearly $\phi(X) \subseteq X_{\mathfrak{A}^{*} \backslash \mathfrak{L}}$.
- Let $y \in X_{\mathfrak{A}^{*} \backslash \mathfrak{L}}$. Then $y_{[-n, n]}=\Phi\left(x_{[-n, n]}^{(n)}\right)$ for some $x^{(n)} \in X$.
- Since $\mathcal{B}_{2 k+1}(X)$ is finite for every k, a single $x \in X$ can be constructed s.t. $y_{[-n, n]}=\Phi\left(x_{[-n, n]}\right)$ for every n.
- Then $y=\phi(x)$.

Interlude: How to extract x from the $x^{(n)}$'s

(1) Take an infinite $S_{0} \subseteq \mathbb{N}$ s.t. $x_{0}^{(n)}=x_{0}^{\left(n^{\prime}\right)}$ for every $n, n^{\prime} \in S_{0}$.
(2) Take an infinite $S_{1} \subseteq S_{0}$ s.t. $x_{[-1,1]}^{(n)}=x_{[-1,1]}^{\left(n^{\prime}\right)}$ for every $n, n^{\prime} \in S_{1}$.
(3) Take an infinite $S_{2} \subseteq S_{1}$ s.t. $x_{[-2,2]}^{(n)}=x_{[-2,2]}^{\left(n^{\prime}\right)}$ for every $n, n^{\prime} \in S_{2}$.
(9) ... and so on, and so on...
(3) Then

$$
x_{i}=x_{i}^{(n)} \text { for } n \in S_{|i|}
$$

is well defined.

The converse of a bijective SBC is a SBC

Theorem

Let X be a subshift over A, Y a subshift over \mathfrak{A}.
Let $\phi: X \rightarrow Y$ be a bijective SBC.
Then $\phi^{-1}=\Psi_{\infty}^{[-N, N]}$ for some $N \geq 0$ and $\Psi: \mathcal{B}_{2 N+1}(Y) \rightarrow A$.

Reason why

- Again, it is not restrictive that ϕ is a 1 -SBC.
- Suppose $\phi^{-1}(y)_{0}$ is not a function of $y_{[-n, n]}$ whatever n is.
- Then, for every n, there are $x^{(n)}, \tilde{x}^{(n)} \in X$ s.t. $x_{0}^{(n)} \neq \tilde{x}_{0}^{(n)}$ but $\Phi\left(x^{(n)}\right)_{[-n, n]}=\Phi\left(\tilde{x}^{(n)}\right)_{[-n, n]}$.
- Similar to the previous theorem, $x \neq \tilde{x}$ can be found s.t. $\Phi(x)_{[-n, n]}=\Phi(\tilde{x})_{[-n, n]}$ for every $n \in \mathbb{N}$.
- Then $\phi(x)=\phi(\tilde{x})$, against bijectivity of ϕ.

A parallel with coding theory

In symbolic dynamics

- A subshift is a special subspace of a full shift.
- A code is a special map between subshifts.

In coding theory

- A code is a special submonoid of a free monoid.
- An encoder is a special map between codes.

Laurent series and polynomials

- A Laurent series on a field \mathbb{F} is an expression

$$
f(t)=\sum_{i=-\infty}^{+\infty} a_{i} t^{i}=\sum_{i=-\infty}^{+\infty}(f)_{i} t^{i}
$$

with $a_{i} \in \mathbb{F}$ for all $i \in \mathbb{Z}$.

- A Laurent polynomial is a Laurent series where only finitely many a_{i} 's are non-zero.
- Laurent series can be multiplied by Laurent polynomials through

$$
(f \cdot g)_{i}=\sum_{j=-\infty}^{+\infty}(f)_{j}(g)_{i-j}
$$

Convolutional encoders and codes

- Let \mathbb{F} be a finite field.
- Identify the Laurent series $\sum_{i} a_{i} t^{i}$ with coefficients in \mathbb{F} with the bi-infinite word ...a $a_{-1} a_{0} a_{1} \ldots$ over \mathbb{F}.
- Let $G(t)=\left[g_{i, j}(t)\right]$ be a $k \times n$ matrix where each $g_{i, j}(t)$ is a Laurent polynomial over \mathbb{F}.
- A (k, n)-convolutional encoder is a transformation from the full \mathbb{F}^{k}-shift to the full \mathbb{F}^{n}-shift of the form

$$
O(t)=E(I(t))=I(t) \cdot G(t)
$$

where the elements of $I(t)$ and $O(t)$ are Laurent series over \mathbb{F}.

- A (k, n)-convolutional code is the image of a convolutional encoder.

Example

Let $I(t)=\left[I_{1}(t), I_{2}(t)\right]$ and

$$
G(t)=\left[\begin{array}{ccc}
1 & 0 & 1+t \\
0 & t & t
\end{array}\right]
$$

Then

$$
O(t)=\left[I_{1}(t), t I_{2}(t),(1+t) I_{1}(t)+t I_{2}(t)\right]
$$

so that

$$
(O)_{i}=\left[\left(I_{1}\right)_{i},\left(I_{2}\right)_{i-1},\left(I_{1}\right)_{i}+\left(I_{1}\right)_{i-1}+\left(I_{2}\right)_{i-1}\right]
$$

From convolutions to sliding blocks

(1) Let $O(t)=E(I(t))=I(t) \cdot G(t)$ be a (k, n)-convolutional encoder.
(2) Let M and N be the maximum and minimum power of t in $G(t)$.
(3) Identify the array of Laurent series over \mathbb{F}

$$
\left[S_{1}(t), \ldots, S_{r}(t)\right]
$$

with the bi-infinite word over \mathbb{F}^{r}

$$
\ldots\left[\left(S_{1}\right)_{-1}, \ldots,\left(S_{r}\right)_{-1}\right]\left[\left(S_{1}\right)_{0}, \ldots,\left(S_{r}\right)_{0}\right]\left[\left(S_{1}\right)_{1}, \ldots,\left(S_{r}\right)_{1}\right] \ldots
$$

(9) Then $E=\Phi_{\infty}^{[-M, N]}$ with

$$
\left(\Phi\left((I)_{-M} \ldots(I)_{N}\right)\right)_{s}=\sum_{j=-M}^{N} \sum_{i=1}^{k}\left(I_{i}\right)_{j}\left((G)_{i, s}\right)_{-j}
$$

And there is more...

Convolutional encoders are linear SBC

- Dependence of $O(t)$ from $I(t)$ is given by a set of linear equations.

Convolutional codes are linear irreducible subshifts

- Images of a full shift under a SBC.
- Subspaces of the (infinite-dimensional) \mathbb{F}-vector space $\left(\mathbb{F}^{n}\right)^{\mathbb{Z}}$ through a linear application.
- It is always possible to join u and v through a long enough w.

The converse also holds
There is a one-to-one correspondence between:

- Linear SBC and convolutional encoders.
- Linear irreducible subshifts and convolutional codes.

... and there shall be more. . .

- Shifts of finite type.
- Graphs and their shifts.
- Graphs as representations of shifts of finite type.
- State splitting.
- Shifts of finite type and data storage.

Thank you for attention!

