Introduction to Symbolic Dynamics

Part 2: Shifts of finite type

Silvio Capobianco
Institute of Cybernetics at TUT

April 14, 2010

Overview

- Shifts of finite type.
- Graphs and their shifts.
- Graphs as representations of shifts of finite type.
- Shifts of finite type and data storage.

Shifts of finite type

Definition

Let X be a subshift over A. There is a collection \mathcal{F} of blocks over A s.t.

$$
X=X_{\mathcal{F}}=\left\{x \in A^{\mathbb{Z}} \mid x_{[i, j]} \neq u \forall i, j \in \mathbb{Z}, u \in \mathcal{F}\right\}
$$

X is a shift of finite type (SFT) if \mathcal{F} can be chosen finite.

Examples

Shifts of finite type

- The full shift.
- The golden mean shift.
- The set of labelings of bi-infinite paths on the graph e
- The (d, k)-run length limited shift.

A shift not of finite type

The even shift.

Memory

Definition

A sFT $X=X_{\mathcal{F}}$ has memory M, or is a M-step SFT, if \mathcal{F} can be chosen so that $|u|=M+1 \forall u \in \mathcal{F}$.

Meaning

A SFT X has memory M when a machine with a memory size of M characters can decide whether $w \in A^{>M}$ belongs to $\mathcal{B}(X)$.

Examples

- 0-step SFT are full shifts (on smaller alphabets).
- 1-step SFT are Markov chains (minus probabilities).
- The (d, k)-run length limited shift has memory $M=k+1$.

Characterization of memory for SFT

Theorem

Let X be a subshift over A. TFAE.
(1) X is a SFT with memory M.
(2) For every $w \in A^{\geq M}$, if $u w, w v \in \mathcal{B}(X)$, then $u w v \in \mathcal{B}(X)$.

Corollary: the charge constrained shift is not a SFT

- Let $A=\{+1,-1\}$.
- Define $x \in X$ iff $\sum_{i=j}^{j+p} x_{i} \in[-c, c]$ for every $j \in \mathbb{Z}, p \geq 0$.
- Fix $M \geq 0$.
- Take $w \in A^{*}$ s.t. $|w| \geq M$ and $\sum_{i=1}^{|w|} w_{i}=c-1$.
- Then $1 w, w 1 \in \mathcal{B}(X)$ but $1 w 1 \notin \mathcal{B}(X)$.

Proof

If X is a M-step SFT

- Suppose $|w| \geq M, u w, w v \in \mathcal{B}(X)$.
- Let $x, y \in X$ s.t. $x_{[1,|w|]}=y_{[1,|w|]}=w, x_{[1-|u|, 0]}=u, y_{|w|+1,|w|+|v|}=v$.
- Then $z=x_{(-\infty, 0]} w y_{[|w|+1, \infty)}=x_{(-\infty,-|u|]} u w v y_{[|w|+|v|+1, \infty)} \in X$.

If X satisfies property 2

- Let $\mathcal{F}=A^{M+1} \backslash \mathcal{B}_{M+1}(X)$.
- Then clearly $X \subseteq X_{\mathcal{F}}$.
- But if $x \in X_{\mathcal{F}}$, then $x_{[0, M]}$ and $x_{[1, M+1]}$ are in $\mathcal{B}(X)$, so that $x_{[0, M+1]} \in \mathcal{B}(X) \ldots$
- ... and iterating the procedure, $x_{[i, j]} \in \mathcal{B}(X)$ for every $i \leq j$.

Finiteness of type is a shift invariant

```
Theorem
Let \(X\) be a sft over \(A, Y\) a subshift over \(\mathfrak{A}\). Suppose there exists a conjugacy \(\phi: X \rightarrow Y\). Then \(Y\) is a sft.
```

Reason why

- Suppose X is M-step.
- Suppose ϕ and ϕ^{-1} have memory and anticipation r.
- Then Y is $(M+4 r)$-step.

Graphs

Definition

A graph G is made of:
(1) A finite set \mathcal{V} of vertices or states.
(2) A finite set \mathcal{E} of edges.
(3) Two maps $\mathrm{i}, \mathrm{t}: \mathcal{E} \rightarrow \mathcal{V}$, where $\mathrm{i}(e)$ is the initial state and $\mathrm{t}(e)$ is the terminal state of edge e.

Graph homomorphisms
A graph homomorphism is made of two maps $\Phi: \mathcal{E}_{1} \rightarrow \mathcal{E}_{2}, \partial \Phi: \mathcal{V}_{1} \rightarrow \mathcal{V}_{2}$ s.t.

$$
\mathrm{i}(\Phi(e))=\partial \Phi(\mathrm{i}(e)) \text { and } \mathrm{t}(\Phi(e))=\partial \Phi(\mathrm{t}(e)) \forall e \in \mathcal{E}_{1}
$$

An embedding has Φ and $\partial \Phi$ injective.
An isomorphism has Φ and $\partial \Phi$ bijective.

Graphs and matrices

Adjacency matrix of a graph
Given an enumeration $\mathcal{V}=\left\{v_{1}, \ldots, v_{r}\right\}$, the adjacency matrix of G is defined by

$$
(A(G))_{l, J}=\left|\left\{e \in \mathcal{E} \mid i(e)=v_{l}, t(e)=v_{J}\right\}\right|
$$

Graph of a nonnegative matrix
Given a $r \times r$ matrix A with nonnegative entries, the graph of A is defined by:

- $\mathcal{V}(G(A))=\left\{v_{1}, \ldots, v_{r}\right\}$
- $\mathcal{E}(G(A))$ has exactly $A_{I, J}$ elements s.t. $\mathrm{i}(e)=v_{I}$ and $\mathrm{t}(e)=v_{J}$.

Almost inverses
$A(G(A))=A$ and $G(A(G)) \cong G$.

Edge shifts

Theorem

Let G be a graph and A its adjacency matrix. Then the edge shift

$$
\mathrm{X}_{G}=\mathrm{X}_{A}=\left\{\xi: \mathbb{Z} \rightarrow \mathcal{E} \mid \mathrm{t}\left(\xi_{i}\right)=\mathrm{i}\left(\xi_{i+1}\right) \forall i \in \mathbb{Z}\right\}
$$

is a 1-step SFT.

Essential graphs

Definition

A vertex is stranded if it has no incoming, or no outgoing, edges.
A graph is essential if it has no stranded vertices.
Theorem
For every graph G there exists exactly one essential subgraph H s.t. $X_{H}=X_{G}$.

Reason why
H is the maximal essential subgraph of G.

How to construct the maximal essential subgraph

Start with a graph G.
(1) Remove all the vertices that are stranded.
(2) Remove all the edges that have a loose end.
(3) If no vertices have been remove at point 1: terminate.
(9) Else: resume from point 1 .

The resulting graph H is the maximal essential subgraph of G.

Not all SFT are edge shifts!

If the golden mean shift was an edge shift...

- ...then we could choose an essential graph G s.t X_{G} is the golden mean shift.
- This graph would have two edges, labeled 0 and 1.

But what are the essential graphs with two edges?

- One is
which is the graph of the full shift.
- The other one is

which is the graph of $\{\ldots 010101 \ldots, \ldots 101010 \ldots\}$.

Paths

Definition

- A path on a graph G is a finite sequence $\pi=\pi_{1} \ldots \pi_{m}$ on \mathcal{E} s.t. $\mathrm{t}\left(\pi_{i}\right)=\mathrm{i}\left(\pi_{i+1}\right)$ for every $i<m$.
- A path π is a cycle if $\mathrm{t}\left(\pi_{m}\right)=\mathrm{i}\left(\pi_{1}\right)$.
- A path π is simple if the $i\left(\pi_{i}\right)$'s are all distinct.

The paths on G are precisely the blocks in $\mathcal{B}\left(X_{G}\right)$.

Facts

Let G be a graph, A its adjacency matrix.

- The number of paths of length m from I to J is $\left(A^{m}\right)_{I, J}$.
- The number of cycles of length m is $\operatorname{tr}\left(A^{m}\right)$.

Irreducible graphs

Definition

A graph is irreducible if any two nodes I, J there is a path $\pi=\pi_{1} \ldots \pi_{m}$ s.t. $I=\mathrm{i}\left(\pi_{1}\right)$ and $J=\mathrm{t}\left(\pi_{m}\right)$.

Equivalently

Let A be the adjacency matrix of G.
Then G is irreducible iff for every I and J there exists m s.t. $\left(A^{m}\right)_{I, J}>0$.

Irreducible graphs and subshifts

Theorem
Let G be a graph.
(1) If G is irreducible then X_{G} is irreducible.
(2) If X_{G} is irreducible and G is essential then G is irreducible.

Reason why
If G is irreducible:

- Take $u, v \in \mathcal{B}(X)$.
- Make w that links $\mathrm{t}\left(u_{|u|}\right)$ to $\mathrm{i}\left(v_{1}\right)$.

If X_{G} is irreducible and G is essential:

- Suppose $I=\mathrm{t}(e)$ and $J=\mathrm{i}(f)$.
- If $e \pi f \in \mathcal{B}\left(\mathrm{X}_{G}\right)$ then π links $/$ to J.

Presenting SFT as edge shifts

Theorem

- Suppose X is a M-step SFT.
- Then $X^{[M+1]}$ is an edge shift.

Proof

Consider the de Bruijn graph of order M on X :

- $\mathcal{V}(G)=\mathcal{B}_{M}(X)$.
- $\mathcal{E}(G)=\mathcal{B}_{M+1}(X)$ with $\mathrm{i}(e)=e_{[1, M]}$ and $\mathrm{t}(e)=e_{[2, M+1]}$.

Then $X_{G}=X^{[M+1]}$.

Higher edge graphs

Definition

Given G, define $G^{[N]}$ as follows:

- $\mathcal{V}\left(G^{[N]}\right)$ is the set of paths of length $N-1$ in G.
- $\mathcal{E}\left(G^{[N]}\right)$ is the set of paths of length N in G.
- For an edge $\pi=\pi_{1} \ldots \pi_{N}, \mathrm{i}(\pi)=\pi_{[1, N-1]}$ and $\mathrm{t}(\pi)=\pi_{[2, N]}$.

Theorem

For every graph $G, X_{G^{[N]}}=X_{G}^{[N]}$

Vertex shifts

Definition

Suppose B is a $r \times r$ boolean matrix.

- Put $\mathcal{F}=\left\{I J \in\{0, \ldots, r-1\}^{2} \mid B_{I, J}=0\right\}$.
- Then $\widehat{X}_{B}=X_{\mathcal{F}}$ is called the vertex shift of B.

Example

The golden mean shift is a vertex shift, with

$$
B=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Points of view

Theorem

(1) There is a bijection between 1-step SFT and vertex shifts.
(2) There is an embedding of edge shifts into vertex shifts.
(3) For every M-step SFT X there exists a graph G s.t. $X^{[M]}=\widehat{X}_{G}$ and $X^{[M+1]}=X_{G}$.
... then why not always use vertex shifts?

- Growth in the number of states.
- Better properties of integer matrices.

Powers of a graph

Definition

Let G be a graph. Define G^{N} as follows:

- A vertex in G^{N} is a vertex in G.
- An edge from $/$ to J in G^{N} is a path of length N from $/$ to J in G.

Facts

Let G be a graph and let A be its adjacency matrix.

- Then A^{N} is the adjacency matrix of G^{N}.
- Furthermore, if $X=\mathrm{X}_{G}$ then $X^{N}=\mathrm{X}_{G^{N}}$.

An application to data storage

In an ideal world

- Our data is encoded in a sequence of bits.
- The device reads and writes the data verbatim.
- N bits require N memory allocation units.

The main issue
The world we live in, is not ideal.

Hard disk drives 101

The physics

- The unit contains several rotating platters coated in a magnetic medium, and a head moving radially across the platters' tracks.
- An electrical current through the head magnetizes a portion of the track. This creates a bar magnet on the track.
- Reversing the current creates a bar with the opposite orientation.
- A polarity change generates a voltage pulse.

The logic

- Tracks are divided into cells of equal length L.
- A 0 is written by keeping the current. A 1 is written by reversing the current.
- A pulse is read as a 1 . A non-pulse is read as a 0 .

The scheme

Input sequence

Write current
Magnetic track

Read voltage

Output sequence

Two main problems with the naïve approach

Intersymbol interference

- If polarity changes are too close, the pulses are weaker.
- There must be a "minimum safe distance" Δ between changes.
- An encoding scheme where two 1 's are separated by at least $d 0$'s allows cells of size $L=\Delta /(d+1)$.

Clock drift

- A block of the form $10^{n} 1$ is read as two pulses separated by a time interval of length $L \cdot(n+1)$.
- If the clock is not precise, then the value for n is wrong.
- This can be corrected via a feedback loop for each pulse.
- If pulses are not "too rare", then errors won't accumulate.
- A typical requirement is: no more than $k 0$'s between two 1 's.

Frequency modulation (FM)

Idea

- Store the data adding a clock 1 between each pair of data bits.
- Recover the original message by ignoring the clock bits.

Advantages

- Stored data is a $(0,1)$-run length limited block.
- n bits can be stored on a strip of length $2 n \Delta$.

Modified frequency modulation (MFM)

Ideas

- If there are at least $d 0$'s between two 1 's, the detection window can be shrunk to $L=\Delta /(d+1)$.
- Some of the 1's in the data can be used for synchronization.

The technique
Use clock bits as follows:

- Between two 0's, insert a 1.
- Otherwise, insert a 0.

Then the stored sequence is a $(1,3)$-run length limited block.
Consequently, n bits can be stored in a strip of length $n \Delta$.

