Introduction to Symbolic Dynamics

Part 3: Sofic shifts

Silvio Capobianco

Institute of Cybernetics at TUT
April 28, 2010

Overview

- State splitting.
- Sofic shifts.
- Characterization of sofic shifts.
- Minimal right-resolving presentations.

Graphs

Definition

A graph G is made of:
(1) A finite set \mathcal{V} of vertices or states.
(2) A finite set \mathcal{E} of edges.
(3) Two maps i, t: $\mathcal{E} \rightarrow \mathcal{V}$, where $\mathrm{i}(e)$ is the initial state and $\mathrm{t}(e)$ is the terminal state of edge e.

Adjacency matrix of a graph
Given an enumeration $\mathcal{V}=\left\{v_{1}, \ldots, v_{r}\right\}$, the adjacency matrix of G is defined by

$$
(A(G))_{l, J}=\left|\left\{e \in \mathcal{E} \mid i(e)=v_{l}, t(e)=v_{J}\right\}\right|
$$

Graph shifts

Edge shifts

Let G be a graph and A its adjacency matrix. Then the edge shift

$$
\mathrm{X}_{G}=\mathrm{X}_{A}=\left\{\xi: \mathbb{Z} \rightarrow \mathcal{E} \mid \mathrm{t}\left(\xi_{i}\right)=\mathrm{i}\left(\xi_{i+1}\right) \forall i \in \mathbb{Z}\right\}
$$

is a 1 -step SFT.

Vertex shifts

Suppose B is a $r \times r$ boolean matrix.

- Put $\mathcal{F}=\left\{I J \in\{0, \ldots, r-1\}^{2} \mid B_{I, J}=0\right\}$.
- Then $\widehat{X}_{B}=X_{\mathcal{F}}$ is called the vertex shift of B.

State splitting

The aim
Given a graph G, obtain a new graph H.

Procedure

- Start with an "original" graph G.
- Partition the edges.
- Split each "original" state into one or more "derived" states, according to the partition of the edges.
- End with a "derived" graph H

The main question
What are the properties of H and X_{H} ?

Example

Before

After

Out-splitting

The basic idea

- Let $G=(\mathcal{V}, \mathcal{E})$ be a graph and let $I \in \mathcal{V}$.
- Let $\mathcal{E}_{I}=\{e \in \mathcal{E} \mid \mathrm{i}(e)=I\}, \mathcal{E}^{I}=\{e \in \mathcal{E} \mid \mathrm{t}(e)=I\}$.
- Partition $\mathcal{E}_{I}=\mathcal{E}_{l}^{1} \sqcup \mathcal{E}_{l}^{2} \sqcup \ldots \sqcup \mathcal{E}_{l}^{m}$.
- Put $\mathcal{V}(H)=(\mathcal{V}(G) \backslash\{I\}) \sqcup\left\{I^{1}, I^{2}, \ldots, I^{M}\right\}$.
- Construct $\mathcal{E}(H)$ from \mathcal{E} as follows:

Replace every $e \in \mathcal{E}^{\prime}$ with e^{1}, \ldots, e^{m} s.t. $\mathrm{i}\left(e^{k}\right)=\mathrm{i}(e)$ and $\mathrm{t}\left(e^{k}\right)=I^{k}$. Make each $f \in \mathcal{E}_{l}^{k}$ start from I^{k} instead of I.

Out-splittings

- Apply the same idea at all nodes.
- Let \mathcal{P} be the partition of \mathcal{E} used.
- Then $H=G^{[\mathcal{P}]}$ is an out-splitting of G, and G is an out-amalgamation of H.

Example

Consider the graph

Split $\mathcal{E}_{A}=\{t, x\} \cup\{y, z\}$. The resulting out-splitting is

Out-splittings and edge shifts

There. . .
Define $\Psi: \mathcal{B}_{1}\left(\mathrm{X}_{H}\right) \rightarrow \mathcal{B}_{1}\left(\mathrm{X}_{G}\right)$ as

$$
\Psi(e)= \begin{cases}f & \text { if } e=f^{k} \\ e & \text { otherwise } .\end{cases}
$$

... and back again
Define $\Phi: \mathcal{B}_{2}\left(\mathrm{X}_{G}\right) \rightarrow \mathcal{B}_{1}\left(\mathrm{X}_{H}\right)$ as

$$
\Phi(f e)= \begin{cases}f^{k} & \text { if } f \in \mathcal{E}^{\prime} \text { and } e \in \mathcal{E}_{I}^{k}, \\ f & \text { otherwise } .\end{cases}
$$

Theorem
The SBC $\psi=\Psi_{\infty}^{[0,0]}$ and $\phi=\Phi_{\infty}^{[0,1]}$ are each other's converse.

In-splitting

The dual idea

- Let $G=(\mathcal{V}, \mathcal{E})$ be a graph and let $I \in \mathcal{V}$.
- Let $\mathcal{E}^{\prime}=\{e \in \mathcal{E} \mid \mathrm{i}(e)=I\}, \mathcal{E}^{\prime}=\{e \in \mathcal{E} \mid \mathrm{t}(e)=I\}$.
- Partition $\mathcal{E}^{\prime}=\mathcal{E}_{1}^{\prime} \sqcup \ldots \sqcup \mathcal{E}_{m}^{\prime}$.
- Put $\mathcal{V}(H)=(\mathcal{V}(G) \backslash\{I\}) \sqcup\left\{I_{1}, \ldots, I_{m}\right\}$.
- Construct $\mathcal{E}(H)$ from \mathcal{E} as follows:

Replace every $e \in \mathcal{\mathcal { E } _ { l }}$ with e_{1}, \ldots, e_{m} s.t. $\mathrm{i}\left(e_{k}\right)=\mathrm{i}(e)$ and $\mathrm{t}\left(e_{k}\right)=I^{k}$. Make each $f \in \mathcal{E}_{k}^{\prime}$ start from I_{k} instead of I.

In-splittings

- Apply the same idea at all nodes.
- Let \mathcal{P} be the partition of \mathcal{E} used.
- Then $H=G_{[\mathcal{P}]}$ is an in-splitting of G, and G is an in-amalgamation of H.

Example

Consider the graph

Split $\mathcal{E}^{A}=\{t\} \cup\{s\}$. The resulting in-splitting is

Conjugating it all. . .

Splittings and Subshifts

- Let G and H be graphs.
- Suppose H is a splitting of G.
- Then X_{G} and X_{H} are conjugate.

More in general, if

$$
G=G_{0} \xrightarrow{f_{1}} G_{1} \xrightarrow{f_{2}} \ldots \xrightarrow{f_{n}} G_{n}=H
$$

and each f_{i} is either a splitting or an amalgamation, then $X_{G} \cong X_{H}$.

Advanced Splittings and Subshifts

Every conjugacy between edge shifts is a composition of splittings and amalgamations.

Splittings and matrices

Suppose G has n nodes and $H=G^{[\mathcal{P}]}$ has m.
The division matrix
It is the $n \times m$ boolean matrix D with

$$
D\left(I, J^{k}\right)=1 \text { iff } J \text { results from the splitting of } I .
$$

The edge matrix
It is the $m \times n$ integer matrix E where

$$
E\left(I^{k}, J\right)=\left|\mathcal{E}_{I}^{k} \cap \mathcal{E}^{J}\right|
$$

Theorem
$D E=A(G)$ and $E D=A(H)$.

Labeled graphs

Definition

Let G be a graph, A an alphabet.

- An A-labeling of G is a map $\mathcal{L}: \mathcal{E}(G) \rightarrow A$.
- A labeled graph is a pair $\mathcal{G}=(G, \mathcal{L})$ where G is a graph and \mathcal{L} an A-labeling of G (for some A).
If \mathcal{P} is a property of graphs and $\mathcal{G}=(G, \mathcal{L})$ is a labeled graph, then \mathcal{G} has property \mathcal{P} if G has property \mathcal{P}

Labeled graph homomorphism

Let $\mathcal{G}=\left(G, \mathcal{L}_{G}\right)$ and $\mathcal{H}=\left(H, \mathcal{L}_{H}\right)$ be A-labeled graphs.

- A labeled graph homomorphism from \mathcal{G} to \mathcal{H} is a graph homomorphism $(\partial \Phi, \Phi)$ from G to H s.t. $\left.\mathcal{L}_{H}(\Phi(e))\right)=\mathcal{L}_{G}(e)$ for every $e \in \mathcal{E}(G)$.
- A labeled graph isomorphism is a bijective labeled graph homomorphism.

Sofic shifts

Path labelings

Let $\mathcal{G}=(G, \mathcal{L})$ be an A-labeled graph.

- The labeling of a path $\pi=e_{1} \ldots e_{m}$ on G is the sequence $\mathcal{L}(\pi)=\mathcal{L}\left(e_{1}\right) \ldots \mathcal{L}\left(e_{m}\right)$.
- The labeling of a bi-infinite path $\xi \in \mathcal{E}(G)^{\mathbb{Z}}$ is the sequence $x=\mathcal{L}(\xi) \in A^{\mathbb{Z}}$ s.t. $x_{i}=\mathcal{L}\left(\xi_{i}\right)$ for every $i \in \mathbb{Z}$.
- We put

$$
X_{\mathcal{G}}=\left\{x \in A^{\mathbb{Z}}\left|\exists \xi \in X_{G}\right| x=\mathcal{L}(\xi)\right\}
$$

Definition

- $X \subseteq A^{\mathbb{Z}}$ is a sofic shift if $X=\mathrm{X}_{\mathcal{G}}$ for some A-labeled graph \mathcal{G}.
- In this case, \mathcal{G} is a presentation of X.

Basic facts on sofic shifts

Sofic shifts are shift spaces

\mathcal{L} provides a 1-block code \mathcal{L}_{∞} from X_{G} to $A^{\mathbb{Z}}$, and $X_{\mathcal{G}}=\mathcal{L}_{\infty}\left(X_{G}\right)$.
Shifts of finite type are sofic

- Suppose X has memory M.
- Construct the de Bruijn graph G of order M. Then $X_{G}=X^{[M+1]}$.
- Define $\mathcal{L}: \mathcal{E}(G) \rightarrow A$ by $\mathcal{L}\left(\left[a_{1}, \ldots, a_{M+1}\right]\right)=a_{1}$.
- Then $\mathcal{G}=(G, \mathcal{L})$ is a presentation of X.
$\mathrm{X}_{\mathcal{G}}$ is a SFT iff some \mathcal{L}_{∞} is a conjugacy
\Rightarrow The labeling of the de Bruijn graph induces a conjugacy.
\Leftarrow A conjugate of a SFT is a SFT.

Counterexamples

A sofic shift which is not a SFT

The even shift is presented by

A shift subspace which is not sofic
If the context free shift was sofic...

- Let $\mathcal{G}=(G, \mathcal{L})$. Suppose G has s states.
- Then any path on G representing $a b^{s+1} c^{s+1}$ has a loop between the first and the last b.
- Let $I>0$ be the length of the loop. Then $a b^{I+s+1} c^{s+1} a$ is a valid labeling for a path...

Characterization of sofic shifts, I

Theorem
Let X be a subshift. trae.
(1) X is a sofic shift.
(2) X is a factor of a sFT.

Consequences

- A factor of a sofic shift is sofic.
- A shift conjugate to a sofic shift is sofic.

Proof

Sofic shifts are factors of SFT
$X_{\mathcal{G}}$ is a factor of X_{G} through \mathcal{L}_{∞}.

Factors of SFT are sofic

- Suppose $X=\Phi_{\infty}^{[-m, n]}(Y)$ for a SFT Y.
- Suppose Y has memory $m+n$. (Can always do by increasing m.)
- Let G be the de Bruijn graph of Y of order $m+n$. Then $Y \cong X_{G}$.
- Define $\mathcal{L}: E(G) \rightarrow A$ by $\mathcal{L}(e)=\Phi(e)$. Then

Follower sets

Definition

Let X be a subshift over A.

- For $w \in \mathcal{B}(X)$ let $F_{X}(w)=\{u \in \mathcal{B}(X) \mid w u \in \mathcal{B}(X)\}$.
- F_{X} is called the follower set of w in X.
- Put $C_{X}=\left\{F_{X}(w) \mid w \in \mathcal{B}(X)\right\}$.

Examples

- If $X=A^{\mathbb{Z}}$ then $C_{X}=\left\{A^{*}\right\}$.
- If $X=X_{G}$ and G is essential then C_{X} has $|\mathcal{E}(G)|$ elements.
- If X is the context free shift then the $F_{X}\left(a b^{m}\right)$'s are pairwise different.

A more detailed example

Consider the even shift presented by

Then $C_{X}=\left\{C_{0}, C_{1}, C_{2}\right\}$ with

$$
\begin{aligned}
& C_{0}=F_{X}(0)=0^{*}\left((00)^{*} 1\right)^{*} 0^{*} \\
& C_{1}=F_{X}(1)=0^{*} \cup\left((00)^{*} 1\right)^{*} 0^{*} \\
& C_{2}=F_{X}(10)=0\left((00)^{*} 1\right)^{*} 0^{*}
\end{aligned}
$$

In fact,

$$
F_{X}(w)= \begin{cases}C_{0} & \text { if } w \in 0^{*} \\ C_{1} & \text { if } w \in \mathcal{B}(X) 1(00)^{*} \\ C_{2} & \text { if } w \in \mathcal{B}(X) 10(00)^{*}\end{cases}
$$

The follower set graph

Construction

Suppose C_{X} is finite.

- Set $\mathcal{V}(G)=C_{X}$.
- For every $w \in \mathcal{B}(X)$ and $a \in A$ s.t. wa $\in \mathcal{B}(X)$, draw an edge from $F_{X}(w)$ to $F_{X}(w a)$. labeled with a.

The resulting labeled graph $\mathcal{G}=(G, \mathcal{L})$ is the follower set graph \mathcal{G}_{X} of X.

Why the construction works
If $F_{X}(w)=F_{X}(v)=U$ then $w a \in \mathcal{B}(X)$ iff $v a \in \mathcal{B}(X)$.

- In fact, this is the same as saying that $a \in U$.

Moreover, in this case $F_{X}(w a)=F_{X}(v a)$.

- In fact, $u \in F_{X}(w a)$ iff $a u \in F_{X}(w) \ldots$

Characterization of sofic shifts, II

Theorem

- Let X be a subshift s.t. C_{X} is finite.
- Then the follower set graph is a presentation of X.
- In particular, X is sofic.

Proof

- Let \mathcal{G} be the follower set graph of X.
- If path π with label u starts from node $F_{X}(w)$, then $w u \in \mathcal{B}(X)$, and $u \in \mathcal{B}(X)$ as well.
- Suppose then $u \in \mathcal{B}(X)$. Take w s.t. $w u \in \mathcal{B}(X)$ and $|w|>|\mathcal{V}(X)|$.
- Then $w u$ is the labeling of a path $\alpha \beta \gamma \pi$ where π is labeled by u and β is a loop.
- Then there exists a left-infinite path terminating with π, which can be extended to a bi-infinite path.

Characterization of sofic shifts, II (cont.)

Theorem
A sofic shift has finitely many follower sets.
Constructing follower sets from labeled graphs

- Consider $w \in \mathcal{B}(X)$, where $X=X_{\mathcal{G}}$ is a sofic shift.
- There are finitely many labeled paths on \mathcal{G} that present w.
- Then, there are also finitely many states where a path presenting w can terminate.
- But words with the same set of final states must have same followers.
- Hence, there are at most as many follower sets as subsets of the set of states of \mathcal{G}.

Right-resolving presentations

Right-resolving labelings
A labeled graph $\mathcal{G}=(G, \mathcal{E})$ is right-resolving if \mathcal{L} is injective on each \mathcal{E}_{l}, i.e., \mathcal{L} puts different labels on different edges from same node.

Examples

- The labeled graph 0 - 1 is right-resolving.
- The labeled graph 0

The labeled graph 0 (But presents the same shift as the first one.)

The subset graph of a labeled graph

Definition

Let $\mathcal{G}=(G, \mathcal{L})$ be a labeled graph.

- Let $\mathcal{V}(H)$ be the set of non-empty subsets of $\mathcal{V}(G)$.
- For $I \in \mathcal{V}(H)$ and $a \in A$, let

$$
J=\{\mathrm{t}(e) \mid \mathrm{i}(e) \in I, \mathcal{L}(e)=a\}
$$

- If J is non-empty, set e^{\prime} from $/$ to J in $\mathcal{E}(H)$, and put $\mathcal{L}^{\prime}\left(e^{\prime}\right)=a$. $\mathcal{H}=\left(H, \mathcal{L}^{\prime}\right)$ is the subset graph of \mathcal{G}. Observe that \mathcal{H} is right-resolving.

Example

Let \mathcal{G} be the labeled graph

Then the subset graph of \mathcal{G} is

Right-resolving presentations

Let $\mathcal{G}=(G, \mathcal{L})$ be a labeled graph and let $\mathcal{H}=\left(H, \mathcal{L}^{\prime}\right)$ its subset graph.

Theorem

\mathcal{H} is a presentation of $X_{\mathcal{G}}$.

Reason why

- Clearly $\mathcal{B}\left(\mathrm{X}_{\mathcal{G}}\right) \subseteq \mathcal{B}\left(\mathrm{X}_{\mathcal{H}}\right)$.
- On the other hand, let π be a path in \mathcal{H} from R to S labeled u.
- By iterating the construction, we observe that S is the set of vertices of G reachable from vertices in R via a path labeled u.
- Since R is nonempty, $u \in \mathcal{B}\left(X_{\mathcal{G}}\right)$.

The merged graph of a labeled graph

Follower sets of a labeled graph
Let $\mathcal{G}=(G, \mathcal{L})$ be a labeled graph. The follower set of $I \in \mathcal{V}(G)$ is

$$
F_{\mathcal{G}}(I)=\{\mathcal{L}(\pi) \mid \mathrm{i}(\pi)=I\}
$$

\mathcal{G} is follower-separated if $I \neq J$ implies $F_{\mathcal{G}}(I) \neq F_{\mathcal{G}}(J)$.
The merged graph
Given \mathcal{G}, define $\mathcal{H}=\left(H, \mathcal{L}^{\prime}\right)$ as follows:

- A state in H is a set of states in G having the same follower set.
- There is an edge in H from $/$ to J labeled a iff there is an edge in G from a state in $/$ to a state in J labeled a.

The merged graph lemma

Statement

Let $\mathcal{G}=(G, \mathcal{L})$ be a labeled graph and $\mathcal{H}=\left(H, \mathcal{L}^{\prime}\right)$ its merged graph.
(1) \mathcal{H} is follower-separated.
(2) \mathcal{H} is a presentation of $X_{\mathcal{G}}$.
(0) If \mathcal{G} is irreducible then \mathcal{H} is irreducible.
(If \mathcal{G} is right-resolving then \mathcal{H} is right-resolving.

Corollary

A minimal right-resolving presentation of a sofic shift is follower-separated.

The merged graph of a right-resolving graph is

 right-resolving- Let \mathcal{G} be a right-resolving graph and let \mathcal{H} be its merged graph.
- Let η be an edge in \mathcal{H} from \mathcal{I} to \mathcal{J} labeled a.
- Then there exists an edge e in \mathcal{G} from $I \in \mathcal{I}$ to $J \in \mathcal{J}$ labeled a.
- Since \mathcal{G} is right-resolving, e is unique, and a and $F_{\mathcal{G}}(I)$ determine $F_{\mathcal{G}}(J)$.
- However, $F_{\mathcal{H}}(\mathcal{I})=F_{\mathcal{G}}(I)$ and $F_{\mathcal{H}}(\mathcal{J})=F_{\mathcal{G}}(J)$.
- This means that a and $F_{\mathcal{H}}(\mathcal{I})$ determine $F_{\mathcal{H}}(\mathcal{J})$.

Irreducible shifts and presentations

If \mathcal{G} is irreducible then $X_{\mathcal{G}}$ is irreducible

- Let $u, v \in \mathcal{B}\left(\mathrm{X}_{\mathcal{G}}\right)$.
- Let ξ and η be paths on \mathcal{G} labeled u and v, respectively.
- Take the labeling w of a path π from $t(\xi)$ to $i(\eta)$.

It does not work the other way around!

- Let \mathcal{H} be made of two disjoint copies of \mathcal{G}.
- Then $X_{\mathcal{H}}=X_{\mathcal{G}}$.

Right-resolving presentations and reducibility

Theorem

- Let X be an irreducible sofic shift.
- Let \mathcal{G} be a minimal right-resolving presentation for X.
- Then \mathcal{G} is irreducible.

```
Corollary
A sofic shift is irreducible iff it has an irreducible presentation.
```


Proof of previous theorem

For every state I there exists a word $u_{I} \in \mathcal{B}\left(X_{\mathcal{G}}\right)$ s.t. every path presenting u_{l} contains l.

- Suppose otherwise.
- Form \mathcal{H} from \mathcal{G} by removing I and the adjacent edges.
- Then \mathcal{H} is a presentation of X-against minimality of \mathcal{G}.

Let then I and J be any two states in \mathcal{G}.

- Since X is irreducible, $u_{i} w u_{J} \in \mathcal{B}(X)$ for some w.
- Let π be a path on \mathcal{G} s.t. $\mathcal{L}(\pi)=u_{l} w u_{J}$.
- Then $\pi=\tau_{/} \omega \tau_{J}$ with ω being a path from $/$ to J.

Synchronizing words

Definition

Let \mathcal{G} be a labeled graph.

- A word $w \in \mathcal{B}\left(\mathrm{X}_{\mathcal{G}}\right)$ is synchronizing if every path representing w terminates in the same node.
- w focuses on $/$ if every path representing w terminates in I.

Examples

- Every word in an edge shift is synchronizing.
- No word over 0

The importance of being right-resolving

Theorem

Let \mathcal{G} be a right-resolving labeled graph.

- If w is synchronizing and $w u \in \mathcal{B}\left(X_{\mathcal{G}}\right)$ then $w u$ is synchronizing.
- Moreover, if w focuses on I, then $F_{X_{\mathcal{G}}}(w)=F_{\mathcal{G}}(I)$.
- If, in addition, \mathcal{G} is follower-separated then every $u \in \mathcal{B}\left(X_{\mathcal{G}}\right)$ is a prefix of a synchronizing word.

Reason why the third point holds
Put $T(w)=\{\mathrm{t}(\pi) \mid \mathcal{L}(\pi)=w\}$.

- Observe that $|T(w)|=1$ iff w is synchronizing.
- If $I, J \in T(u)$ then:

Find $v_{l} \in F_{l}(u) \backslash F_{J}(u)$.
There is at most one path labeled v_{l} starting at each element of $T(u)$. But $v_{l} \notin F_{J}(u)$ implies $\left|T\left(u v_{l}\right)\right|<|T(u)|$. Iterate...

Fischer's theorem

Statement of the theorem

- Let X be an irreducible sofic shift.
- Let \mathcal{G} and \mathcal{H} be minimal right-resolving presentations of X.
- Then \mathcal{G} and \mathcal{H} are isomorphic as labeled graphs.

Corollary

- Let X be an irreducible sofic shift.
- Let \mathcal{G} be an irreducible right-resolving presentation of X.
- Then the merged graph of \mathcal{G} is the minimal right-resolving presentation of X.

Proof of Fischer's theorem

Auxiliary lemma

If X is a sofic shift and \mathcal{G} and \mathcal{H} are presentations of X that are

- irreducible,
- right-resolving, and
- follower-separated
then \mathcal{G} and \mathcal{H} are isomorphic as labeled graphs.

Fischer's theorem follows then.

Let \mathcal{G} and \mathcal{H} be minimal right-resolving presentations for X.

- Being minimal, they are follower-separated.
- Since X is irreducible and \mathcal{G} and \mathcal{H} are minimal right-resolving presentations of X, they are irreducible.
- By the lemma, they are isomorphic as labeled graphs.

Proof of the auxiliary lemma

\mathcal{G} and \mathcal{H} have a common synchronizing word

- Let u be any word.
- Since \mathcal{G} is follower-separated, some $u v$ is synchronizing for \mathcal{G}.
- Since \mathcal{H} is follower-separated, some $w=u v z$ is synchronizing for \mathcal{H}.

Suppose w focuses on $I \in \mathcal{V}(G)$ and $J \in \mathcal{V}(H)$

- Put $\partial \Phi(I)=J$.
- Put $\partial \Phi\left(I^{\prime}\right)=J^{\prime}$ if:

There is a word u s.t. wu focuses on I^{\prime} in \mathcal{G}.
The same word wu focuses on J^{\prime} in \mathcal{H}.

- Let now e be an edge from I_{1} to I_{2} in \mathcal{G} labeled a.

If $w u$ focuses on I_{1}, then wua focuses on I_{2}.
Put $J_{k}=\partial \phi\left(I_{k}\right)$. Then $w u$ focuses on J_{1} and wua focuses on J_{2}.
There is one edge f from J_{1} to J_{2} labeled a. Set $\Phi(e)=f$.

Fischer's theorem does not hold for reducible shifts

Counterexample (Jonoska, 1996)

Let \mathcal{G} and \mathcal{H} be the following labeled graphs:

\mathcal{G} and \mathcal{H} are not isomorphic
\mathcal{H} has a self-loop labeled a, which \mathcal{G} has not.
\mathcal{G} and \mathcal{H} present the same sofic shift
Check that the language is the same.
Observe that such sofic shift X is reducible.

No right-resolving graph on three states can present X
X has at least three follower sets

- $a a b \in F_{X}(a a) \backslash\left(F_{X}(c) \cup F_{X}(c b)\right)$
- $c \in F_{X}(c) \backslash\left(F_{X}(a a) \cup F_{X}(c b)\right)$
- $a c \in F_{X}(c b) \backslash\left(F_{X}(a a) \cup F_{X}(c)\right)$

If \mathcal{K} has only three states. . .

- Then we could associate them so that:
- $F_{\mathcal{K}}(1) \subseteq F_{X}(a a)$
- $F_{\mathcal{K}}(2) \subseteq F_{X}(c)$
- $F_{\mathcal{K}}(3) \subseteq F_{X}(c b)$
- But $F_{X}(a a b)=F_{X}(c) \cup F_{X}(c b)$.

Then there must be two paths representing $a a b$, one starting from 2 and one from 3...

- But $a a b \notin\left(F_{X}(c) \cup F_{X}(c b)\right)$
. . . so they must both end at 1 .

Soon on these screens. . .

- Constructions and algorithms with sofic shifts
- Entropy of a shift subspace
- Perron-Frobenius theory for non-negative matrices

Thank you for attention!

