Introduction to Symbolic Dynamics

Part 4: Entropy

Silvio Capobianco
Institute of Cybernetics at TUT

May 12, 2010

Overview

- Constructions and algorithms on sofic shifts.
- Entropy of a shift subspace.
- Computing entropy via Perron-Frobenius theory.

Sofic shifts

Path labelings

Let $\mathcal{G}=(G, \mathcal{L})$ be an A-labeled graph.

- The labeling of a path $\pi=e_{1} \ldots e_{m}$ on G is the sequence $\mathcal{L}(\pi)=\mathcal{L}\left(e_{1}\right) \ldots \mathcal{L}\left(e_{m}\right)$.
- The labeling of a bi-infinite path $\xi \in \mathcal{E}(G)^{\mathbb{Z}}$ is the sequence $x=\mathcal{L}(\xi) \in A^{\mathbb{Z}}$ s.t. $x_{i}=\mathcal{L}\left(\xi_{i}\right)$ for every $i \in \mathbb{Z}$.
- We put

$$
X_{\mathcal{G}}=\left\{x \in A^{\mathbb{Z}}\left|\exists \xi \in X_{G}\right| x=\mathcal{L}(\xi)\right\}
$$

Definition

- $X \subseteq A^{\mathbb{Z}}$ is a sofic shift if $X=\mathrm{X}_{\mathcal{G}}$ for some A-labeled graph \mathcal{G}.
- In this case, \mathcal{G} is a presentation of X.

Special kinds of presentations

A labeled graph $\mathcal{G}=(G, \mathcal{L})$ is:

- right-resolving if initial state and label determine edge
- follower-separated if differen states have different follower sets

Fischer's theorem

Two minimal right-resolving presentations of an irreducible sofic shifts are isomorphic.

Unions

Union of two graphs
Let $\mathcal{G}_{1}=\left(G_{1}, \mathcal{L}_{1}\right)$ and $\mathcal{G}_{2}=\left(G_{1}, \mathcal{L}_{2}\right)$ be labeled graphs.

- Set $\mathcal{V}(G)=\mathcal{V}\left(G_{1}\right) \sqcup \mathcal{V}\left(G_{2}\right)$.
- Set $\mathcal{E}(G)=\mathcal{E}\left(G_{1}\right) \sqcup \mathcal{E}\left(G_{2}\right)$.
- Set $\mathcal{L}(e)=\mathcal{L}_{i}(e)$ if $e \in \mathcal{E}\left(G_{i}\right)$

Then $\mathcal{G}=(G, \mathcal{L})=\mathcal{G}_{1} \cup \mathcal{G}_{2}$ is the union of \mathcal{G}_{1} and \mathcal{G}_{2}.
Union of two sofic shifts is sofic
$\mathcal{G}_{1} \cup \mathcal{G}_{2}$ is a presentation of $\mathrm{X}_{\mathcal{G}_{1}} \cup \mathrm{X}_{\mathcal{G}_{2}}$.

Products

Product of two graphs
Let $\mathcal{G}_{1}=\left(G_{1}, \mathcal{L}_{1}\right)$ and $\mathcal{G}_{2}=\left(G_{1}, \mathcal{L}_{2}\right)$ be labeled graphs.

- Set $\mathcal{V}(G)=\mathcal{V}\left(G_{1}\right) \times \mathcal{V}\left(G_{2}\right)$.
- Set $\mathcal{E}(G)=\mathcal{E}\left(G_{1}\right) \times \mathcal{E}\left(G_{2}\right)$.
- Set $\mathcal{L}(e)=\mathcal{L}\left(e_{1}, e_{2}\right)=\left(\mathcal{L}_{1}\left(e_{1}\right), \mathcal{L}_{2}\left(e_{2}\right)\right)$.

Then $\mathcal{G}=(G, \mathcal{L})=\mathcal{G}_{1} \times \mathcal{G}_{2}$ is the product of \mathcal{G}_{1} and \mathcal{G}_{2}.

Product of two sofic shifts is sofic $\mathcal{G}_{1} \times \mathcal{G}_{2}$ is a presentation of $X_{\mathcal{G}_{1}} \times X_{\mathcal{G}_{2}}$.

Label products

Label product of two graphs
Let $\mathcal{G}_{1}=\left(G_{1}, \mathcal{L}_{1}\right)$ and $\mathcal{G}_{2}=\left(G_{1}, \mathcal{L}_{2}\right)$ be labeled graphs.

- Set $\mathcal{V}(G)=\mathcal{V}\left(G_{1}\right) \times \mathcal{V}\left(G_{2}\right)$.
- Set $\mathcal{E}(G)=\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}\left(G_{1}\right) \times \mathcal{E}\left(G_{2}\right) \mid \mathcal{L}_{1}\left(e_{1}\right)=\mathcal{L}_{2}\left(e_{2}\right)\right\}$.
- Set $\mathcal{L}(e)=\mathcal{L}\left(e_{1}, e_{2}\right)=\mathcal{L}_{1}\left(e_{1}\right)=\mathcal{L}_{2}\left(e_{2}\right)$.

Then $\mathcal{G}=(G, \mathcal{L})=\mathcal{G}_{1} * \mathcal{G}_{2}$ is the label product of \mathcal{G}_{1} and \mathcal{G}_{2}.

Intersection of two sofic shifts is sofic $\mathcal{G}_{1} * \mathcal{G}_{2}$ is a presentation of $\mathrm{X}_{\mathcal{G}_{1}} \cap \mathrm{X}_{\mathcal{G}_{2}}$.

And it isn't over here. . .
If \mathcal{G}_{1} and \mathcal{G}_{2} are right-resolving, then $\mathcal{G}_{1} * \mathcal{G}_{2}$ is right-resolving.

Equality of sofic shifts

The problem
Given \mathcal{G}_{1} and \mathcal{G}_{2}, determine whether $\mathrm{X}_{\mathcal{G}_{1}}=\mathrm{X}_{\mathcal{G}_{2}}$.

The idea

Express equality of sofic shifts through the constructions seen before.
An useful lemma

- Let $G=(\mathcal{V}, \mathcal{E})$ be a graph with r states.
- Let $\mathcal{S} \subseteq \mathcal{V}$ contain s states.
- For $I \in \mathcal{V} \backslash \mathcal{S}$ let $U_{I}=\{\pi$ path on $G \mid \mathrm{i}(\pi)=I, \mathrm{t}(\pi) \in \mathcal{S}\}$.
- If U_{I} is nonempty then $\min \left\{|\pi| \mid \pi \in U_{l}\right\} \leq r-s$.
- Thus, there is a path from $I \notin \mathcal{S}$ to $J \in \mathcal{S}$ iff $B_{I, J}>0$, where $B=\sum_{i=1}^{r-s} A^{i}$.

Equality of sofic shifts is decidable

The idea

Given \mathcal{G}_{1} and \mathcal{G}_{2}, construct $\hat{\mathcal{G}}$ s.t. TFAE:
(1) There is a word in $\mathcal{B}\left(\mathrm{X}_{\mathcal{G}_{i}}\right) \backslash \mathcal{B}\left(\mathrm{X}_{\mathcal{G}_{j}}\right)$.
(2) There is a path in $\widehat{\mathcal{G}}$ from some state \mathcal{I} to some set \mathcal{S}_{i}.

The algorithm
(1) Let \mathcal{G}_{i}^{\prime} be \mathcal{G}_{i} plus a sink K_{i} : If there is no edge from / labeled a, make an edge from $/$ to K_{i} labeled a; Add all self-loops to K_{i}.
(2) Let $\widehat{\mathcal{G}}_{i}$ be the subset graph of \mathcal{G}_{i}^{\prime}. Let $\mathcal{K}_{i}=\left\{K_{i}\right\}$.
(3) Let $\widehat{\mathcal{G}}=\widehat{\mathcal{G}_{1}} * \widehat{\mathcal{G}_{2}}$. Set $\mathcal{I}=\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$.
(1) Set $\mathcal{S}_{1}=\left\{\left(\mathcal{J}, \mathcal{K}_{2}\right) \mid \mathcal{J} \neq \mathcal{K}_{1}\right\}$ and $\mathcal{S}_{2}=\left\{\left(\mathcal{K}_{1}, \mathcal{J}\right) \mid \mathcal{J} \neq \mathcal{K}_{2}\right\}$

Cost of the algorithm

If \mathcal{G}_{i} has r_{i} states...
\ldots then $\widehat{\mathcal{G}}$ has $\left(2^{r_{1}+1}-1\right) \cdot\left(2^{r_{2}+1}-1\right)$.

Could one do better?

- In general, no.
- But maybe, in special cases...

A hint from Fischer's theorem

- Suppose \mathcal{G}_{1} and \mathcal{G}_{2} are irreducible and right-resolving.
- Let \mathcal{H}_{i} be the minimal right-resolving presentation of $\mathcal{X}_{\mathcal{G}_{i}}$.
- Then $\mathrm{X}_{\mathcal{G}_{1}}=\mathrm{X}_{\mathcal{G}_{2}}$. if and only if $\mathcal{H}_{1} \cong \mathcal{H}_{2}$.

Constructing the minimal right-resolving presentation

The idea

- Start from an irreducible right-resolving presentation.
- Its merged graph is the minimal right-resolving presentation.

Deciding equality of follower sets
(1) Let \mathcal{G}^{\prime} be \mathcal{G} with a sink K, as before.
(2) Set $\widehat{\mathcal{G}}=\mathcal{G}^{\prime} * \mathcal{G}^{\prime}, \mathcal{I}=\mathcal{V} \times \mathcal{V}, \mathcal{S}=(\mathcal{V} \times\{K\}) \cup(\{K\} \times \mathcal{V})$.
(3) Let I and J be two distinct nodes in \mathcal{G}. TFAE.

$$
F_{\mathcal{G}}(I) \neq F_{\mathcal{G}}(J) .
$$

There is a path from (I, J) to \mathcal{S} in $\widehat{\mathcal{G}}$.

Determining finiteness of type of sofic shifts

Theorem A

- Let \mathcal{G} be a right-resolving labeled graph.
- Suppose that every $w \in \mathcal{B}_{N}\left(X_{\mathcal{G}}\right)$ is synchronizing for \mathcal{G}.
- Then $X_{\mathcal{G}}$ is an N-step SFT.

Theorem B

- Let X be an irreducible sofic shift.
- And let $\mathcal{G}=(G, \mathcal{L})$ be its minimal right-resolving presentation.
- Suppose that X is an N-step SFT.
- Then:

Every $w \in \mathcal{B}_{N}\left(\mathrm{X}_{\mathcal{G}}\right)$ is synchronizing for \mathcal{G}.
\mathcal{L}_{∞} is a conjugacy.
If G has r states then X is $\left(r^{2}-r\right)$-step.

Proof of Theorems A and B

Proof of Theorem A

- Suppose $u w, w v \in \mathcal{B}\left(\mathrm{X}_{\mathcal{G}}\right)$ with $w \geq N$-then w is synchronizing.
- If $u w=\mathcal{L}(\rho \pi)$ and $w u=\mathcal{L}(\tau \sigma)$, then $\mathrm{t}(\pi)=\mathrm{t}(\tau)$.
- Then $u w v=\mathcal{L}(\rho \pi \sigma) \in \mathcal{B}\left(\mathrm{X}_{\mathcal{L}}\right)$.

Proof of Theorem B

- Suppose $|w|=N$ and $w=\mathcal{L}(\pi)=\mathcal{L}(\tau)$ with $t(\pi) \neq \mathrm{t}(\tau) \ldots$

Let $v \in F_{\mathcal{G}}(\mathrm{t}(\pi)) \backslash F_{\mathcal{G}}(\mathrm{t}(\tau))$, u synchronizing word focusing on $\mathrm{i}(\tau)$.
Then $u w, w v \in \mathcal{B}(X)$ but $u w v \notin \mathcal{B}(X)$, against X being N-step.

- If $x=\mathcal{L}_{\infty}(y)=\mathcal{L}_{\infty}(z)$, then $y_{[i, \infty)}=z_{[i, \infty)}$ because
$\mathcal{L}\left(y_{[i-N, i-1]}\right)=\mathcal{L}\left(z_{[i-N, i-1]}\right)$ is synchronizing and \mathcal{G} is right-resolving.
- The graph $\mathcal{G} * \mathcal{G}$ minus diagonal vertices checks precisely non-synchronizing words and has $r^{2}-r$ states.

Entropy

Definition

The entropy of a nonempty shift X is

$$
h(X)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\mathcal{B}_{n}(X)\right|=\inf _{n \geq 1} \frac{1}{n} \log \left|\mathcal{B}_{n}(X)\right|
$$

The limit above exists and the equality holds because for every $m, n \geq 1$

$$
\left|\mathcal{B}_{m+n}(X)\right| \leq\left|\mathcal{B}_{m}(X)\right| \cdot\left|\mathcal{B}_{n}(X)\right|
$$

If $X=\emptyset$ we put $h(X)=-\infty$.

Quick examples

- If X is a full shift on an alphabet of r elements then $h(X)=\log r$.
- If G is a graph on k nodes with r outgoing edges per node then $h\left(\mathrm{X}_{G}\right)=\log r$.

The entropy of the golden mean shift

The idea for the computation

- Consider the even shift as the vertex shift of

- For $n \geq 2$ there is a one-to-one correspondence between $\mathcal{B}_{n}\left(\widehat{X}_{G}\right)$ and $\mathcal{B}_{n-1}\left(\mathrm{X}_{G}\right)$.
- We can compute the size of this through the adjacency matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

because

$$
\left|\mathcal{B}_{m}\left(\mathrm{X}_{G}\right)\right|=\left(A^{m}\right)_{0,0}+\left(A^{m}\right)_{0,1}+\left(A^{m}\right)_{1,0}+\left(A^{m}\right)_{1,1}
$$

The entropy of the golden mean shift (cont.)

Eigenvalues and eigenvectors

- The characteristic polynomial of A is

$$
\chi_{A}(t)=t^{2}-t-1
$$

which has solutions

$$
\lambda=\frac{1+\sqrt{5}}{2} ; \mu=\frac{1-\sqrt{5}}{2}
$$

λ is known as the golden mean.

- Corresponding eigenvectors of A are

$$
\mathbf{v}_{\lambda}=\binom{\lambda}{1} ; \mathbf{v}_{\mu}=\binom{\mu}{1}
$$

The entropy of the golden mean shift (end)

Diagonalizing

- Let $P=\left(\begin{array}{cc}\lambda & \mu \\ 1 & 1\end{array}\right)$. Then

$$
A^{m}=P\left(\begin{array}{cc}
\lambda^{m} & 0 \\
0 & \mu^{m}
\end{array}\right) P^{-1}=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
\lambda^{m+1}-\mu^{m+1} & \lambda^{m}-\mu^{m} \\
\lambda^{m}-\mu^{m} & \lambda^{m-1}-\mu^{m-1}
\end{array}\right)
$$

- But $\lambda^{m+2}=\lambda^{m+1}+\lambda^{m}$ because $\lambda^{2}=\lambda+1$, and similar with μ.
- Hence $\left|\mathcal{B}_{n}\left(\widehat{X}_{G}\right)\right|=\frac{1}{\sqrt{5}}\left(\lambda^{n+2}-\mu^{n+2}\right)$, from which

$$
\begin{aligned}
h\left(\widehat{X}_{G}\right) & =\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\frac{1}{\sqrt{5}} \lambda^{n+2}\left(1-\left(\frac{\mu}{\lambda}\right)^{n+2}\right)\right) \\
& =\log \lambda
\end{aligned}
$$

The entropy of the even shift

The idea for the computation

- Consider the even shift as presented by

- Each word with a 1 has one presentation. 0^{n} has two presentations.
- Then, $\left|\mathcal{B}_{n}\left(\mathrm{X}_{\mathcal{G}}\right)\right|=\left|\mathcal{B}_{n}\left(\mathrm{X}_{G}\right)\right|-1$.
- Then clearly $h($ even shift $)=h($ golden mean shift $)=\log \lambda$.

Entropy and sliding block codes

Theorem

If Y is a factor of X then $h(Y) \leq h(X)$.

Consequences

- Entropy is a shift invariant, i.e., conjugate shifts have same entropy. In particular, $h\left(X^{[N]}\right)=h(X)$.
- If $\mathcal{G}=(G, \mathcal{L})$ then $h\left(\mathrm{X}_{\mathcal{G}}\right) \leq h\left(\mathrm{X}_{G}\right)$.
- Two full shifts are conjugate iff the size of their alphabets is the same.
- The golden mean shift is not conjugate to any full shift.
- If Y embeds into X then $h(Y) \leq h(X)$.

Reason why the theorem holds

If $\Phi_{\infty}^{[-m, \alpha]}: X \rightarrow Y$ is a factor code, then $\left|\mathcal{B}_{n}(Y)\right| \leq\left|\mathcal{B}_{m+n+\alpha}(X)\right|$.

Entropy and labeled graphs

Theorem

Let $\mathcal{G}=(G, \mathcal{L})$ be a right-resolving labeled graph.
Then $h\left(\mathrm{X}_{\mathcal{G}}\right)=h\left(\mathrm{X}_{\mathcal{G}}\right)$.
Reason why

- Suppose G has k states.
- Since \mathcal{G} is right-resolving, there can be at most k paths representing each $w \in \mathcal{B}\left(\mathrm{X}_{\mathcal{G}}\right)$.
- Thus, $\left|\mathcal{B}_{n}\left(\mathrm{X}_{G}\right)\right| \leq k \cdot\left|\mathcal{B}_{n}\left(\mathrm{X}_{\mathcal{G}}\right)\right|$.

Estimates on $\left|\mathcal{B}_{n}\left(\mathrm{X}_{G}\right)\right|$ for "good" $A(G)$

Let G be a graph with at least one edge and A its adjacency matrix.
The key hypothesis
Suppose A has a positive eigenvector \mathbf{v}.

A long series of consequences

- The corresponding eigenvalue λ is positive.
- If $m=\min _{i} v_{i}$ and $M=\max _{i} v_{i}$, then

$$
\frac{m}{M} \lambda^{n} \leq \sum_{l, J=1}^{r}\left(A^{n}\right)_{l, J} \leq \frac{r M}{m} \lambda^{n}
$$

which implies $h\left(X_{G}\right)=\log \lambda$.

- λ is the only eigenvalue of A corresponding to a positive eigenvector.
- If μ is any other eigenvalue for A, it can be shown that $|\mu| \leq \lambda$.

The Perron-Frobenius theorem

Let A be a nonnegative irreducible nonzero matrix.
(1) A has a positive eigenvector \mathbf{v}_{A}.
(2) The eigenvalue λ_{A} corresponding to \mathbf{v}_{A} is positive.
(3) λ_{A} is algebraically-and geometrically-simple, i.e.,

- $\operatorname{det}(t l-A)=\left(t-\lambda_{A}\right) p(t)$ with $p\left(\lambda_{A}\right) \neq 0$, and
- $\operatorname{dim}\left\{\mathbf{v} \mid A \mathbf{v}=\lambda_{A} \mathbf{v}\right\}=1$.
(9) If μ is another eigenvalue of A then $|\mu| \leq \lambda_{A}$.
(3) Any positive eigenvector of A is a positive multiple of \mathbf{v}_{A}.

The value λ_{A} is called the Perron eigenvalue of A

Computing entropy with Perron-Frobenius theorem

Entropy of an irreducible edge shift
If G is an irreducible graph then $h\left(X_{G}\right)=\log \lambda_{A(G)}$.
Entropy of an irreducible SFT
If X is an irreducible M-step SFT and G is the essential graph s.t. $X^{[M+1]}=X_{G}$, then $h(X)=\log \lambda_{A(G)}$.

Entropy of an irreducible sofic shift

If X is an irreducible sofic shift and $\mathcal{G}=(G, \mathcal{L})$ is an irreducible right-resolving presentation of X, then $h(X)=\log \lambda_{A(G)}$.

Entropy and periodic points

Two simple estimates

- Let $p_{n}(X)$ be the number of points of X with period n.
- Let $q_{n}(X)$ be the number of points of X with minimum period n.
- Clearly,

$$
h(X) \geq \limsup _{n} \frac{1}{n} p_{n}(X) \geq \limsup _{n} \frac{1}{n} q_{n}(X)
$$

Sofic shifts and periodic points
If X is an irreducible sofic shift then

$$
\begin{aligned}
h(X) & =\limsup _{n} \frac{1}{n} p_{n}(X) \\
& =\limsup _{n} \frac{1}{n} q_{n}(X)
\end{aligned}
$$

Proof of the previous theorem

If X is an M-step SFT

- Let G be an irreducible graph s.t. $X \cong X_{G}$. Then $p_{n}(X)=p_{n}\left(X_{G}\right)$
- Let N be the maximum length of a shortest path from any two states.
- For every $w \in \mathcal{B}\left(X_{G}\right)$ there is $u \in \bigcup_{i=0}^{N} \mathcal{B}_{i}\left(\mathrm{X}_{G}\right)$ s.t. $(w u)^{\infty} \in \mathrm{X}_{G}$.
- Thus, $\left|\mathcal{B}_{n}\left(X_{G}\right)\right| \leq \sum_{i=0}^{N} p_{n+i}\left(X_{G}\right) \leq(N+1) p_{n+i(n)}(X)$ for some $i(n) \in\{0, \ldots, N\}$.

If X is sofic

- Let $\mathcal{G}=(G, \mathcal{L})$ be an irreducible right-resolving presentation of X. Then $h(X)=h\left(X_{G}\right)$.
- If G has r states, then every labeled path on \mathcal{G} has at most r presentations on G (because of right-resolvingness).
- Then $p_{n}(X) \geq \frac{1}{r} p_{n}\left(X_{G}\right)$ because \mathcal{L}_{∞} preserves periods.
... but what for reducible shifts?
The idea
- Identify the irreducible components.
- Apply the theory to those.
- Get information on the whole graph.

The procedure

Given G, construct H as follows:

- Nodes in H are irreducible components in G.
- There is an edge from I to J in H iff J is reachable from I in G.
- Order of nodes is such that if I is reachable from J then $I<J$.

This construction determines a re-ordering of the rows and columns of the adjacency matrix of G.
The new matrix is block lower triangular.

Example

Consider the graph

The irreducible components are $\{1,2\}$ and $\{3,4,5\}$ —already sorted. The adjacency matrix is

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{cc}
A_{1} & 0 \\
B & A_{2}
\end{array}\right)
$$

Perron-Frobenius theory for reducible matrices

Definition

- Let A be a nonnegative, nonzero matrix
- Suppose A is in block lower triangular form

$$
A=\left(\begin{array}{cccc}
A_{1} & 0 & \ldots & 0 \\
* & A_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
* & * & \ldots & A_{k}
\end{array}\right)
$$

with each A_{i} irreducible.

- The Perron eigenvalue of A is $\lambda_{A}=\max _{1 \leq i \leq k} \lambda_{A_{i}}$

Motivation

λ_{A} is the largest eigenvalue of A.

Entropy of graph shifts

Theorem

For any graph $G, h\left(X_{G}\right)=\log \lambda_{A(G)}$.

Corollary

For any right-resolving labeled graph $\mathcal{G}=(G, \mathcal{L}), h\left(X_{\mathcal{G}}\right)=\log \lambda_{A(G)}$.

Idea of the proof

- Each path is a chain of paths on irreducible components linked by single edges.
- Single edges can occur in at most n places, and get at most M values.
- On the j-th component, $\left|\mathcal{B}_{n(j)}\left(X_{G_{j}}\right)\right| \leq D \cdot \lambda_{A}^{n(j)}$ for a suitable D.

Approximating entropy

Theorem

If $\left\{X_{k}\right\}_{k \geq 1}$ is a monotone non-increasing family of subshifts, then

$$
\lim _{k \rightarrow \infty} h\left(X_{k}\right)=h\left(\bigcap_{k=1}^{\infty} X_{k}\right)
$$

Reason why

- Put $X=\bigcap_{k=1}^{\infty} X_{k}$.
- For every n exists $k(n)$ s.t. $\mathcal{B}_{n}\left(X_{k}\right)=\mathcal{B}_{n}(X)$ for every $k \geq k(n)$. Otherwise, find x in all X_{k} 's but not in X via a diagonal argument.
- Thus, if $\frac{1}{n} \log \left|\mathcal{B}_{n}(X)\right|$ does not exceed $h(X)+\varepsilon$, neither does $h\left(X_{k}\right)=\inf _{n \geq 1} \frac{1}{n} \log \left|\mathcal{B}_{n}\left(X_{k}\right)\right|$ for $k \geq k(n)$.

Approximating entropy (cont.)

Problems with previous approach

- Computing $h\left(X_{k}\right)$ can become difficult for high k, especially if the X_{k} 's are edge shifts on graphs of increasing size.
- It is not clear which k 's provide the desired approximation!

Inside sofic approximation

- Idea: find an irreducible sofic $Y \subseteq X$.
- Advantage: $h(Y) \leq h(X) \leq h\left(X_{k}\right)$, so check if $h\left(X_{k}\right)-h(Y)<\varepsilon$.
- Disadvantage: it is not clear how Y should be built.
- In fact, there are shift spaces with no nonempty sofic subshift!

Soon on these screens...

- Cyclic structure of irreducible matrices
- The road problem
- The finite-state coding theorem

Thank you for attention!

