Introduction to Symbolic Dynamics Part 4: Entropy

Silvio Capobianco

Institute of Cybernetics at TUT

May 12, 2010

Revised: May 12, 2010

- 4 同 2 4 日 2 4 日

Overview

- Constructions and algorithms on sofic shifts.
- Entropy of a shift subspace.
- Computing entropy via Perron-Frobenius theory.

Sofic shifts

Path labelings

Let $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ be an *A*-labeled graph.

- The labeling of a path $\pi = e_1 \dots e_m$ on G is the sequence $\mathcal{L}(\pi) = \mathcal{L}(e_1) \dots \mathcal{L}(e_m)$.
- The labeling of a bi-infinite path $\xi \in \mathcal{E}(G)^{\mathbb{Z}}$ is the sequence $x = \mathcal{L}(\xi) \in A^{\mathbb{Z}}$ s.t. $x_i = \mathcal{L}(\xi_i)$ for every $i \in \mathbb{Z}$.
- We put

$$\mathsf{X}_{\mathcal{G}} = \left\{ x \in \mathsf{A}^{\mathbb{Z}} \mid \exists \xi \in \mathsf{X}_{\mathsf{G}} \mid x = \mathcal{L}(\xi) \right\}$$

Definition

- $X \subseteq A^{\mathbb{Z}}$ is a sofic shift if $X = X_{\mathcal{G}}$ for some A-labeled graph \mathcal{G} .
- In this case, \mathcal{G} is a presentation of X.

Special kinds of presentations

- A labeled graph $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ is:
 - right-resolving if initial state and label determine edge
 - follower-separated if differen states have different follower sets

Fischer's theorem

Two minimal right-resolving presentations of an irreducible sofic shifts are isomorphic.

Unions

Union of two graphs

Let $\mathcal{G}_1 = (\mathcal{G}_1, \mathcal{L}_1)$ and $\mathcal{G}_2 = (\mathcal{G}_1, \mathcal{L}_2)$ be labeled graphs.

- Set $\mathcal{V}(G) = \mathcal{V}(G_1) \sqcup \mathcal{V}(G_2)$.
- Set $\mathcal{E}(G) = \mathcal{E}(G_1) \sqcup \mathcal{E}(G_2)$.
- Set $\mathcal{L}(e) = \mathcal{L}_i(e)$ if $e \in \mathcal{E}(G_i)$

Then $\mathcal{G} = (\mathcal{G}, \mathcal{L}) = \mathcal{G}_1 \cup \mathcal{G}_2$ is the union of \mathcal{G}_1 and \mathcal{G}_2 .

Union of two sofic shifts is sofic

 $\mathcal{G}_1 \cup \mathcal{G}_2$ is a presentation of $X_{\mathcal{G}_1} \cup X_{\mathcal{G}_2}$.

- 4 同 6 4 日 6 4 日 6

Products

Product of two graphs

Let $\mathcal{G}_1 = (\mathcal{G}_1, \mathcal{L}_1)$ and $\mathcal{G}_2 = (\mathcal{G}_1, \mathcal{L}_2)$ be labeled graphs.

- Set $\mathcal{V}(G) = \mathcal{V}(G_1) \times \mathcal{V}(G_2)$.
- Set $\mathcal{E}(G) = \mathcal{E}(G_1) \times \mathcal{E}(G_2)$.
- Set $\mathcal{L}(e) = \mathcal{L}(e_1, e_2) = (\mathcal{L}_1(e_1), \mathcal{L}_2(e_2)).$

Then $\mathcal{G} = (\mathcal{G}, \mathcal{L}) = \mathcal{G}_1 \times \mathcal{G}_2$ is the product of \mathcal{G}_1 and \mathcal{G}_2 .

Product of two sofic shifts is sofic

 $\mathcal{G}_1 \times \mathcal{G}_2$ is a presentation of $X_{\mathcal{G}_1} \times X_{\mathcal{G}_2}.$

- 4 同 2 4 日 2 4 日

Label products

Label product of two graphs

Let $\mathcal{G}_1 = (\mathcal{G}_1, \mathcal{L}_1)$ and $\mathcal{G}_2 = (\mathcal{G}_1, \mathcal{L}_2)$ be labeled graphs.

• Set
$$\mathcal{V}(G) = \mathcal{V}(G_1) \times \mathcal{V}(G_2)$$
.

• Set
$$\mathcal{E}(G) = \{(e_1, e_2) \in \mathcal{E}(G_1) \times \mathcal{E}(G_2) \mid \mathcal{L}_1(e_1) = \mathcal{L}_2(e_2)\}.$$

• Set
$$\mathcal{L}(e) = \mathcal{L}(e_1, e_2) = \mathcal{L}_1(e_1) = \mathcal{L}_2(e_2)$$
.

Then $\mathcal{G} = (\mathcal{G}, \mathcal{L}) = \mathcal{G}_1 * \mathcal{G}_2$ is the label product of \mathcal{G}_1 and \mathcal{G}_2 .

Intersection of two sofic shifts is sofic $\mathcal{G}_1 * \mathcal{G}_2$ is a presentation of $X_{\mathcal{G}_1} \cap X_{\mathcal{G}_2}$.

And it isn't over here...

If \mathcal{G}_1 and \mathcal{G}_2 are right-resolving, then $\mathcal{G}_1 * \mathcal{G}_2$ is right-resolving.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Equality of sofic shifts

The problem

Given \mathcal{G}_1 and \mathcal{G}_2 , determine whether $X_{\mathcal{G}_1} = X_{\mathcal{G}_2}$.

The idea

Express equality of sofic shifts through the constructions seen before.

An useful lemma

- Let $G = (\mathcal{V}, \mathcal{E})$ be a graph with r states.
- Let $S \subseteq V$ contain *s* states.
- For $I \in \mathcal{V} \setminus \mathcal{S}$ let $U_I = \{\pi \text{ path on } \mathcal{G} \mid i(\pi) = I, t(\pi) \in \mathcal{S}\}.$
- If U_I is nonempty then $\min\{|\pi| \mid \pi \in U_I\} \le r s$.
- Thus, there is a path from $I \notin S$ to $J \in S$ iff $B_{I,J} > 0$, where $B = \sum_{i=1}^{r-s} A^i$.

< 日 > < 同 > < 三 > < 三 >

Equality of sofic shifts is decidable

The idea

Given \mathcal{G}_1 and \mathcal{G}_2 , construct $\widehat{\mathcal{G}}$ s.t. TFAE:

- **①** There is a word in $\mathcal{B}(X_{\mathcal{G}_i}) \setminus \mathcal{B}(X_{\mathcal{G}_i})$.
- **2** There is a path in $\widehat{\mathcal{G}}$ from some state \mathcal{I} to some set \mathcal{S}_i .

The algorithm

- Let G_i' be G_i plus a sink K_i: If there is no edge from I labeled a, make an edge from I to K_i labeled a; Add all self-loops to K_i.
- 2 Let $\widehat{\mathcal{G}}_i$ be the subset graph of \mathcal{G}'_i . Let $\mathcal{K}_i = \{K_i\}$.

3 Let
$$\widehat{\mathcal{G}} = \widehat{\mathcal{G}_1} * \widehat{\mathcal{G}_2}$$
. Set $\mathcal{I} = (\mathcal{V}_1, \mathcal{V}_2)$.

Set $S_1 = \{(\mathcal{J}, \mathcal{K}_2) \mid \mathcal{J} \neq \mathcal{K}_1\}$ and $S_2 = \{(\mathcal{K}_1, \mathcal{J}) \mid \mathcal{J} \neq \mathcal{K}_2\}$

Cost of the algorithm

If \mathcal{G}_i has r_i states... ... then $\widehat{\mathcal{G}}$ has $(2^{r_1+1}-1) \cdot (2^{r_2+1}-1)$.

Could one do better?

- In general, no.
- But maybe, in special cases. . .

A hint from Fischer's theorem

- Suppose \mathcal{G}_1 and \mathcal{G}_2 are irreducible and right-resolving.
- Let \mathcal{H}_i be the minimal right-resolving presentation of $\mathcal{X}_{\mathcal{G}_i}$.
- Then $X_{\mathcal{G}_1} = X_{\mathcal{G}_2}$. if and only if $\mathcal{H}_1 \cong \mathcal{H}_2$.

イロト 不得 とくほ とくほ とうほう

Constructing the minimal right-resolving presentation

The idea

- Start from an irreducible right-resolving presentation.
- Its merged graph is the minimal right-resolving presentation.

Deciding equality of follower sets

• Let
$$\mathcal{G}'$$
 be \mathcal{G} with a sink K , as before.

$$\textbf{2 Set } \widehat{\mathcal{G}} = \mathcal{G}' \ast \mathcal{G}', \, \mathcal{I} = \mathcal{V} \times \mathcal{V}, \, \mathcal{S} = (\mathcal{V} \times \{K\}) \cup (\{K\} \times \mathcal{V}).$$

May 12, 2010

11 / 32

③ Let *I* and *J* be two distinct nodes in \mathcal{G} . TFAE.

$$F_{\mathcal{G}}(I) \neq F_{\mathcal{G}}(J).$$

There is a path from (I, J) to \mathcal{S} in $\widehat{\mathcal{G}}$.

Determining finiteness of type of sofic shifts

Theorem A

- Let \mathcal{G} be a right-resolving labeled graph.
- Suppose that every $w \in \mathcal{B}_N(X_{\mathcal{G}})$ is synchronizing for \mathcal{G} .
- Then $X_{\mathcal{G}}$ is an *N*-step SFT.

Theorem B

- Let X be an irreducible sofic shift.
- And let $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ be its minimal right-resolving presentation.
- Suppose that X is an N-step SFT.
- Then:
 - Every $w \in \mathcal{B}_N(X_{\mathcal{G}})$ is synchronizing for \mathcal{G} .
 - \mathcal{L}_{∞} is a conjugacy.
 - If G has r states then X is $(r^2 r)$ -step.

- 4 同 2 4 日 2 4 日 2 4

Proof of Theorems A and B

Proof of Theorem A

• Suppose $uw, wv \in \mathcal{B}(X_{\mathcal{G}})$ with $w \ge N$ —then w is synchronizing.

• If
$$uw = \mathcal{L}(\rho \pi)$$
 and $wu = \mathcal{L}(\tau \sigma)$, then $t(\pi) = t(\tau)$.

• Then $uwv = \mathcal{L}(\rho\pi\sigma) \in \mathcal{B}(X_{\mathcal{L}}).$

Proof of Theorem B

• Suppose
$$|w| = N$$
 and $w = \mathcal{L}(\pi) = \mathcal{L}(\tau)$ with $t(\pi) \neq t(\tau) \dots$

- Let v ∈ F_G(t(π)) \ F_G(t(τ)), u synchronizing word focusing on i(τ).
 Then uw, wv ∈ B(X) but uwv ∉ B(X), against X being N-step.
- If $x = \mathcal{L}_{\infty}(y) = \mathcal{L}_{\infty}(z)$, then $y_{[i,\infty)} = z_{[i,\infty)}$ because $\mathcal{L}(y_{[i-N,i-1]}) = \mathcal{L}(z_{[i-N,i-1]})$ is synchronizing and \mathcal{G} is right-resolving.
- The graph G * G minus diagonal vertices checks precisely non-synchronizing words and has r² - r states.

Entropy

Definition

The entropy of a nonempty shift X is

$$h(X) = \lim_{n \to \infty} \frac{1}{n} \log |\mathcal{B}_n(X)| = \inf_{n \ge 1} \frac{1}{n} \log |\mathcal{B}_n(X)|$$

The limit above exists and the equality holds because for every $m, n \ge 1$

$$|\mathcal{B}_{m+n}(X)| \le |\mathcal{B}_m(X)| \cdot |\mathcal{B}_n(X)|$$

If $X = \emptyset$ we put $h(X) = -\infty$.

Quick examples

• If X is a full shift on an alphabet of r elements then $h(X) = \log r$.

• If G is a graph on k nodes with r outgoing edges per node then $h(X_G) = \log r$.

The entropy of the golden mean shift

The idea for the computation

• Consider the even shift as the vertex shift of

• For $n \ge 2$ there is a one-to-one correspondence between $\mathcal{B}_n(X_G)$ and $\mathcal{B}_{n-1}(X_G)$.

0 1

• We can compute the size of this through the adjacency matrix

$${f A}=\left(egin{array}{cc} 1 & 1\ 1 & 0 \end{array}
ight)$$

because

$$|\mathcal{B}_m(\mathsf{X}_G)| = (A^m)_{0,0} + (A^m)_{0,1} + (A^m)_{1,0} + (A^m)_{1,1}$$

The entropy of the golden mean shift (cont.)

Eigenvalues and eigenvectors

• The characteristic polynomial of A is

$$\chi_A(t) = t^2 - t - 1$$

which has solutions

$$\lambda = \frac{1 + \sqrt{5}}{2}$$
; $\mu = \frac{1 - \sqrt{5}}{2}$

 λ is known as the golden mean.

• Corresponding eigenvectors of A are

$$\mathbf{v}_{\lambda} = \left(\begin{array}{c} \lambda \\ 1 \end{array}
ight) \; ; \; \mathbf{v}_{\mu} = \left(\begin{array}{c} \mu \\ 1 \end{array}
ight)$$

The entropy of the golden mean shift (end)

Diagonalizing
• Let
$$P = \begin{pmatrix} \lambda & \mu \\ 1 & 1 \end{pmatrix}$$
. Then
 $A^m = P \begin{pmatrix} \lambda^m & 0 \\ 0 & \mu^m \end{pmatrix} P^{-1} = \frac{1}{\sqrt{5}} \begin{pmatrix} \lambda^{m+1} - \mu^{m+1} & \lambda^m - \mu^m \\ \lambda^m - \mu^m & \lambda^{m-1} - \mu^{m-1} \end{pmatrix}$
• But $\lambda^{m+2} = \lambda^{m+1} + \lambda^m$ because $\lambda^2 = \lambda + 1$, and similar with μ .
• Hence $|\mathcal{B}_n(\widehat{X}_G)| = \frac{1}{\sqrt{5}} (\lambda^{n+2} - \mu^{n+2})$, from which
 $h(\widehat{X}_G) = \lim_{n \to \infty} \frac{1}{n} \log \left(\frac{1}{\sqrt{5}} \lambda^{n+2} \left(1 - \left(\frac{\mu}{\lambda} \right)^{n+2} \right) \right)$
 $= \log \lambda$

3

< ∃⇒

Image: A mathematical and the second seco

The entropy of the even shift

The idea for the computation

• Consider the even shift as presented by

• Each word with a 1 has one presentation. 0^n has two presentations.

• Then,
$$|\mathcal{B}_n(\mathsf{X}_\mathcal{G})| = |\mathcal{B}_n(\mathsf{X}_\mathcal{G})| - 1.$$

• Then clearly $h(\text{even shift}) = h(\text{golden mean shift}) = \log \lambda$.

Entropy and sliding block codes

Theorem

If Y is a factor of X then $h(Y) \leq h(X)$.

Consequences

- Entropy is a shift invariant, *i.e.*, conjugate shifts have same entropy. In particular, $h(X^{[N]}) = h(X)$.
- If $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ then $h(X_{\mathcal{G}}) \leq h(X_{\mathcal{G}})$.
- Two full shifts are conjugate iff the size of their alphabets is the same.
- The golden mean shift is not conjugate to any full shift.
- If Y embeds into X then $h(Y) \leq h(X)$.

Reason why the theorem holds

If $\Phi_{\infty}^{[-m,\alpha]}: X \to Y$ is a factor code, then $|\mathcal{B}_n(Y)| \leq |\mathcal{B}_{m+n+\alpha}(X)|$.

Entropy and labeled graphs

Theorem

Let $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ be a right-resolving labeled graph. Then $h(X_{\mathcal{G}}) = h(X_{\mathcal{G}})$.

Reason why

- Suppose G has k states.
- Since G is right-resolving, there can be at most k paths representing each w ∈ B(X_G).

/□ ▶ < 글 ▶ < 글

May 12, 2010

20 / 32

• Thus, $|\mathcal{B}_n(X_G)| \leq k \cdot |\mathcal{B}_n(X_G)|$.

Estimates on $|\mathcal{B}_n(X_G)|$ for "good" A(G)

Let G be a graph with at least one edge and A its adjacency matrix.

The key hypothesis

Suppose A has a positive eigenvector \mathbf{v} .

A long series of consequences

- The corresponding eigenvalue λ is positive.
- If $m = \min_i v_i$ and $M = \max_i v_i$, then

$$\frac{m}{M}\lambda^n \leq \sum_{I,J=1}^r (A^n)_{I,J} \leq \frac{rM}{m}\lambda^n ,$$

which implies $h(X_G) = \log \lambda$.

- λ is the only eigenvalue of A corresponding to a positive eigenvector.
- If μ is any other eigenvalue for A, it can be shown that $|\mu| \leq \lambda$.

イロト 不得 とくほ とくほ とうほう

The Perron-Frobenius theorem

Let A be a nonnegative irreducible nonzero matrix.

- **()** A has a positive eigenvector \mathbf{v}_A .
- **2** The eigenvalue λ_A corresponding to \mathbf{v}_A is positive.
- **③** λ_A is algebraically—and geometrically—simple, *i.e.*,
 - $det(tI A) = (t \lambda_A)p(t)$ with $p(\lambda_A) \neq 0$, and

• dim {
$$\mathbf{v} \mid A\mathbf{v} = \lambda_A \mathbf{v}$$
} = 1.

- If μ is another eigenvalue of A then $|\mu| \leq \lambda_A$.
- Solution Any positive eigenvector of A is a positive multiple of \mathbf{v}_A .

The value λ_A is called the Perron eigenvalue of A

Computing entropy with Perron-Frobenius theorem

Entropy of an irreducible edge shift

If G is an irreducible graph then $h(X_G) = \log \lambda_{A(G)}$.

Entropy of an irreducible SFT

If X is an irreducible M-step SFT and G is the essential graph s.t. $X^{[M+1]} = X_G$, then $h(X) = \log \lambda_{A(G)}$.

Entropy of an irreducible sofic shift

If X is an irreducible sofic shift and $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ is an irreducible right-resolving presentation of X, then $h(X) = \log \lambda_{\mathcal{A}(\mathcal{G})}$.

Entropy and periodic points

Two simple estimates

- Let $p_n(X)$ be the number of points of X with period n.
- Let $q_n(X)$ be the number of points of X with minimum period n.
- Clearly,

$$h(X) \ge \limsup_{n} \frac{1}{n} p_n(X) \ge \limsup_{n} \frac{1}{n} q_n(X)$$

Sofic shifts and periodic points

If X is an irreducible sofic shift then

$$h(X) = \limsup_{n} \sup_{n} \frac{1}{n} p_n(X)$$
$$= \limsup_{n} \frac{1}{n} q_n(X)$$

Proof of the previous theorem

If X is an M-step SFT

- Let G be an irreducible graph s.t. $X \cong X_G$. Then $p_n(X) = p_n(X_G)$
- Let N be the maximum length of a shortest path from any two states.
- For every $w \in \mathcal{B}(X_G)$ there is $u \in \bigcup_{i=0}^N \mathcal{B}_i(X_G)$ s.t. $(wu)^{\infty} \in X_G$.
- Thus, $|\mathcal{B}_n(X_G)| \le \sum_{i=0}^{N} p_{n+i}(X_G) \le (N+1)p_{n+i(n)}(X)$ for some $i(n) \in \{0, ..., N\}.$

If X is sofic

- Let $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ be an irreducible right-resolving presentation of X. Then $h(X) = h(X_G)$.
- If G has r states, then every labeled path on G has at most r presentations on G (because of right-resolvingness).
- Then $p_n(X) \ge \frac{1}{r}p_n(X_G)$ because \mathcal{L}_{∞} preserves periods.

イロト イポト イヨト イヨト 三日

... but what for reducible shifts?

The idea

- Identify the irreducible components.
- Apply the theory to those.
- Get information on the whole graph.

The procedure

Given G, construct H as follows:

- Nodes in *H* are irreducible components in *G*.
- There is an edge from I to J in H iff J is reachable from I in G.
- Order of nodes is such that if I is reachable from J then I < J.

This construction determines a re-ordering of the rows and columns of the adjacency matrix of G.

The new matrix is block lower triangular.

Example

Consider the graph

The irreducible components are $\{1,2\}$ and $\overline{\{3,4,5\}}$ —already sorted. The adjacency matrix is

$$\left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{array}\right) = \left(\begin{array}{cccc} A_1 & 0 \\ B & A_2 \end{array}\right)$$

Perron-Frobenius theory for reducible matrices

Definition

- Let A be a nonnegative, nonzero matrix
- Suppose A is in block lower triangular form

$$A = \begin{pmatrix} A_1 & 0 & \dots & 0 \\ * & A_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ * & * & \dots & A_k \end{pmatrix}$$

with each A_i irreducible.

• The Perron eigenvalue of A is $\lambda_A = \max_{1 \le i \le k} \lambda_{A_i}$

Motivation

 λ_A is the largest eigenvalue of A.

Entropy of graph shifts

Theorem

For any graph G, $h(X_G) = \log \lambda_{A(G)}$.

Corollary

For any right-resolving labeled graph $\mathcal{G} = (\mathcal{G}, \mathcal{L})$, $h(X_{\mathcal{G}}) = \log \lambda_{\mathcal{A}(\mathcal{G})}$.

Idea of the proof

- Each path is a chain of paths on irreducible components linked by single edges.
- Single edges can occur in at most *n* places, and get at most *M* values.
- On the *j*-th component, $|\mathcal{B}_{n(j)}(X_{G_j})| \leq D \cdot \lambda_A^{n(j)}$ for a suitable *D*.

イロト 不得 とくほ とくほ とうほう

Approximating entropy

Theorem

If $\{X_k\}_{k\geq 1}$ is a monotone non-increasing family of subshifts, then

$$\lim_{k\to\infty}h(X_k)=h\left(\bigcap_{k=1}^{\infty}X_k\right)$$

Reason why

- Put $X = \bigcap_{k=1}^{\infty} X_k$.
- For every *n* exists k(n) s.t. $\mathcal{B}_n(X_k) = \mathcal{B}_n(X)$ for every $k \ge k(n)$. Otherwise, find x in all X_k 's but not in X via a diagonal argument.

• Thus, if
$$\frac{1}{n} \log |\mathcal{B}_n(X)|$$
 does not exceed $h(X) + \varepsilon$, neither does $h(X_k) = \inf_{n \ge 1} \frac{1}{n} \log |\mathcal{B}_n(X_k)|$ for $k \ge k(n)$.

< □ > < 同 > < 回 >

Approximating entropy (cont.)

Problems with previous approach

- Computing $h(X_k)$ can become difficult for high k, especially if the X_k 's are edge shifts on graphs of increasing size.
- It is not clear which k's provide the desired approximation!

Inside sofic approximation

- Idea: find an irreducible sofic $Y \subseteq X$.
- Advantage: $h(Y) \le h(X) \le h(X_k)$, so check if $h(X_k) h(Y) < \varepsilon$.
- Disadvantage: it is not clear how Y should be built.
- In fact, there are shift spaces with no nonempty sofic subshift!

Soon on these screens...

- Cyclic structure of irreducible matrices
- The road problem
- The finite-state coding theorem

Thank you for attention!