Introduction to Symbolic Dynamics Part 5: The finite-state coding theorem

Silvio Capobianco

Institute of Cybernetics at TUT

May 19, 2010

Revised: November 17, 2010

.

Overview

- Cyclic structure of irreducible matrices
- Road-colorings and right-closures
- The finite-state coding theorem

Entropy

Definition

The entropy of a nonempty shift X is

$$h(X) = \lim_{n \to \infty} \frac{1}{n} \log |\mathcal{B}_n(X)| = \inf_{n \ge 1} \frac{1}{n} \log |\mathcal{B}_n(X)|$$

If
$$X = \emptyset$$
 we put $h(X) = -\infty$.

Basic facts on entropy

- If Y is a factor of X then $h(Y) \leq h(X)$.
- If Y embeds into X then $h(Y) \leq h(X)$.
- If $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ is right-resolving then $h(X_{\mathcal{G}}) = h(X_{\mathcal{G}})$.

The Perron-Frobenius theorem

Let A be a nonnegative irreducible nonzero matrix.

- **1** A has a positive eigenvector \mathbf{v}_A .
- **2** The eigenvalue λ_A corresponding to \mathbf{v}_A is positive.
- **③** λ_A is algebraically—and geometrically—simple, *i.e.*,
 - $det(tI A) = (t \lambda_A)p(t)$ with $p(\lambda_A) \neq 0$, and

• dim {
$$\mathbf{v} \mid A\mathbf{v} = \lambda_A \mathbf{v}$$
} = 1.

- If μ is another eigenvalue of A then $|\mu| \leq \lambda_A$.
- **(**) Any positive eigenvector of A is a positive multiple of \mathbf{v}_A .

The value λ_A is called the Perron eigenvalue of A

Computing entropy via the Perron-Frobenius theorem

Theorem

- Let G be a graph, let A be its adjacency matrix, and let λ_A be the maximum Perron eigenvalue of an irreducible component of A.
- Then $h(X_G) = \log \lambda_A$.
- In addition, if $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ is right-resolving, then $h(X_{\mathcal{G}}) = \log \lambda_{\mathcal{A}}$.

Periods

Period of a shift

If X is a shift we define

$$\operatorname{per} X = \gcd\{n \in \mathbb{N} \mid p_n(X) > 0\}$$

with the conventions $gcd \emptyset = \infty$, $gcd(U \cup \{\infty\}) = gcd U$.

Period of a matrix

Let G be graph and A its adjacency matrix. The period of a state I is

$$per I = gcd\{n \in \mathbb{N} \mid (A^n)_{I,I} > 0\}$$

The period of A (and G) is

$$per G = per A = gcd\{per I \mid I \in \mathcal{V}(G)\} = per X_G$$

A is aperiodic if per A = 1.

Periods of irreducible graphs

Theorem

States of an irreducible graph have same period.

Reason why

- Suppose p = per I and n is a period of J.
- Suppose $(A^r)_{I,J} > 0$ and $A^s_{J,I} > 0$.
- Then p divides both r + s and r + n + s...

Period equivalence

Definition

- Let G be an irreducible graph s.t. A = A(G) is nonzero.
- States *I* and *J* are period equivalent if there is a path from *I* to *J* whose length is divisible by per *G*.

Period equivalence is an equivalence relation

A path from I to J plus a path from J to I form a cycle from I to I.

Period classes

A period class is a class of period equivalence.

A I I A I I
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Periodic decomposition

Theorem

Let A be an irreducible nonzero matrix and let p be its period.

- Period equivalence on A has p classes.
- There is an ordering D₀,..., D_{p-1} of period classes s.t. every edge e with i(e) ∈ D_i has t(e) ∈ D_{(i+1) mod p}.

Proof

- Fix D_0 and just put $D_{i+1} = {t(e) | i(e) \in D_i}$.
- By construction, each D_i is a period class. There are p of them because A is irreducible. Each edge from D_{p-1} must end in D₀.

・ 同 ト ・ ヨ ト ・ ヨ

Cyclic form of an irreducible nonzero matrix

By previous argument, after renaming the states,

$$A = \begin{pmatrix} 0 & B_0 & 0 & \dots & 0 \\ 0 & 0 & B_1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & B_{p-2} \\ B_{p-1} & 0 & 0 & \dots & 0 \end{pmatrix}$$

Moreover,

$$A^{p} == \begin{pmatrix} A_{0} & 0 & 0 & \dots & 0 \\ 0 & A_{1} & 0 & \dots & 0 \\ 0 & 0 & A_{2} & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & A_{p} \end{pmatrix}$$

for suitable A_i 's.

Primitive graphs

Definition

- A matrix is primitive if it is irreducible and aperiodic.
- A graph is primitive if its adjacency matrix is primitive.

Characterization

Let A be a nonnegative matrix. TFAE.

- A is primitive.
- **2** A^N is positive for some N.
- A^N is positive for all sufficiently large N.

Rationale

- If A is primitive, then $(A^n)_{I,I} > 0$ for all $n \ge N_I$.
- Put $N = M + \max_{i \in \mathcal{V}} N_i$ where $(A^n)_{I,J} > 0$ for some $n \leq M$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Mixing shifts

Definition

A shift X is mixing if for any $u, v \in \mathcal{B}(X)$ there exists $N \ge 1$ s.t. for every $n \ge N$ there exists $w \in \mathcal{B}_n(X)$ s.t. $uwv \in \mathcal{B}(X)$.

Facts

- A factor of a mixing shift is mixing.
- If G is essential then X_G is mixing iff G is primitive.
- A SFT is mixing iff it is irreducible and aperiodic.
- For a mixing sofic shift,

$$\lim_{n\to\infty}\frac{1}{n}\log p_n(X) = \lim_{n\to\infty}\frac{1}{n}\log q_n(X) = h(X)$$

Road-colorings

Definition

- Let $G = (\mathcal{V}, \mathcal{E})$ a graph. Recall that $\mathcal{E}_I = \{e \in \mathcal{E} \mid i(e) = I\}$.
- A labeling $\mathcal{C}: \mathcal{E} \to A$ is a road-coloring if it is bijective on each \mathcal{E}_I .
- A graph G is road-colorable if it admits a road-coloring.

Characterization

Road-colorable graphs are precisely those with constant out-degree.

Use

- Observe that a road-coloring is right-resolving.
- Given a word w over A and a state I in G, there is exactly one path from I labeled w.
- In particular, (G, C) is a presentation of the full A-shift.

< 日 > < 同 > < 三 > < 三 >

The road-coloring problem

Statement

Is it true that every road-colorable primitive graph has a road-coloring admitting a synchronizing word?

Status at time of publication of Lind and Marcus textbook Unsolved.

Current status

Solved.

• Trahtman, Avraham N. (2009) The road colouring problem. *Israel Journal of Mathematics* **172(1)**: 51–60.

Thanks to Prof. Trahtman for correction. (2010-11-17)

・ 同 ト ・ ヨ ト ・ ヨ ト

Right-closing graphs

Definition

- Let $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ be a labeled graph.
- Suppose that, given any two paths $\pi = \pi_1 \dots \pi_{D+1}$ and $\rho = \rho_1 \dots \rho_{D+1}$ of length D+1, if $i(\pi) = i(\rho)$ and $\mathcal{L}(\pi) = \mathcal{L}(\rho)$, then $\pi_1 = \rho_1$.
- We then say that \mathcal{G} is right-closing with delay D.

Motivation

- \mathcal{G} is right-resolving iff it is right-closing with delay zero.
- Two paths of length N > D on a right-closing graph, that have same labeling and same initial state, are equal for the first N D steps.

One-sided shifts

Definition

If X is a (two-sided) shift over A, we put

$$X^+ = \{x_{[0,\infty)} \mid x \in X\}$$

Special cases

- If $X = X_G$, then X^+ is the set of infinite paths on G.
- If $X = X_{\mathcal{G}}$, then X^+ is the set of labelings of infinite paths on \mathcal{G} .
- The map $\mathcal{L}_{\infty}^+: X_{\mathcal{G}}^+ \to X_{\mathcal{G}}^+$ defined by $\mathcal{L}^+(\pi)_i = \mathcal{L}(\pi_i)$ is surjective.

Characterization of right-closing graphs

Theorem

Let $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ be a labeled graph and let $X_{\mathcal{G}, I}^+ = \{\pi \in X_{\mathcal{G}}^+ \mid i(\pi) = I\}$. TFAE.

- **1** \mathcal{G} is right-closing.
- **2** For every state *I*, $\mathcal{L}^+ : X^+_{G,I} \to X^+_{\mathcal{G}}$ is injective.

Reason why

- Suppose \mathcal{G} is not right-closing.
- For n > |V|² find π and ρ of same length n, same initial state, and different initial edge.
- Then $\pi = \alpha_1 \alpha_2 \alpha_3$, $\rho = \beta_1 \beta_2 \beta_3$ with $|\alpha_i| = |\beta_i|$ and α_2 and β_2 loops.
- Then $\mathcal{L}^+(\alpha_1(\alpha_2)^\infty) = \mathcal{L}^+(\beta_1(\beta_2)^\infty)$.

Conditions on right-closure

A sufficient condition

- Let $\mathcal{G}=(\mathit{G},\mathcal{L})$ be s.t. \mathcal{L}_∞ is a conjugacy.
- Suppose $\mathcal{L}_{\infty}^{-1}$ has anticipation *n*.
- Then \mathcal{L} is right-closing with delay n.

A necessary condition

- Let $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ be right-closing with delay D.
- Let \mathcal{H} be obtained from \mathcal{G} via out-splitting.
- Then \mathcal{H} is right-closing with delay D + 1.

Reasons why

- We can always suppose G essential, so every path is left-extendable.
- Splitting has memory 0 and anticipation 1; amalgamation is 1-block.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Right-closing labelings preserve entropy

Theorem

- Let $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ be a labeled graph.
- Suppose \mathcal{L} is right-closing.
- Then $h(X_G) = h(X_G)$.

Reason why

- Initial state and labeling of a D + 1-path determine first edge.
- Thus, if G has r states, then $|\mathcal{B}_n(X_G)| \leq r \cdot |\mathcal{B}_{n+D}(X_G)|$.

Recoding right-closure into right-resolvedness

Theorem

Let $\mathcal{G} = (\mathcal{G}, \mathcal{L})$ be a right-closed labeled graph with delay D. There exist a graph H and labelings Ψ, Θ on H s.t.

with Ψ right-resolving and Θ a conjugacy.

Reason why (for D > 0)

- Put $\mathcal{V}(H) = \{(I, \mathcal{L}(\pi)) \mid I \in \mathcal{V}(G), i(\pi) = I, |\pi| = D\}.$
- An edge in H joins (I, L(π)) to (t(e), L(π_[2,D])a) where I and L(π)a determine e ∈ E(G). Call (I, L(π)a) such edge.
- Put $\Theta(I, \mathcal{L}(\pi)a) = e$. Put $\Psi(I, \mathcal{L}(\pi)a) = a$.

Finite-state codes

Definition

A finite-state code is a triple $(G, \mathcal{I}, \mathcal{O})$ where:

- *G* is a graph—encoder graph
- \mathcal{I} is a road-coloring on G—input labeling
- \mathcal{O} is a right-closing labeling on G—output labeling
- A finite-state (X, n)-code is a finite-state code where:
 - G has out-degree n.
 - $\mathcal{O}_{\infty}(\mathsf{X}_{\mathcal{G}}) \subseteq X$.

Using finite-state codes

Drawing finite-state codes as labeled graphs

Edge *e* is marked as $\mathcal{I}(e)/\mathcal{O}(e)$. Example:

Encoding sequences on *n*-ary alphabets

- Let $(G, \mathcal{I}, \mathcal{O})$ be a finite-state (X, n)-code
- Let $x_0x_1x_2...$ be an infinite sequence on an *n*-ary alphabet.
- Fix $I_0 \in \mathcal{V}(G)$. There is exactly one sequence $e_0e_1e_2...$ of edges s.t. $\mathcal{I}(e_i) = x_i$ for every *i*.
- The same sequence is also encoded as $\mathcal{O}(e_0)\mathcal{O}(e_1)\mathcal{O}(e_2)\ldots\in X^+$.
- Since \mathcal{O} is right-closing, input can be reconstructed from output, given the initial state.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The finite-state coding theorem

Statement

Let X be a sofic shift. TFAE.

1 There exists a finite-state (X, n)-code.

 $h(X) \ge \log n.$

Necessity of the condition

- h(X_G) = h(I_∞(X_G)) = h(O_∞(X_G)) because I and O are right-closing.
- $h(\mathcal{I}_{\infty}(X_G)) = \log n$ because (G, \mathcal{I}) is a presentation of the full *n*-shift.
- $h(\mathcal{O}_{\infty}(X_G)) \leq h(X)$ because $\mathcal{O}_{\infty}(X_G) \subseteq X$.

Enforcing finite-state coding

Encoding the full 2-shift into a binary sofic shift

Not possible right away, but...

- Divide input into blocks of length p, *i.e.*, use $X_{[2^p]}$ instead of $X_{[2]}$.
- Divide output into blocks of length q, *i.e.*, use X^q instead of X.
- Then condition becomes $h(X) \ge p/q$.

Example with the $\left(1,3\right)$ run-length limited shift

- $h(X(1,3)) \approx 0.55$, so we take p = 1 and q = 2.
- The input alphabet is still the full 2-shift.
- The output alphabet is $\mathcal{B}_2(X(1,3)) = \{00,01,10\}.$
- The labeled graph below yields the modified frequency modulation:

Approximate eigenvectors

Definition

- Let A be a nonnegative, integral matrix.
- Let *n* be a positive integer.
- \bullet Let ${\bf v}$ be a nonnegative, nonzero, integral vector.
- v is an (A, n)-approximate eigenvector if $Av \ge nv$.

Example • Let $A = \begin{pmatrix} 1 & 3 \\ 6 & 1 \end{pmatrix}$. • Then $\mathbf{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ is an (A, 5)-approximate eigenvector.

| 4 同 🕨 🖌 4 目 🖌 4 目 🖌

Interpretations

Physical

- Suppose we assign weight v_I to state I.
- Then $\sum_{i(e)=I} v_{t(e)} \ge n \cdot v_I$ for every state *I*.

Geometrical

- Suppose A is an $r \times r$ matrix.
- Each inequality $\sum_{J=1}^{r} A_{I,J} x_J \ge n \cdot x_I$ determines a closed half-space.
- Then, (A, n)-approximate eigenvectors are elements of a closed cone in *r*-dimensional space.

Positive approximate eigenvectors

Lemma

- Let G be a graph and A = A(G) its adjacency matrix.
- Let \mathbf{v} be an (A, n)-approximate eigenvector.
- Then there exists a subgraph H of G s.t.

$$\mathbf{w}_I = \mathbf{v}_i \ \forall I \in \mathcal{V}(H)$$

is a positive (A(H), n)-approximate eigenvector.

Reason why

- Let K be the subgraph generated by the states where $v_l > 0$.
- K has an irreducible component H which is a sink.

Looking for approximate eigenvectors

Theorem

Let A be a nonnegative matrix. TFAE.

• There exists an (A, n)-approximate eigenvector.

 $\mathbf{2} \ \lambda_A \geq n.$

Moreover, if A is irreducible then there exists a positive (A, n)-approximate eigenvector.

Reason why

- It is not restrictive that A is irreducible and v positive.
- If v is an (A, n)-approximate eigenvector then c, d > 0 exist s.t. $cn^k \leq \sum_{I,J=1}^r (A^k)_{I,J} \leq d\lambda_A^k$ for every k, thus $n \leq \lambda_A$.
- If $\lambda_A = n$ then \mathbf{v}_A is rational: use a suitable multiple.
- If $\lambda_A > n$ modify \mathbf{v}_A into a rational \mathbf{v} s.t. $A\mathbf{v} > n\mathbf{v}$ still holds.

- 4 同 6 4 日 6 4 日 6

Finding approximate eigenvectors

Algorithm

INPUT: nonnegative integral A and z, positive integer n.

- Compute $\mathbf{z}' = \min \left\{ \mathbf{z}, \left\lfloor \frac{1}{n} A \mathbf{z} \right\rfloor \right\}$
- **2** If $\mathbf{z}' = \mathbf{z}$: return \mathbf{z}
- **3** Replace \mathbf{z} with \mathbf{z}'

O Repeat

OUTPUT: either an (A, n)-approximate eigenvector, or the null vector.

Use

- Put $(\mathbf{v}_k)_I = k$ for every I.
- Apply the algorithm to v₁, then to v₂, and so on, until output is non-null.
- Then the final output is the smallest (A, n)-approximate eigenvector.

3

< 日 > < 同 > < 三 > < 三 >

Approximate eigenvectors and splittings

Lemma A

- Let G be an irreducible graph and let A = A(G).
- Suppose $\lambda_A \geq n$.
- Then there exists a sequence of graphs

$$G = G_0, G_1, \ldots, G_m = H$$

such that:

- Each G_i is an elementary splitting of G_{i-1} .
- $|\mathcal{E}_I(s)| \ge n \text{ for every state } s \text{ in } H.$
- Let v be a positive (A, n)-approximate eigenvector, and let $k = \sum_{I \in \mathcal{V}(G)} v_i$.
- Then the sequence above can be chosen with $m \le k |\mathcal{V}(G)|$ and $|\mathcal{V}(H)| \le k$.

▲ 伊 ▶ ▲ 三 ▶

Proof of the finite-state coding theorem

- Let $X = X_{\mathcal{K}}$ be a sofic shift s.t. $h(X) \ge \log n$.
- We may suppose $\mathcal{K} = (\mathcal{K}, \mathcal{L})$ irreducible and right-resolving
- If A = A(K) then $\lambda_A = h(X) \ge \log n$.
- Construct a sequence $K = G_0, G_1, \ldots, G_m = H$ s.t.
 - Each G_i is an elementary splitting of G_{i-1} .
 - $|\mathcal{E}_I(s)| \ge n$ for every state s in H.
- The labeling \mathcal{L}' of H resulting from \mathcal{L} is right-closing with delay $\leq m$.
- Construct $(G, \mathcal{I}, \mathcal{O})$ as follows:
 - G is a subgraph of H with constant out-degree n.
 - ▶ *I* is any road-coloring of *G*.
 - O is the restriction of L' to G.
- Then $(G, \mathcal{I}, \mathcal{O})$ is a finite-state (X, n)-code.

・ 同 ト ・ ヨ ト ・ ヨ ト

The state splitting algorithm

INPUT: a sofic shift X.

- **(**) Construct a right-resolving presentation $\mathcal{K} = (\mathcal{K}, \mathcal{L})$ of \mathcal{X} .
- **2** Compute $h(X) = \log \lambda_{A(K)}$.
- Choose integers p and q s.t. $h(X) \ge p/q$.
- **(**) Construct \mathcal{K}^q —which is a right-resolving presentation of X^q .
- Use the approximate eigenvector algorithm to find an (A(K^q), 2^p)-approximate eigenvector. Then reduce to a sink component H with positive approximate eigenvector.
- Perform a chain of state splits until obtaining a presentation with minimum out-degree ≥ 2^p.
- Prune to obtain G = (G, O) with constant out-degree 2^p. Choose a road-coloring I using binary p-blocks.
- OUTPUT: A rate p: q finite-state code $(G, \mathcal{I}, \mathcal{O})$.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ● ● ● ● ● ●

Propagation of errors with finite-state codes

Example

• Consider the finite-state code
$$0/a \bigcirc 0/a \bigcirc 0/c \bigcirc 1/a$$

- If the initial state is the one on the left, 00000... is encoded into aaaaa...
- However, suppose that an error occurs, and the first *a* is written *b*.
- Then a decoder would reconstruct 11111...

Sliding block decoders

Definition

- Let $(G, \mathcal{I}, \mathcal{O})$ be a finite-state (X, n)-code.
- A sliding block decoder for $(G, \mathcal{I}, \mathcal{O})$ is a $\operatorname{SBC} \varphi : X \to X_{[n]}$ s.t.

Use

- Suppose $\phi = \Phi_{\infty}^{[-m,\alpha]}$. Let $y_0y_1y_2...$ be an output sequence.
- For $k \ge m$ it is $y_{k-m} \dots y_{k+\alpha} = \mathcal{O}(e_{k-m} \dots e_{k+\alpha})$.

• Then
$$x_k = \mathcal{I}(e_k) = \Phi(y_{k-m} \dots y_{k+\alpha}),$$

i.e., input can be reconstructed from output without recording the state, except at most the first *m* symbols.

The sliding block decoding theorem

Statement

- Let X be a shift of finite type.
- Suppose $h(X) \ge \log n$.
- Then there exists an (X, n)-finite state code with a sliding block decoder.

Reason why

The labeling of a minimal right-resolving presentation is a conjugacy.

Consequence

- Let X be a SFT.
- Suppose $h(X) \ge \log n$.
- Then X factors onto the full *n*-shift.

Thank you for attention!

Silvio Capobianco (Institute of Cybernetics

< □ > < 同 > < 回 >