Introduction to Symbolic Dynamics

Part 5: The finite-state coding theorem

Silvio Capobianco
Institute of Cybernetics at TUT

May 19, 2010

Overview

- Cyclic structure of irreducible matrices
- Road-colorings and right-closures
- The finite-state coding theorem

Entropy

Definition

The entropy of a nonempty shift X is

$$
h(X)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\mathcal{B}_{n}(X)\right|=\inf _{n \geq 1} \frac{1}{n} \log \left|\mathcal{B}_{n}(X)\right|
$$

If $X=\emptyset$ we put $h(X)=-\infty$.

Basic facts on entropy

- If Y is a factor of X then $h(Y) \leq h(X)$.
- If Y embeds into X then $h(Y) \leq h(X)$.
- If $\mathcal{G}=(G, \mathcal{L})$ is right-resolving then $h\left(\mathrm{X}_{\mathcal{G}}\right)=h\left(\mathrm{X}_{G}\right)$.

The Perron-Frobenius theorem

Let A be a nonnegative irreducible nonzero matrix.
(1) A has a positive eigenvector \mathbf{v}_{A}.
(2) The eigenvalue λ_{A} corresponding to \mathbf{v}_{A} is positive.
(3) λ_{A} is algebraically-and geometrically-simple, i.e.,

- $\operatorname{det}(t I-A)=\left(t-\lambda_{A}\right) p(t)$ with $p\left(\lambda_{A}\right) \neq 0$, and
- $\operatorname{dim}\left\{\mathbf{v} \mid A \mathbf{v}=\lambda_{A} \mathbf{v}\right\}=1$.
(9) If μ is another eigenvalue of A then $|\mu| \leq \lambda_{A}$.
(5) Any positive eigenvector of A is a positive multiple of \mathbf{v}_{A}.

The value λ_{A} is called the Perron eigenvalue of A

Computing entropy via the Perron-Frobenius theorem

Theorem

- Let G be a graph, let A be its adjacency matrix, and let λ_{A} be the maximum Perron eigenvalue of an irreducible component of A.
- Then $h\left(X_{G}\right)=\log \lambda_{A}$.
- In addition, if $\mathcal{G}=(G, \mathcal{L})$ is right-resolving, then $h\left(X_{\mathcal{G}}\right)=\log \lambda_{A}$.

Periods

Period of a shift

If X is a shift we define

$$
\operatorname{per} X=\operatorname{gcd}\left\{n \in \mathbb{N} \mid p_{n}(X)>0\right\}
$$

with the conventions $\operatorname{gcd} \emptyset=\infty, \operatorname{gcd}(U \cup\{\infty\})=\operatorname{gcd} U$.

Period of a matrix

Let G be graph and A its adjacency matrix. The period of a state I is

$$
\operatorname{per} I=\operatorname{gcd}\left\{n \in \mathbb{N} \mid\left(A^{n}\right)_{l, I}>0\right\}
$$

The period of A (and $G)$ is

$$
\operatorname{per} G=\operatorname{per} A=\operatorname{gcd}\{\operatorname{per} / \| I \in \mathcal{V}(G)\}=\operatorname{per} X_{G}
$$

A is aperiodic if per $A=1$.

Periods of irreducible graphs

Theorem
States of an irreducible graph have same period.

Reason why

- Suppose $p=$ per I and n is a period of J.
- Suppose $\left(A^{r}\right)_{I, J}>0$ and $A_{J, I}^{s}>0$.
- Then p divides both $r+s$ and $r+n+s \ldots$

Period equivalence

Definition

- Let G be an irreducible graph s.t. $A=A(G)$ is nonzero.
- States I and J are period equivalent if there is a path from $/$ to J whose length is divisible by per G.

Period equivalence is an equivalence relation
A path from I to J plus a path from J to I form a cycle from I to I.

Period classes

A period class is a class of period equivalence.

Periodic decomposition

Theorem

Let A be an irreducible nonzero matrix and let p be its period.

- Period equivalence on A has p classes.
- There is an ordering D_{0}, \ldots, D_{p-1} of period classes s.t. every edge e with $\mathrm{i}(e) \in D_{i}$ has $\mathrm{t}(e) \in D_{(i+1) \bmod p}$.

Proof

- Fix D_{0} and just put $D_{i+1}=\left\{\mathrm{t}(e) \mid \mathrm{i}(e) \in D_{i}\right\}$.
- By construction, each D_{i} is a period class. There are p of them because A is irreducible. Each edge from D_{p-1} must end in D_{0}.

Cyclic form of an irreducible nonzero matrix

By previous argument, after renaming the states,

$$
A=\left(\begin{array}{ccccc}
0 & B_{0} & 0 & \ldots & 0 \\
0 & 0 & B_{1} & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \ldots & B_{p-2} \\
B_{p-1} & 0 & 0 & \ldots & 0
\end{array}\right)
$$

Moreover,

$$
A^{p}=\left(\begin{array}{ccccc}
A_{0} & 0 & 0 & \ldots & 0 \\
0 & A_{1} & 0 & \ldots & 0 \\
0 & 0 & A_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \ldots & A_{p}
\end{array}\right)
$$

for suitable A_{i} 's.

Primitive graphs

Definition

- A matrix is primitive if it is irreducible and aperiodic.
- A graph is primitive if its adjacency matrix is primitive.

Characterization

Let A be a nonnegative matrix. TFAE.
(1) A is primitive.
(2) A^{N} is positive for some N.
(3) A^{N} is positive for all sufficiently large N.

Rationale

- If A is primitive, then $\left(A^{n}\right)_{I, I}>0$ for all $n \geq N_{l}$.
- Put $N=M+\max _{i \in \mathcal{V}} N_{l}$ where $\left(A^{n}\right)_{I, J}>0$ for some $n \leq M$.

Mixing shifts

Definition

A shift X is mixing if for any $u, v \in \mathcal{B}(X)$ there exists $N \geq 1$ s.t. for every $n \geq N$ there exists $w \in \mathcal{B}_{n}(X)$ s.t. $u w v \in \mathcal{B}(X)$.

Facts

- A factor of a mixing shift is mixing.
- If G is essential then X_{G} is mixing iff G is primitive.
- A SFT is mixing iff it is irreducible and aperiodic.
- For a mixing sofic shift,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log p_{n}(X)=\lim _{n \rightarrow \infty} \frac{1}{n} \log q_{n}(X)=h(X)
$$

Road-colorings

Definition

- Let $G=(\mathcal{V}, \mathcal{E})$ a graph. Recall that $\mathcal{E}_{I}=\{e \in \mathcal{E} \mid \mathrm{i}(e)=I\}$.
- A labeling $\mathcal{C}: \mathcal{E} \rightarrow A$ is a road-coloring if it is bijective on each \mathcal{E}_{l}.
- A graph G is road-colorable if it admits a road-coloring.

Characterization

Road-colorable graphs are precisely those with constant out-degree.

Use

- Observe that a road-coloring is right-resolving.
- Given a word w over A and a state I in G, there is exactly one path from I labeled w.
- In particular, (G, \mathcal{C}) is a presentation of the full A-shift.

The road-coloring problem

Statement

Is it true that every road-colorable primitive graph has a road-coloring admitting a synchronizing word?

Status at time of publication of Lind and Marcus textbook Unsolved.

Current status

Solved.

- Trahtman, Avraham N. (2009) The road colouring problem. Israel Journal of Mathematics 172(1): 51-60.
Thanks to Prof. Trahtman for correction. (2010-11-17)

Right-closing graphs

Definition

- Let $\mathcal{G}=(G, \mathcal{L})$ be a labeled graph.
- Suppose that, given any two paths $\pi=\pi_{1} \ldots \pi_{D+1}$ and $\rho=\rho_{1} \ldots \rho_{D+1}$ of length $D+1$, if $\mathrm{i}(\pi)=\mathrm{i}(\rho)$ and $\mathcal{L}(\pi)=\mathcal{L}(\rho)$, then $\pi_{1}=\rho_{1}$.
- We then say that \mathcal{G} is right-closing with delay D.

Motivation

- \mathcal{G} is right-resolving iff it is right-closing with delay zero.
- Two paths of length $N>D$ on a right-closing graph, that have same labeling and same initial state, are equal for the first $N-D$ steps.

One-sided shifts

Definition

If X is a (two-sided) shift over A, we put

$$
X^{+}=\left\{x_{[0, \infty)} \mid x \in X\right\}
$$

Special cases

- If $X=X_{G}$, then X^{+}is the set of infinite paths on G.
- If $X=X_{\mathcal{G}}$, then X^{+}is the set of labelings of infinite paths on \mathcal{G}.
- The map $\mathcal{L}_{\infty}^{+}: \mathrm{X}_{G}^{+} \rightarrow \mathrm{X}_{\mathcal{G}}^{+}$defined by $\mathcal{L}^{+}(\pi)_{i}=\mathcal{L}\left(\pi_{i}\right)$ is surjective.

Characterization of right-closing graphs

Theorem

Let $\mathcal{G}=(G, \mathcal{L})$ be a labeled graph and let $\mathrm{X}_{G, l}^{+}=\left\{\pi \in \mathrm{X}_{G}^{+} \mid \mathrm{i}(\pi)=I\right\}$. TFAE.
(1) \mathcal{G} is right-closing.
(2) For every state $I, \mathcal{L}^{+}: X_{G, I}^{+} \rightarrow X_{\mathcal{G}}^{+}$is injective.

Reason why

- Suppose \mathcal{G} is not right-closing.
- For $n>|\mathcal{V}|^{2}$ find π and ρ of same length n, same initial state, and different initial edge.
- Then $\pi=\alpha_{1} \alpha_{2} \alpha_{3}, \rho=\beta_{1} \beta_{2} \beta_{3}$ with $\left|\alpha_{i}\right|=\left|\beta_{i}\right|$ and α_{2} and β_{2} loops.
- Then $\mathcal{L}^{+}\left(\alpha_{1}\left(\alpha_{2}\right)^{\infty}\right)=\mathcal{L}^{+}\left(\beta_{1}\left(\beta_{2}\right)^{\infty}\right)$.

Conditions on right-closure

A sufficient condition

- Let $\mathcal{G}=(G, \mathcal{L})$ be s.t. \mathcal{L}_{∞} is a conjugacy.
- Suppose $\mathcal{L}_{\infty}^{-1}$ has anticipation n.
- Then \mathcal{L} is right-closing with delay n.

A necessary condition

- Let $\mathcal{G}=(G, \mathcal{L})$ be right-closing with delay D.
- Let \mathcal{H} be obtained from \mathcal{G} via out-splitting.
- Then \mathcal{H} is right-closing with delay $D+1$.

Reasons why

- We can always suppose G essential, so every path is left-extendable.
- Splitting has memory 0 and anticipation 1 ; amalgamation is 1 -block.

Right-closing labelings preserve entropy

Theorem

- Let $\mathcal{G}=(G, \mathcal{L})$ be a labeled graph.
- Suppose \mathcal{L} is right-closing.
- Then $h\left(\mathrm{X}_{\mathcal{G}}\right)=h\left(\mathrm{X}_{G}\right)$.

Reason why

- Initial state and labeling of a $D+1$-path determine first edge.
- Thus, if G has r states, then $\left|\mathcal{B}_{n}\left(X_{G}\right)\right| \leq r \cdot\left|\mathcal{B}_{n+D}\left(X_{\mathcal{G}}\right)\right|$.

Recoding right-closure into right-resolvedness

Theorem

Let $\mathcal{G}=(G, \mathcal{L})$ be a right-closed labeled graph with delay D. There exist a graph H and labelings Ψ, Θ on H s.t.

with Ψ right-resolving and Θ a conjugacy.
Reason why (for $D>0$)

- Put $\mathcal{V}(H)=\{(I, \mathcal{L}(\pi))|I \in \mathcal{V}(G), \mathrm{i}(\pi)=I,|\pi|=D\}$.
- An edge in H joins $(I, \mathcal{L}(\pi))$ to $\left(\mathrm{t}(e), \mathcal{L}\left(\pi_{[2, D]}\right)\right.$ a) where I and $\mathcal{L}(\pi)$ a determine $e \in \mathcal{E}(G)$. Call $(I, \mathcal{L}(\pi) a)$ such edge.
- Put $\Theta(I, \mathcal{L}(\pi) a)=e$. Put $\Psi(I, \mathcal{L}(\pi) a)=a$.

Finite-state codes

Definition

A finite-state code is a triple $(G, \mathcal{I}, \mathcal{O})$ where:

- G is a graph-encoder graph
- \mathcal{I} is a road-coloring on G-input labeling
- \mathcal{O} is a right-closing labeling on G-output labeling

A finite-state (X, n)-code is a finite-state code where:

- G has out-degree n.
- $\mathcal{O}_{\infty}\left(X_{G}\right) \subseteq X$.

Using finite-state codes

Drawing finite-state codes as labeled graphs
Edge e is marked as $\mathcal{I}(e) / \mathcal{O}(e)$. Example:

Encoding sequences on n-ary alphabets

- Let $(G, \mathcal{I}, \mathcal{O})$ be a finite-state (X, n)-code
- Let $x_{0} x_{1} x_{2} \ldots$ be an infinite sequence on an n-ary alphabet.
- Fix $I_{0} \in \mathcal{V}(G)$. There is exactly one sequence $e_{0} e_{1} e_{2} \ldots$ of edges s.t. $\mathcal{I}\left(e_{i}\right)=x_{i}$ for every i.
- The same sequence is also encoded as $\mathcal{O}\left(e_{0}\right) \mathcal{O}\left(e_{1}\right) \mathcal{O}\left(e_{2}\right) \ldots \in X^{+}$.
- Since \mathcal{O} is right-closing, input can be reconstructed from output, given the initial state.

The finite-state coding theorem

Statement

Let X be a sofic shift. TFAE.
(1) There exists a finite-state (X, n)-code.
(2) $h(X) \geq \log n$.

Necessity of the condition

- $h\left(\mathrm{X}_{G}\right)=h\left(\mathcal{I}_{\infty}\left(\mathrm{X}_{G}\right)\right)=h\left(\mathcal{O}_{\infty}\left(\mathrm{X}_{G}\right)\right)$ because \mathcal{I} and \mathcal{O} are right-closing.
- $h\left(\mathcal{I}_{\infty}\left(X_{G}\right)\right)=\log n$ because (G, \mathcal{I}) is a presentation of the full n-shift.
- $h\left(\mathcal{O}_{\infty}\left(\mathrm{X}_{G}\right)\right) \leq h(X)$ because $\mathcal{O}_{\infty}\left(\mathrm{X}_{G}\right) \subseteq X$.

Enforcing finite-state coding

Encoding the full 2 -shift into a binary sofic shift
Not possible right away, but...

- Divide input into blocks of length p, i.e., use $X_{\left[2^{p]}\right]}$ instead of $X_{[2]}$.
- Divide output into blocks of length q, i.e., use X^{q} instead of X.
- Then condition becomes $h(X) \geq p / q$.

Example with the $(1,3)$ run-length limited shift

- $h(\mathrm{X}(1,3)) \approx 0.55$, so we take $p=1$ and $q=2$.
- The input alphabet is still the full 2-shift.
- The output alphabet is $\mathcal{B}_{2}(X(1,3))=\{00,01,10\}$.
- The labeled graph below yields the modified frequency modulation:

Approximate eigenvectors

Definition

- Let A be a nonnegative, integral matrix.
- Let n be a positive integer.
- Let \mathbf{v} be a nonnegative, nonzero, integral vector.
- \mathbf{v} is an (A, n)-approximate eigenvector if $A \mathbf{v} \geq n \mathbf{v}$.

Example

- Let $A=\left(\begin{array}{ll}1 & 3 \\ 6 & 1\end{array}\right)$.
- Then $\mathbf{v}=\binom{2}{3}$ is an $(A, 5)$-approximate eigenvector.

Interpretations

Physical

- Suppose we assign weight v_{I} to state I.
- Then $\sum_{i(e)=I} v_{\mathrm{t}(e)} \geq n \cdot v_{I}$ for every state I.

Geometrical

- Suppose A is an $r \times r$ matrix.
- Each inequality $\sum_{J=1}^{r} A_{l, J} x_{J} \geq n \cdot x_{I}$ determines a closed half-space.
- Then, (A, n)-approximate eigenvectors are elements of a closed cone in r-dimensional space.

Positive approximate eigenvectors

Lemma

- Let G be a graph and $A=A(G)$ its adjacency matrix.
- Let \mathbf{v} be an (A, n)-approximate eigenvector.
- Then there exists a subgraph H of G s.t.

$$
\mathbf{w}_{I}=\mathbf{v}_{i} \quad \forall I \in \mathcal{V}(H)
$$

is a positive $(A(H), n)$-approximate eigenvector.

Reason why

- Let K be the subgraph generated by the states where $v_{I}>0$.
- K has an irreducible component H which is a sink.

Looking for approximate eigenvectors

Theorem

Let A be a nonnegative matrix. TFAE.
(1) There exists an (A, n)-approximate eigenvector.
(3) $\lambda_{A} \geq n$.

Moreover, if A is irreducible then there exists a positive (A, n)-approximate eigenvector.

Reason why

- It is not restrictive that A is irreducible and \mathbf{v} positive.
- If \mathbf{v} is an (A, n)-approximate eigenvector then $c, d>0$ exist s.t. $c n^{k} \leq \sum_{l, J=1}^{r}\left(A^{k}\right)_{l, J} \leq d \lambda_{A}^{k}$ for every k, thus $n \leq \lambda_{A}$.
- If $\lambda_{A}=n$ then \mathbf{v}_{A} is rational: use a suitable multiple.
- If $\lambda_{A}>n$ modify \mathbf{v}_{A} into a rational \mathbf{v} s.t. $A \mathbf{v}>n \mathbf{v}$ still holds.

Finding approximate eigenvectors

Algorithm

INPUT: nonnegative integral A and \mathbf{z}, positive integer n.
(1) Compute $\mathbf{z}^{\prime}=\min \left\{\mathbf{z},\left\lfloor\frac{1}{n} A \mathbf{z}\right\rfloor\right\}$
(2) If $\mathbf{z}^{\prime}=\mathbf{z}$: return \mathbf{z}

- Replace \mathbf{z} with \mathbf{z}^{\prime}
- Repeat

OUTPUT: either an (A, n)-approximate eigenvector, or the null vector.

Use

- Put $\left(\mathbf{v}_{k}\right)_{l}=k$ for every l.
- Apply the algorithm to \mathbf{v}_{1}, then to \mathbf{v}_{2}, and so on, until output is non-null.
- Then the final output is the smallest (A, n)-approximate eigenvector.

Approximate eigenvectors and splittings

Lemma A

- Let G be an irreducible graph and let $A=A(G)$.
- Suppose $\lambda_{A} \geq n$.
- Then there exists a sequence of graphs

$$
G=G_{0}, G_{1}, \ldots, G_{m}=H
$$

such that:
Each G_{i} is an elementary splitting of G_{i-1}.
$\left|\mathcal{E}_{l}(s)\right| \geq n$ for every state s in H.

- Let \mathbf{v} be a positive (A, n)-approximate eigenvector, and let $k=\sum_{l \in \mathcal{V}(G)} v_{i}$.
- Then the sequence above can be chosen with $m \leq k-|\mathcal{V}(G)|$ and $|\mathcal{V}(H)| \leq k$.

Proof of the finite-state coding theorem

- Let $X=X_{\mathcal{K}}$ be a sofic shift s.t. $h(X) \geq \log n$.
- We may suppose $\mathcal{K}=(K, \mathcal{L})$ irreducible and right-resolving
- If $A=A(K)$ then $\lambda_{A}=h(X) \geq \log n$.
- Construct a sequence $K=G_{0}, G_{1}, \ldots, G_{m}=H$ s.t.
- Each G_{i} is an elementary splitting of G_{i-1}.
- $\left|\mathcal{E}_{l}(s)\right| \geq n$ for every state s in H.
- The labeling \mathcal{L}^{\prime} of H resulting from \mathcal{L} is right-closing with delay $\leq m$.
- Construct $(G, \mathcal{I}, \mathcal{O})$ as follows:
- G is a subgraph of H with constant out-degree n.
- \mathcal{I} is any road-coloring of G.
- \mathcal{O} is the restriction of \mathcal{L}^{\prime} to G.
- Then $(G, \mathcal{I}, \mathcal{O})$ is a finite-state (X, n)-code.

The state splitting algorithm

INPUT: a sofic shift X.
(1) Construct a right-resolving presentation $\mathcal{K}=(K, \mathcal{L})$ of X.
(2) Compute $h(X)=\log \lambda_{A(K)}$.
(3) Choose integers p and q s.t. $h(X) \geq p / q$.
(9) Construct \mathcal{K}^{q}-which is a right-resolving presentation of X^{q}.
(5) Use the approximate eigenvector algorithm to find an
$\left(A\left(K^{q}\right), 2^{p}\right)$-approximate eigenvector. Then reduce to a sink component \mathcal{H} with positive approximate eigenvector.
(0) Perform a chain of state splits until obtaining a presentation with minimum out-degree $\geq 2^{p}$.
(1) Prune to obtain $\mathcal{G}=(G, \mathcal{O})$ with constant out-degree 2^{p}. Choose a road-coloring \mathcal{I} using binary p-blocks.
OUTPUT: A rate $p: q$ finite-state code $(G, \mathcal{I}, \mathcal{O})$.

Propagation of errors with finite-state codes

Example

- Consider the finite-state code $0 / a \mathrm{C} \cdot \overbrace{0 / c}^{1 / b} \cdot)_{1 / a}$
- If the initial state is the one on the left, $00000 \ldots$ is encoded into aaaaa...
- However, suppose that an error occurs, and the first a is written b.
- Then a decoder would reconstruct 11111...

Sliding block decoders

Definition

- Let $(G, \mathcal{I}, \mathcal{O})$ be a finite-state (X, n)-code.
- A sliding block decoder for $(G, \mathcal{I}, \mathcal{O})$ is a $\operatorname{SBC} \phi: X \rightarrow X_{[n]}$ s.t.

Use

- Suppose $\phi=\Phi_{\infty}^{[-m, \alpha]}$. Let $y_{0} y_{1} y_{2} \ldots$ be an output sequence.
- For $k \geq m$ it is $y_{k-m} \ldots y_{k+\alpha}=\mathcal{O}\left(e_{k-m} \ldots e_{k+\alpha}\right)$.
- Then $x_{k}=\mathcal{I}\left(e_{k}\right)=\Phi\left(y_{k-m} \ldots y_{k+\alpha}\right)$,
i.e., input can be reconstructed from output without recording the state, except at most the first m symbols.

The sliding block decoding theorem

Statement

- Let X be a shift of finite type.
- Suppose $h(X) \geq \log n$.
- Then there exists an (X, n)-finite state code with a sliding block decoder.

Reason why
The labeling of a minimal right-resolving presentation is a conjugacy.

Consequence

- Let X be a SFT.
- Suppose $h(X) \geq \log n$.
- Then X factors onto the full n-shift.

Thank you for attention!

