

Functional Languages for Synchronous Hardware Design and
Verification

Slide 1

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Functional Languages
for Synchronous Hardware

Design and Verification

Gordon J. Pace
Department of Computer Science

& AI
University of Malta

Functional Languages for Synchronous Hardware Design and
Verification

Slide 2

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

What this course is about …

• Using a functional language to
describe, manipulate, generate and
verify synchronous hardware.

• An overview of a number of such
functional hardware description
languages, each with different
objectives, different approaches.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 3

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

What it is not about …

• Circuit design
• Functional programming
• Model checking and hardware

verification
• Asynchronous circuits

Even if you’ll be expected to know
something and will learn more

about the first three

Functional Languages for Synchronous Hardware Design and
Verification

Slide 4

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Course Structure

• 4 days of 1.5hrs of lectures, 1hr
practical session per day.

• The functional language we will be
using is Haskell.

• The functional HDL is Lava.
• The verification tool is SMV.
• All this is downloadable as a ready-

made package from the course
website.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 5

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Course Outline

Part 1: Synchronous Circuits and
Hardware Description Languages

• Short introduction to synchronous
circuits

• Standard hardware description
languages

Functional Languages for Synchronous Hardware Design and
Verification

Slide 6

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Course Outline

Part 2: Lava

• Embedded languages
• Lava as an embedded HDL in Haskell
• Circuit descriptions in Lava
• Parametrised circuits in Lava
• Higher-order circuits in Lava
• Circuit verification in Lava

Functional Languages for Synchronous Hardware Design and
Verification

Slide 7

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Course Outline

Part 3: Writing your own
Functional HDL

• Designing a simple HDL for
simulation

• Shortcomings of the HDL
• Redesign using naming, monads and

non-updatable references
• Verification and netlist generation

Functional Languages for Synchronous Hardware Design and
Verification

Slide 8

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Course Outline

Part 4: Embedded Hardware
Compilers

• High level hardware design
• Hardware compilation
• Compilation techniques for different

languages
• Compilers and verification

Functional Languages for Synchronous Hardware Design and
Verification

Slide 9

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Course Outline

Part 5: Other embedded HDLs

• Hawk
• Wired
• reFLect

Functional Languages for Synchronous Hardware Design and
Verification

Slide 10

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Functional Languages
for Synchronous Hardware

Design and Verification

Part 1: An Introduction to
Synchronous Circuits and

Hardware Description
Languages
Gordon J. Pace

Department of Computer Science
& AI

University of Malta

Functional Languages for Synchronous Hardware Design and
Verification

Slide 11

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Synchronous Hardware

• All the circuits we will describe
will use a single global clock
controlling the system

• We will assume that the clock is
not too fast

Functional Languages for Synchronous Hardware Design and
Verification

Slide 12

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Synchronous vs
Asynchronous

Synchronous circuits are
• much easier to reason about
• hence easier to design
• and more reliable.
But
• they are more power hungry
• and slower
• large circuits also have problems with clock

skew

Functional Languages for Synchronous Hardware Design and
Verification

Slide 13

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Timeless Gates

• Throughout the course figures will
use named boxes for gates to avoid
confusion

• We will generally be using inv (or
not), and, or, nor, nand and xor
gates

• If necessary we add arrows to wires
to avoid ambiguity

etc

inv and

Functional Languages for Synchronous Hardware Design and
Verification

Slide 14

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Timeless Gates

• Throughout the course figures will
use named boxes for gates to avoid
confusion

• We will generally be using inv (or
not), and, or, nor, nand and xor
gates

• If necessary we add arrows to wires
to avoid ambiguity

etc

inv and

Sometimes, to avoid
clutter, we use a small
circle on an input wire
of a gate to indicate

that that input is
inverted

Functional Languages for Synchronous Hardware Design and
Verification

Slide 15

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Building a multiplexer

When the input sel is low output is
equal to input a, otherwise it is equal
to input b

mux

se
l

a

b

se
l

a

b and

or

and
inv

Functional Languages for Synchronous Hardware Design and
Verification

Slide 16

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

What About Correctness?

We need a specification:
P ≡ (sel ⇒ out = b) ∧ (¬ sel ⇒ out = a)

The circuit behaviour corresponds just to the
gates replaced by Boolean operators:
C ≡ out = ((¬ sel ∧ a) ∨ (sel ∧ b))

Now it’s just a matter of showing that:
 ∀sel, a, b . C ⇒ P

Functional Languages for Synchronous Hardware Design and
Verification

Slide 17

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Building an Equality
Checking Circuit

Output whether inputs a and b are
equal.

equal
a

b
xor inv

a

b

Functional Languages for Synchronous Hardware Design and
Verification

Slide 18

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Circuits with Memory

We will use one basic memory gate, a
delay:

delay

clock

The clock signal is
global to the whole
circuit, hence we avoid
drawing it, making it
implicit

Functional Languages for Synchronous Hardware Design and
Verification

Slide 19

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Circuits with Memory

We will use one basic memory gate, a
delay:

delay

Functional Languages for Synchronous Hardware Design and
Verification

Slide 20

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Circuits with Memory

We will use one basic memory gate, a
delay:

delay

Note that the values on
wires are now no longer
a boolean value, but a
stream of boolean
values:

TIME → Boolean

Functional Languages for Synchronous Hardware Design and
Verification

Slide 21

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Circuits with Memory

We will use one basic memory gate, a
delay:

delay ∀ t: TIME . out(t) =
in(t-1)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 22

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Circuits with Memory

We will use one basic memory gate, a
delay:

delay
0000

1111

1001

0110

mem
’

outmemin

Functional Languages for Synchronous Hardware Design and
Verification

Slide 23

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Circuits with Memory

We will use one basic memory gate, a
delay:

delay
(out = mem) ∧

(mem’ = in)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 24

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Circuits with Memory

We will use one basic memory gate, a
delay:

delay

What about the initial
value of the output
(and memory)?

For the purposes of
this course we will
initialise it to a fixed
value shown on the
delay

Functional Languages for Synchronous Hardware Design and
Verification

Slide 25

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Circuits with Memory

We will use one basic memory gate, a
delay:

delay0

What about the initial
value of the output
(and memory)?

For the purposes of
this course we will
initialise it to a fixed
value shown on the
delay

delay1

Functional Languages for Synchronous Hardware Design and
Verification

Slide 26

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Detecting a Rising Edge

delay1

and
inv

in

out

When the input in goes from low to
high, output high, otherwise output
low

Functional Languages for Synchronous Hardware Design and
Verification

Slide 27

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Detecting Any Edge

When the input in changes its value,
output high, otherwise output low

delay0

xor

in

out

Functional Languages for Synchronous Hardware Design and
Verification

Slide 28

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Set-Reset Memory

Output is always equal to the memory, which
starts off as low, and is set to high when
input s is high, and reset to low when input
r is high.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 29

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Set-Reset Memory

Output is always equal to the memory, which
starts off as low, and is set to high when
input s is high, and reset to low when input
r is high.

Off / 0 On / 1
s

r

¬ r¬ s

Functional Languages for Synchronous Hardware Design and
Verification

Slide 30

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Set-Reset Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

Functional Languages for Synchronous Hardware Design and
Verification

Slide 31

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Set-Reset Memory

delay0

and

and

and

and

or

or

delay1s

r

Note that this can be
transformed to

use only one delay …

out

Functional Languages for Synchronous Hardware Design and
Verification

Slide 32

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Block Diagram Descriptions of
Circuits

Describing circuits using block
diagrams is useful, but has various
disadvantages:

• Notation is cumbersome;
• Does not scale up;
• We have various ways of describing

the same circuit;
• We end up worrying about placement

and functionality at the same time;
• Compositionality is not

straightforward.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 33

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Block Diagram Descriptions of
Circuits

Describing circuits using block
diagrams is useful, but has various
disadvantages:

• Notation is cumbersome;
• Does not scale up;
• We have various ways of describing

the same circuit;
• We end up worrying about placement

and functionality at the same time;
• Compositionality is not

straightforward.

The solution?
Use a text based HDL
to describe the circuits

Functional Languages for Synchronous Hardware Design and
Verification

Slide 34

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Textual Descriptions

Structural descriptions: Describe the
circuits in terms of their submodules and
gates.

Behavioural descriptions: Describe the
behaviour of the circuit in terms of a
software program which does not
necessarily have an automatically
deducible hardware counterpart.

Synthesisable descriptions: A program-
like description which can be automatically
compiled down to a circuit.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 35

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Textual Descriptions

Structural descriptions: Describe the
circuits in terms of their submodules and
gates.

Behavioural descriptions: Describe the
behaviour of the circuit in terms of a
software program which does not
necessarily have an automatically
deducible hardware counterpart.

Synthesisable descriptions: A program-
like description which can be automatically
compiled down to a circuit.

This is what we
will be mainly

talking about in
this course

Functional Languages for Synchronous Hardware Design and
Verification

Slide 36

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Textual Descriptions

Structural descriptions: Describe the
circuits in terms of their submodules and
gates.

Behavioural descriptions: Describe the
behaviour of the circuit in terms of a
software program which does not
necessarily have an automatically
deducible hardware counterpart.

Synthesisable descriptions: A program-
like description which can be automatically
compiled down to a circuit.

These are
primarily used for

testing and we
will not be dealing

with them

Functional Languages for Synchronous Hardware Design and
Verification

Slide 37

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Textual Descriptions

Structural descriptions: Describe the
circuits in terms of their submodules and
gates.

Behavioural descriptions: Describe the
behaviour of the circuit in terms of a
software program which does not
necessarily have an automatically
deducible hardware counterpart.

Synthesisable descriptions: A program-
like description which can be automatically
compiled down to a circuit.

We will be talking
about these in
part 4 of the

course

Functional Languages for Synchronous Hardware Design and
Verification

Slide 38

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Describing Circuits in Verilog

• Verilog is an industry standard text-
based HDL (similar in many respects
to VHDL)

• The language was primarily aimed at
simulation but now tools extend its
functionality in various ways.

• We’re just looking at this to compare
to functional language based
techniques. It is far, far from a
comprehensive overview.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 39

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Adding Together Two 1-bit
Numbers to a 2-bit Number

and xor

in1 in2

out1 out2

Specification:

in1 + in2 = 2 * out1 +
out2

Functional Languages for Synchronous Hardware Design and
Verification

Slide 40

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Adding Together Two 1-bit
Numbers to a 2-bit Number

and xor

in1 in2

out1 out2

module halfadder(out1, out2 , in1,
in2);

 input in1, in2;

 output out1, out2;

 and AndGate1(out1, in1, in2);

 xor XorGate1(out2, in1,in2);

endmodule;

Functional Languages for Synchronous Hardware Design and
Verification

Slide 41

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Adding Together Three 1-bit
Numbers to a 2-bit Number

HA

HA

in1 in2

out1out2

Specification:

in1 + in2 + in3 =

2 * out1 + out2

in3

or

Functional Languages for Synchronous Hardware Design and
Verification

Slide 42

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Adding Together Three 1-bit
Numbers to a 2-bit Number

HA

HA

in1 in2

out1out2

in3

or

module fulladder(out1, out2, in1, in2,
in3);

 input in1, in2, in3;

 output out1, out2;

 halfadder HA1(m1, m2, in1, in2);

 halfadder HA2(m3, out2, m2, in3);

 or OrGate1(out1, m1, m3);

endmodule;

Functional Languages for Synchronous Hardware Design and
Verification

Slide 43

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Adding Together Two 4-Bit
Numbers to a 5-Bit Number

FA

a b

c s

0

FA

FA

FA

module adder4(c, s, a, b);

 input [3:0] a, b;

 output [3:0] s;

 output c;

 wire [4:0] m;

 assign m[0] = 0;

 assign c = m[3];

 fulladder FA1(m[1], s[0], a[0], b[0],
m[0]);

 fulladder FA2(m[2], s[1], a[1], b[1],
m[1]);

 fulladder FA3(m[3], s[2], a[2], b[2],
m[2]);

 fulladder FA4(m[4], s[3], a[3], b[3],
m[3]);

endmodule;

Functional Languages for Synchronous Hardware Design and
Verification

Slide 44

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Observations

• It is possible to describe hardware
modularly using Verilog or a similar
language.

• Without resorting to extensions, it is
however, impossible to describe
general circuits (eg an n-bit adder).

Functional Languages for Synchronous Hardware Design and
Verification

Slide 45

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Exercises (1)

• The majority3 circuit is a combinational
circuit with 3 inputs x1, x2, x3, and one
output y. The circuit outputs high if at least
2 of the inputs are high, and outputs low if
at least two of the inputs are low.
– Design the majority3 circuit in terms of logical

gates. You may use block diagrams, textual
notation, or any other description method you
are familiar with.

– What is the general scheme to design a
majorityk circuit, that has k inputs?

Functional Languages for Synchronous Hardware Design and
Verification

Slide 46

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Exercises (2)

• Design an assignment circuit with two
input wires assign and value, and one
output out. The output is initially low, and
changes value to match value whenever
assign is high. Otherwise, the value of out
does not change.

• The always circuit has one input in, and
one output out. As long as the input is
high, the output out is also high. But as
soon as in is low, then out becomes low
and stays low forever. Design the circuit in
terms of logical gates and delay
components

Functional Languages for Synchronous Hardware Design and
Verification

Slide 47

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Exercises (3)

• Design a circuit all3 with three inputs a, b
and c, and one output ok. The output
should become true whenever a, b and c
have all three been true at some point in
the past (not necessarily at the same
time). Generalise to allk, which works with
k inputs.

Write a program, which given a number k,
returns (using a textual description) allk.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 48

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Exercises (4)
• A stack is data structure which supports three operations: push, pop and

top. You will be designing a simple stack in hardware. For simplicity, the
data elements that are going to be stored in the stack are booleans. The
stack is implemented as a stateful circuit with three inputs, called push,
pop, and data, and one output, called top:

If push is high, then the data element is pushed on the stack. If pop is high,
then the top of the stack is taken away, and the data input is ignored. If
neither push nor pop is high, nothing happens. At all times, the output top
reflects the value of the top of the stack, so no special request to see the
top of the stack is required.

It is unspecified what happens when push and pop are high at the same
time, when the stack is empty and pop is high, and when the stack is full
and push is high.

Exercises
– Design a stack which can store at least 4 data elements. Try to use a design

consisting of four identical cells, each corresponding to a place in the stack.
– Add two extra outputs, called empty and full, which are high if the stack is

respectively empty or full.
– Add one extra output, called error, which becomes high if something has gone

wrong.
– What invariants hold for the delay elements in your design? (An invariant is a

property which is true at all times).

Functional Languages for Synchronous Hardware Design and
Verification

Slide 49

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Functional Languages
for Synchronous Hardware

Design and Verification

Part 2: Lava – A Hardware
Description Language
Embedded in Haskell

Gordon J. Pace
Department of Computer Science

& AI
University of Malta

Functional Languages for Synchronous Hardware Design and
Verification

Slide 50

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Let’s start by taking
another look at that 4-bit
adder written in Verilog

Functional Languages for Synchronous Hardware Design and
Verification

Slide 51

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Adding Together Two 4-Bit
Numbers to a 5-Bit Number

FA

a b

c s

0

FA

FA

FA

module adder4(c, s, a, b);

 input [3:0] a, b;

 output [3:0] s;

 output c;

 wire [4:0] m;

 assign m[0] = 0;

 assign c = m[3];

 fulladder FA1(m[1], s[0], a[0], b[0],
m[0]);

 fulladder FA2(m[2], s[1], a[1], b[1],
m[1]);

 fulladder FA3(m[3], s[2], a[2], b[2],
m[2]);

 fulladder FA4(m[4], s[3], a[3], b[3],
m[3]);

endmodule;

Functional Languages for Synchronous Hardware Design and
Verification

Slide 52

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Adding Together Two 4-Bit
Numbers to a 5-Bit Number

FA

a b

c s

0

FA

FA

FA

module adder4(c, s, a, b);

 input [3:0] a, b;

 output [3:0] s;

 output c;

 wire [4:0] m;

 assign m[0] = 0;

 assign c = m[3];

 fulladder FA1(m[1], s[0], a[0], b[0],
m[0]);

 fulladder FA2(m[2], s[1], a[1], b[1],
m[1]);

 fulladder FA3(m[3], s[2], a[2], b[2],
m[2]);

 fulladder FA4(m[4], s[3], a[3], b[3],
m[3]);

endmodule;

Ideally we would like
to generalise this
repeated code to
something more

modular

Functional Languages for Synchronous Hardware Design and
Verification

Slide 53

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Adding Together Two 4-Bit
Numbers to a 5-Bit Number

FA

a b

c s

0

FA

FA

FA

module adder(n, c, s, a, b);

 static int n;

 input [n:0] a, b;

 output [n:0] s;

 output c;

 wire [n+1:0] m;

 assign m[0] = 0;

 assign c = m[n];

 staticfor I = 0 to n

 fulladder FA(m[i+1], s[i], a[i], b[i],
m[i]);

 endfor;

endmodule;

WARNING

This is not
standard Verilog

Functional Languages for Synchronous Hardware Design and
Verification

Slide 54

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Adding Together Two 4-Bit
Numbers to a 5-Bit Number

FA

a b

c s

0

FA

FA

FA

module adder(n, c, s, a, b);

 static int n;

 input [n:0] a, b;

 output [n:0] s;

 output c;

 wire [n+1:0] m;

 assign m[0] = 0;

 assign c = m[n];

 staticfor I = 0 to n

 fulladder FA(m[i+1], s[i], a[i], b[i],
m[i]);

 endfor;

endmodule;

WARNING

This is not
standard Verilog

Or even generalise
further by being able

to
replace the fulladder
by any circuit of the

right shape

Functional Languages for Synchronous Hardware Design and
Verification

Slide 55

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Adding Together Two 4-Bit
Numbers to a 5-Bit Number

FA

a b

c s

0

FA

FA

FA

module column(blk, n, c, s, a, b);

 circuit … blk;

 …

 assign m[0] = 0;

 assign c = m[n];

 staticfor I = 0 to n

 blk BLK(m[i+1], s[i], a[i], b[i], m[i]);

 endfor;

endmodule;

module adder(n, c, s, a, b);

 …

 column(halfadder, n, c, s, a, b);

endmodule;

WARNING

This is not
standard Verilog

at all!

Functional Languages for Synchronous Hardware Design and
Verification

Slide 56

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Two-Level Language

• What we need are in fact two languages:
– A basic structural HDL.
– A richer programming language which can

access the structural HDL to generate regular
circuits – the meta-language.

• Most extensions to Verilog and VHDL take
a two-language approach, with a simple
meta-language.

• An alternative is to embed an HDL in a
standard language.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 57

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Embedded Languages

• Programs in the embedded language
are just data objects within the host
language, allowing:
– Generation
– Analysis
– Manipulation
– Semantics
– Tools for free

Functional Languages for Synchronous Hardware Design and
Verification

Slide 58

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Lava

• Lava is an HDL embedded in Haskell
• Developed in Chalmers University in

Gothenburg, but also separately
developed and used in Xilinx.

• Allows description, verification,
simulation, manipulation of
synchronous hardware.

• Allows higher-order description of
circuits.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 59

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Combinational Circuits in
Lava

and xor

in1 in2

out1 out2

halfadder (in1, in2) = (out1, out2)

 where

 out1 = and2 (in1, in2)

 out2 = xor2 (in1, in2)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 60

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Combinational Circuits in
Lava

and xor

in1 in2

out1 out2

halfadder ::

 (Signal Bool, Signal Bool) ->

 (Signal Bool, Signal Bool)

halfadder (in1, in2) = (out1, out2)

 where

 out1 = and2 (in1, in2)

 out2 = xor2 (in1, in2)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 61

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Combinational Circuits in
Lava

and xor

in1 in2

out1 out2

halfadder ::

 (Stream Bool, Stream Bool) ->

 (Stream Bool, Stream Bool)

halfadder (in1, in2) = (out1, out2)

 where

 out1 = and2 (in1, in2)

 out2 = xor2 (in1, in2)

Inputs
Do not use currying on

the stream
parameters, but

combine in tuples or
lists

Outputs

Basic gates

Functional Languages for Synchronous Hardware Design and
Verification

Slide 62

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Simulation

Main> simulate halfadder (high, low)
(low, high)

Main> simulate halfadder (high, high)
(high, low)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 63

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Reuse of Lava Components

HA

HA

in1 in2

out1out2

in3

or

fulladder (in1, (in2, in3)) = (out1, out2)

 where

 (m1, m2) = halfadder (in1, in2)

 (m3, out2) = halfadder (m2, in3)

 out1 = or2 (m1, m3)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 64

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Naïve 4-Bit Serial Adder

FA

a b

c s

0

FA

FA

FA

adder4 (a, b) = (c, s)

 where

 (a0, a1, a2, a3) = a

 (b0, b1, b2, b3) = b

 s = (s0, s1, s2, s3)

(m0, s0) = fulladder (low, (a0, b0))
(m1, s1) = fulladder (m0, (a1, b1))
(m2, s2) = fulladder (m1, (a2, b2))
(cout, s3) = fulladder (m2, (a3, b3))

Functional Languages for Synchronous Hardware Design and
Verification

Slide 65

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Naïve 4-Bit Serial Adder

FA

a b

cout s

cin

FA

FA

FA

adder4 (cin, (a, b)) = (cout, s)

 where

 (a0, a1, a2, a3) = a

 (b0, b1, b2, b3) = b

 s = (s0, s1, s2, s3)

 (m0, s0) = fulladder (cin, (a0, b0))

 (m1, s1) = fulladder (m0, (a1, b1))

 (m2, s2) = fulladder (m1, (a2, b2))

 (cout, s3) = fulladder (m2, (a3,
b3))

Functional Languages for Synchronous Hardware Design and
Verification

Slide 66

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Better 4-Bit Serial Adder

FA

a b

cout s

cin

FA

FA

FA

adder (cin, ([], [])) = (cin, [])

adder (cin, (a:as, b:bs)) = (cout, s:ss)

 where

 (m, s) = fulladder (cin, (a, b))

 (cout, ss) = adder (m, (as, bs))

Functional Languages for Synchronous Hardware Design and
Verification

Slide 67

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Better 4-Bit Serial Adder

FA

a b

cout s

cin

FA

FA

FA

adder (cin, ([], [])) = (cin, [])

adder (cin, (a:as, b:bs)) = (cout, s:ss)

 where

 (m, s) = fulladder (cin, (a, b))

 (cout, ss) = adder (m, (as, bs))

Works for any
width of input!

Functional Languages for Synchronous Hardware Design and
Verification

Slide 68

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Carry-Select Adder
• Strategy: split input wire lists in half – as

into as1 and as2, bs into bs1 and bs2.
• (In parallel) calculate the following sums

recursively:
– as1, bs1, cin to get ss1 and cmid
– as2, bs2, low to get ss2_0 and cout_0
– as2, bs2, high to get ss2_1 and cout_1

• Select ss2 to be ss2_0 or ss2_1 depending
on cmid. Similarly select cout.

• The sum is now simply ss1++ss2.
• Combinational depth is O(log n) as

opposed to O(n) (even if the number of
gates has increased).

Functional Languages for Synchronous Hardware Design and
Verification

Slide 69

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Carry-Select Adder
adder2 (cin, ([], [])) = (cin, [])
adder2 (cin, ([a], [b])) = fulladder (cin, (a, b))
adder2 (cin, (as, bs)) = (cout, ss)
 where
 (as1, as2) = split as
 (bs1, bs2) = split bs

 (cmid, ss1) = adder2 (cin, (as1, bs1))
 (cout_0, ss2_0) = adder2 (low, (as2, bs2))
 (cout_1, ss2_1) = adder2 (high, (as2, bs2))

 cout = mux (cmid, (cout_0, cout_1))
 ss2 = mux (cmid, (ss2_0, ss2_1))

 ss = ss1++ss2

Functional Languages for Synchronous Hardware Design and
Verification

Slide 70

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Simulation

Main> simulate adder (high, ([low, high], [high,
low]))

(high, [low, low])

Main> simulate adder (low, ([high], [low]))
(low, [high])

Functional Languages for Synchronous Hardware Design and
Verification

Slide 71

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Equality

equal (x,y) = inv (xor2 (x,y))

Main> simulate equal (low, high)
low

Functional Languages for Synchronous Hardware Design and
Verification

Slide 72

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Equality of Lists of Wires

equals ([],[]) = high
equals (x:xs, y:ys) =
 equal (x,y) <&> equals xs ys

Main> simulate equals
 ([low,high], [high,low])
low

Functional Languages for Synchronous Hardware Design and
Verification

Slide 73

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Sequential Circuits

The edge detector:

edge inp = xor2 (previous_inp, inp)
 where
 previous_inp = delay low inp

delay0

xor

in

out

Functional Languages for Synchronous Hardware Design and
Verification

Slide 74

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Sequential Circuits

The edge detector:

edge in = xor2 (previous_in, in)
 where
 previous_in = delay low in

delay0

xor

in

outNote that delay
is not a gate, but

(delay low) is
and so is (delay

high)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 75

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Sequential Circuit Simulation

Main> simulateSeq edge [low, high, high, low]
[low, high, low, high]

Main> simulateSeq edge [low, low, low, high]
[low, low, low, high]

Functional Languages for Synchronous Hardware Design and
Verification

Slide 76

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Set-Reset
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

Functional Languages for Synchronous Hardware Design and
Verification

Slide 77

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Set-Reset
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset (set, reset) = out
 where
 mem_0 = delay high set_mem_0
 mem_1 = delay low set_mem_1

 set_mem_0 =
 (mem_0 <&> inv set) <|> (mem_1 <&> reset)
 set_mem_1 =
 (mem_1 <&> inv reset) <|> (mem_0 <&> set)

 out = set_mem_1

Functional Languages for Synchronous Hardware Design and
Verification

Slide 78

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Set-Reset
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset (set, reset) = out
 where
 mem_0 = delay high set_mem_0
 mem_1 = delay low set_mem_1

 set_mem_0 =
 (mem_0 <&> inv set) <|> (mem_1 <&> reset)
 set_mem_1 =
 (mem_1 <&> inv reset) <|> (mem_0 <&> set)

 out = set_mem_1

<&> and <|> are infix
versions of and2 and

or2 respectively

Functional Languages for Synchronous Hardware Design and
Verification

Slide 79

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Sequential Circuit Simulation

Main> simulateSeq setReset
 [(low,high), (high, low), (low, low)]
[low, high, high]

Main> simulateSeq setReset
 [(high, low), (high, low), (low, low)]
[high, high, high]

Functional Languages for Synchronous Hardware Design and
Verification

Slide 80

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Set-Reset
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out
 where
 mem_0 = delay high set_mem_0
 mem_1 = delay low set_mem_1

 set_mem_0 =
 (mem_0 <&> inv set) <|> (mem_1 <&> reset)
 set_mem_1 =
 (mem_1 <&> inv reset) <|> (mem_0 <&> set)

 out = set_mem_1

Let’s look at the circuit
again

Functional Languages for Synchronous Hardware Design and
Verification

Slide 81

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Set-Reset
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out
 where
 mem_0 = delay high set_mem_0
 mem_1 = delay low set_mem_1

 set_mem_0 =
 (mem_0 <&> inv set) <|> (mem_1 <&> reset)
 set_mem_1 =
 (mem_1 <&> inv reset) <|> (mem_0 <&> set)

 out = set_mem_1

Since mem_0 and
mem_1 should always

be the negation of each
other we can do away
with one of them …

Functional Languages for Synchronous Hardware Design and
Verification

Slide 82

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Set-Reset
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out
 where
 mem_0 = inv mem_1
 mem_1 = delay low set_mem_1

 set_mem_0 =
 (mem_0 <&> inv set) <|> (mem_1 <&> reset)
 set_mem_1 =
 (mem_1 <&> inv reset) <|> (mem_0 <&> set)

 out = set_mem_1

Since mem_0 and
mem_1 should always

be the negation of each
other we can do away
with one of them …

Functional Languages for Synchronous Hardware Design and
Verification

Slide 83

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Set-Reset
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out
 where
 mem_0 = inv mem_1
 mem_1 = delay low set_mem_1

 set_mem_0 =
 (mem_0 <&> inv set) <|> (mem_1 <&> reset)
 set_mem_1 =
 (mem_1 <&> inv reset) <|> (mem_0 <&> set)

 out = set_mem_1

But now, set_mem_0 is
not used in the circuit

Functional Languages for Synchronous Hardware Design and
Verification

Slide 84

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Set-Reset
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out
 where
 mem_0 = inv mem_1
 mem_1 = delay low set_mem_1

 set_mem_1 =
 (mem_1 <&> inv reset) <|> (mem_0 <&> set)

 out = set_mem_1

But now, set_mem_0 is
not used in the circuit

Functional Languages for Synchronous Hardware Design and
Verification

Slide 85

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Set-Reset
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out
 where
 mem_0 = inv mem_1
 mem_1 = delay low set_mem_1

 set_mem_1 =
 (mem_1 <&> inv reset) <|> (mem_0 <&> set)

 out = set_mem_1

Since mem_0 and
mem_1 are just

opposites, this is just a
multiplexer

Functional Languages for Synchronous Hardware Design and
Verification

Slide 86

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Set-Reset
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out
 where
 mem_0 = inv mem_1
 mem_1 = delay low set_mem_1

 set_mem_1 = mux (mem_1, (set, inv reset))

 out = set_mem_1

Since mem_0 and
mem_1 are just

opposites, this is just a
multiplexer

Functional Languages for Synchronous Hardware Design and
Verification

Slide 87

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Set-Reset
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out
 where
 mem_0 = inv mem_1
 mem_1 = delay low set_mem_1

 set_mem_1 = mux (mem_1, (set, inv reset))

 out = set_mem_1

Cleaning up, we finally
get …

Functional Languages for Synchronous Hardware Design and
Verification

Slide 88

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Set-Reset
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out
 where
 mem_1 = delay low out
 out = mux (mem_1, (set, inv reset))

Cleaning up, we finally
get …

Functional Languages for Synchronous Hardware Design and
Verification

Slide 89

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Set-Reset
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out
 where
 mem_1 = delay low out
 out = mux (mem_1, (set, inv reset))

But do the two circuits
really behave the

same?

Functional Languages for Synchronous Hardware Design and
Verification

Slide 90

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Comparing the Set-Reset
Memories

checkSetReset (set, reset) = ok
 where
 out1 = setReset (set, reset)
 out2 = setReset2 (set, reset)

 ok = equal (out1, out2)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 91

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Comparing the Set-Reset
Memories

We can now use simulation to compare the
different implementation with a given stream
of inputs:

Main> simulateSeq checkSetReset
 [(low,high), (high, low), (low, low), (low,

high)]
[high, high, high, high]

Later on, we will see how to use model-
checking to confirm its correctness.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 92

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Parametrised Circuits

• Since we can write whatever Haskell
programs we want, we can write
functions, which given an input return
a circuit.

• We call such functions parametrised
circuits.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 93

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Exactly n Bits are High

exactly :: Int -> [Signal Bool] -> Signal
Bool

exactly 0 [] = high
exactly 0 (w:ws) = and2 (inv w, exactly

0 ws)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 94

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Exactly n Bits are High

exactly :: Int -> [Signal Bool] -> Signal
Bool

exactly 0 [] = high
exactly 0 (w:ws) = and2 (inv w, exactly

0 ws)
exactly (n+1) [] = low
exactly (n+1) (w:ws) =
 mux (w, (exactly (n+1) ws, exactly n

ws))

Functional Languages for Synchronous Hardware Design and
Verification

Slide 95

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Exactly n Bits are High

exactly :: Int -> [Signal Bool] -> Signal
Bool

exactly 0 [] = high
exactly 0 (w:ws) = and2 (inv w, exactly

0 ws)
exactly (n+1) [] = low
exactly (n+1) (w:ws) =
 mux (w, (exactly (n+1) ws, exactly n

ws))

Note that exactly is a
parametrised circuit.

Given a natural number,
it returns an actual circuit

Functional Languages for Synchronous Hardware Design and
Verification

Slide 96

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Simulating Instances of
exactly

Main> simulate (exactly 3) [high, low, high,
high]

high

Main> simulateSeq (exactly 2)
 [[low,high,high], [high,low,low],

[high,high,high]]
[high, low, low]

Functional Languages for Synchronous Hardware Design and
Verification

Slide 97

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Some Common Mistakes

exactly 0 [] = high
exactly 0 (w:ws) = and2 (inv w, exactly

0 ws)
exactly (n+1) [] = low
exactly (n+1) (low:ws) = exactly (n+1)

ws
exactly (n+1) (high:ws) = exactly n ws

Pattern-matching
on signals is not

possible

Functional Languages for Synchronous Hardware Design and
Verification

Slide 98

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Some Common Mistakes

exactly 0 [] = high
exactly 0 (w:ws) = and2 (inv w, exactly

0 ws)
exactly (n+1) [] = low
exactly (n+1) (w:ws) =
 if w==low
 then exactly (n+1) ws
 else exactly n ws

Checking equality
of signals is not

possible, otherwise
the result is not a

circuit

Functional Languages for Synchronous Hardware Design and
Verification

Slide 99

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Generic Circuits

• We can go one step further, and
parametrise circuits by other circuits.

• A generic circuit, or a connection
pattern is a function, which given a
circuit, returns another circuit.

• Using this approach to describe
functions (circuits) without referring
to the input-output wires is called
combinator-based programming.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 100

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

N-Input And Gate

andl [w] = w
andl (w:ws) =
 and2 (w, andl ws)

and

and

and

…

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 101

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

N-Input Or Gate

orl [w] = w
orl (w:ws) =
 or2 (w, orl ws)

or

or

or

…

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 102

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Binary Gate Generalised to N-
Inputs

gatel gate [w] = w
gatel gate (w:ws) =
 gate (w, gatel gate

ws)

gate

gate

gate

…

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 103

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Binary Gate Generalised to N-
Inputs

gatel gate [w] = w
gatel gate (w:ws) =
 gate (w, gatel gate

ws)

orl = gatel or2
andl = gatel and2

gate

gate

gate

…

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 104

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Binary Gate Generalised to N-
Inputs

gatel gate [w] = w
gatel gate (w:ws) =
 gate (w, gatel gate

ws)

orl = gatel or2
andl = gatel and2

gate

gate

gate

…

…

To avoid long
combinational paths, we
can reorganise to get the

same result (provided
the operators are

associative).

Functional Languages for Synchronous Hardware Design and
Verification

Slide 105

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Binary Gate Generalised to N-
Inputs

tree gate [w] = w
tree gate ws =
 gate (tree gate ws1, tree gate

ws2)
 where
 (ws1, ws2) = split ws

gate

gate

gate

…

…gate gate

gate

gate

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 106

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Rows

gate
Given a gate with two inputs
(left, top wires) and two
outputs (bottom and right
wires) …

gate :: (Signal Bool, Signal Bool) -> (Signal Bool, Signal Bool)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 107

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Rows

gate gate gate gate…

We can construct a circuit which given an input
wire (left) and a list of input wires (top wires),
produces a list of output wires (bottom wires)
and an output wire (left):

row gate :: (Signal Bool, [Signal Bool]) -> ([Signal Bool], Signal
Bool)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 108

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Rows

row gate (left, []) = ([], left)
row gate (left, t:tops) = (b:bottoms,

right)
 where
 (b, left’) = gate (left, t)
 (bottoms, right) = row gate (left’,

tops)

gate gate gate gate…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 109

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Rows

row gate (left, []) = ([], left)
row gate (left, t:tops) = (b:bottoms,

right)
 where
 (b, left’) = gate (left, t)
 (bottoms, right) = row gate (left’,

tops)

gate gate gate gate…

Actually, the row as
implemented in Lava is more

general than this, since it
allows for arbitrary tuples of

lists as the top inputs

Functional Languages for Synchronous Hardware Design and
Verification

Slide 110

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Adders and …

We can now define an adder simply as
a row of full adders:

adder = row fulladder

What does a row of half adders do?

????? = row halfadder

Functional Languages for Synchronous Hardware Design and
Verification

Slide 111

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

The Carry-Select Pattern
select circ (cin, []) = (cin, [])
select circ (cin, xs) = (cout, ss)
 where
 (xs1, xs2) = split xs

 (cmid, ss1) = select circ (cin, xs1)
 (cout_0, ss2_0) = select circ (low, xs2)
 (cout_1, ss2_1) = select circ (high, xs2)

 cout = mux (cmid, (cout_0, cout_1))
 ss2 = mux (cmid, (ss2_0, ss2_1))

 ss = ss1++ss2

Functional Languages for Synchronous Hardware Design and
Verification

Slide 112

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Parallel Adders and …

We can now define an adder simply
as a carry-select pattern of full
adders:

adder2 = select fulladder

Functional Languages for Synchronous Hardware Design and
Verification

Slide 113

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

The Carry-Select Pattern
select circ (cin, []) = (cin, [])
select circ (cin, xs) = (cout, ss)
 where
 (xs1, xs2) = split xs

 (cmid, ss1) = select circ (cin, xs1)
 (cout_0, ss2_0) = select circ (low, xs2)
 (cout_1, ss2_1) = select circ (high, xs2)

 cout = mux (cmid, (cout_0, cout_1))
 ss2 = mux (cmid, (ss2_0, ss2_1))

 ss = ss1++ss2

Functional Languages for Synchronous Hardware Design and
Verification

Slide 114

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Verification

• One of the unique features of Lava is
its link to model checkers.

• Allows checking of circuit properties
from within Lava, using external
tools.

• Various model checking tools have
been connected to Lava, but for this
course we will only be using SMV.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 115

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Stating Properties

• Lava can be used to describe circuits.
• For verification we also need to state

properties.

Two solutions:

• Give a separate language to express
properties, or

• Describe properties as circuits, which
output one bit, stating whether the circuit
is working correctly.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 116

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Observers

• Lava takes the second option … we
write observers which monitor the
property in question.

• It is a well-known result that the
expressiveness of observers is
equivalent to safety properties –
properties of the form bad things
never happen.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 117

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Observers

Circuit

Observer

Functional Languages for Synchronous Hardware Design and
Verification

Slide 118

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Rising Edges

Rising edge implementation:
rise w = w <&> inv (delay low w)

Specification:
There can never be two rising edges in
immediate succession.

property_rise w = inv (r <&> delay low
r)

where
r = rise w

Functional Languages for Synchronous Hardware Design and
Verification

Slide 119

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Rising Edges

Main> smv property_rise
Proving: … Valid

Functional Languages for Synchronous Hardware Design and
Verification

Slide 120

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Falling Edges

Falling edge implementation:
fall w = inv w <&> delay low w

Specification:
Rising edges of a signal are equivalent

to falling edges of the inverse of the
signal.

property_edges w = equal (r, f)
where

r = rise w
f = fall (inv w)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 121

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Falling Edges

Main> smv property_edges
Proving: … Falsifiable

When w starts off with value high,
rise w returns high, while fall (inv w)
returns low. Otherwise, they match.
Use Lava and SMV to check this!

Functional Languages for Synchronous Hardware Design and
Verification

Slide 122

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Recall the Set-Reset Memories
Comparison

checkSetReset (set, reset) = ok
 where
 out1 = setReset (set, reset)
 out2 = setReset2 (set, reset)

 ok = equal (out1, out2)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 123

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Result?

Main> smv checkSetReset
Proving: … True

Functional Languages for Synchronous Hardware Design and
Verification

Slide 124

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Similarly, we can compare
adders …

checkAdders (cin, (xs, ys)) = ok
 where
 (cout1, ss1) = adder (cin, (xs, ys))
 (cout2, ss2) = adder2 (cin, (xs, ys))

 ok = equal (cout1, cout2) <&>
 equals (ss1, ss2)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 125

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Result?
But smv checkAdders gives an error because it doesn’t know what width

to use.

fourToList (x1,x2,x3,x4) = [x1,x2,x3,x4]

checkAdders (cin, (xs’, ys’)) = ok
 where
 xs = fourToList xs’
 ys = fourToList ys’

 (cout1, ss1) = adder (cin, (xs, ys))
 (cout2, ss2) = adder2 (cin, (xs, ys))

 ok = equal (cout1, cout2) <&> equals (ss1, ss2)

Main> smv checkAdders
Proving: … True

Functional Languages for Synchronous Hardware Design and
Verification

Slide 126

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Other Features

Netlist Generation: Lava allows the
user to generate a VHDL description
of the circuit, to enable efficient
simulation, testing, placement, etc.

Main> writeVhdl “rising” rise

Functional Languages for Synchronous Hardware Design and
Verification

Slide 127

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Other Features

Signal types: Lava supports not only
Signals of Booleans, but also signals
of integers:

intSquarer n = times (n, n)

Main> simulateSeq intSquarer [4,5]
[16, 25]

Functional Languages for Synchronous Hardware Design and
Verification

Slide 128

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Other Features

Signal types: Lava supports not only
Signals of Booleans, but also signals
of integers:

intSquarer n = times (n, n)

Main> simulateSeq intSquarer [4,5]
[16, 25]

This sometimes leads to
polymorphism on Signal types. For

example:

mux :: (Signal Bool, (Signal a, Signal a)) ->
Signal a

Functional Languages for Synchronous Hardware Design and
Verification

Slide 129

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Conclusions

• Embedded languages give us more
control over the generation and
manipulation of the host language.

• Lava is excellent for describing
regular circuits – the Haskell code
runs to generate the actual circuit.

• In Part III we will look into the
implementation of Lava and similar
languages.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 130

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Exercises

• Implement the circuits you drew (or otherwise
described) in Part 1 using Lava.

• Write a property to verify that (all3 (a,b,c))
behaves just like (all3 (c,a,b)). Verify it.

• Write a property which states that a falling edge
never appears on the output of always w. Verify
it.

• Generalise the stack example to take a numeric
parameter with the size of the stack.
Express and verify the property that if you push
an element on the stack, and then pop, the top
element has not changed. What goes wrong? How
can you fix this?

Functional Languages for Synchronous Hardware Design and
Verification

Slide 131

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Functional Languages
for Synchronous Hardware

Design and Verification

Part 3: Writing Your Own
Functional HDL

Gordon J. Pace
Department of Computer Science

& AI
University of Malta

Functional Languages for Synchronous Hardware Design and
Verification

Slide 132

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Objectives

• The elegance and expressivity of the
functional approach to HDLs should
be evident by now.

• Taking a look at the mechanisms
beneath the hood will give us a better
understanding.

• The aim of this part of the course is
to build a simple functional HDL in
Haskell.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 133

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

The Language
• We will build a simple language,

which will have just negation,
conjunction and delay gates, and
using only Boolean streams.

• Our principal aims are to be able to:
– Describe circuits
– Manipulate circuits
– Simulate circuits
– Produce a textual description of a circuit

(this would be used in netlist generation
and verification)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 134

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Quick Hack

We can use a standard abstract
datatype in Haskell to describe
circuits:

data Circuit = Low
| High
| Not Circuit
| And Circuit Circuit
| Delay Bool Circuit
deriving (Eq, Show)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 135

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Quick Hack

With some helper functions, we can have a
simple version of Lava running, no?

low = Low
high = High
inv w = Not w
and2 (u,v) = And u v

delay Low w = Delay False w
delay High w = Delay True w
delay _ _ =

error “Delays can only take static
initialisation”

Functional Languages for Synchronous Hardware Design and
Verification

Slide 136

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

More Utility Functions

or2 (u, v) = inv (and2 (inv u, inv v))

u <&> v = and2 (u,v)
u <|> v = or2 (u,v)

xor2 (u,v) = (u <&> inv v) <|> (inv u
<&> v)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 137

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Evaluation of a Closed
Circuit

A closed circuit is one with no inputs:

evaluate Low = Low
evaluate High = High

evaluate (Not c) =
 case evaluate c of
 Low -> High
 High -> Low

evaluate (And c1 c2) =
 case (evaluate c1, evaluate c2) of
 (High, High) -> High
 _ -> Low

Functional Languages for Synchronous Hardware Design and
Verification

Slide 138

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Let’s Try to Simulate a
Combinational Circuit

Recall that simulate takes a circuit
which takes an input, and an input,
and evaluates the output:

simulate fcircuit value =
evaluate (fcircuit value)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 139

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Let’s try it out…

mux (sel, (l, h)) =
(sel <&> h) <|> (inv sel <&> l)

Main> simulate mux (high, (high, low))
Low

Functional Languages for Synchronous Hardware Design and
Verification

Slide 140

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

What about counting gates?

count fcircuit = count’ (fcircuit Low)
 where

count’ Low = 0
count’ High = 0
count’ (Not c) = 1+ count’ c
count’ (And c1 c2) =

1+ count’ c1 + count’ c2
count’ (Delay _ c) = 1 + count’ c

Functional Languages for Synchronous Hardware Design and
Verification

Slide 141

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Let’s try it out…

mux (sel, (l, h)) =
(sel <&> h) <|> (inv sel <&> l)

Main> count mux
ERROR: Type error in application

Functional Languages for Synchronous Hardware Design and
Verification

Slide 142

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Let’s try it out…

mux (sel, (l, h)) =
(sel <&> h) <|> (inv sel <&> l)

Main> count mux
ERROR: Type error in application

What’s wrong?

Functional Languages for Synchronous Hardware Design and
Verification

Slide 143

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

What about counting gates?

Main> count mux
ERROR: Type error in application

count fcircuit = count’ (fcircuit Low)
 where
 … Count assumes that the

circuit takes only one
input. How can we fix it?

Functional Languages for Synchronous Hardware Design and
Verification

Slide 144

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

What about counting gates?

Main> count mux
ERROR: Type error in application

count fcircuit = count’ (fcircuit Low)
 where
 … We need a way of

generating arbitrary
tuples (possibly of

tuples) of Lows

Functional Languages for Synchronous Hardware Design and
Verification

Slide 145

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Typeclasses to the Rescue

Types in class CircuitStructure can be
populated by zeros…

class CircuitStructure a where
 zeros :: a

Functional Languages for Synchronous Hardware Design and
Verification

Slide 146

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Typeclasses to the Rescue

Types in class CircuitStructure can be
populated by zeros…

class CircuitStructure a where
 zeros :: a

count fcircuit = count’ (fcircuit zeros)
 where
 …

Functional Languages for Synchronous Hardware Design and
Verification

Slide 147

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Solution Using Typeclasses

A circuit can be zero:

instance CircuitStructure Circuit where
 zeros = Low

Functional Languages for Synchronous Hardware Design and
Verification

Slide 148

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Solution Using Typeclasses

Given two types which can be zeros,
a pair of such types can also be
zeros:

instance (CircuitStructure a,
CircuitStructure b)

 => CircuitStructure (a, b) where
 zeros = (zeros, zeros)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 149

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Does it work now?

Main> count mux
7

Functional Languages for Synchronous Hardware Design and
Verification

Slide 150

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Does it work now?

Main> count mux
7

7?! Yes, of course,
because our or2 gates
are built from three inv

and one and2 gates

Functional Languages for Synchronous Hardware Design and
Verification

Slide 151

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Another Example

example (u, v) = out
 where
 common = and2 (u, v)
 out = mux (u, (common, inv

common))

How many gates should this have?

Functional Languages for Synchronous Hardware Design and
Verification

Slide 152

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Another Example

example (u, v) = out
 where
 common = and2 (u, v)
 out = mux (u, (common, inv

common))

How many gates should this have?
7 (mux) + 1 (inv) + 1 (and2) = 9

Functional Languages for Synchronous Hardware Design and
Verification

Slide 153

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Another Example

example (u, v) = out
 where
 common = and2 (u, v)
 out = mux (u, (common, inv

common))

Main> count example
10

Functional Languages for Synchronous Hardware Design and
Verification

Slide 154

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Why?
example (u, v) = out
 where
 common = and2 (u, v)
 out = mux (u, (common, inv common))

is equivalent to

example (u, v) = out
 where
 out = mux (u, (and2 (u, v), inv (and2 (u,

v))))

Functional Languages for Synchronous Hardware Design and
Verification

Slide 155

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

It is even worse than this …

Consider the following circuit with feedback…

always s = out
 where
 out = s <&> delay low out

Main> count always
ERROR: Stack overflow

Functional Languages for Synchronous Hardware Design and
Verification

Slide 156

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

It is even worse than this …

Consider the following circuit with feedback…

always s = out
 where
 out = s <&> delay low out

Main> count always
ERROR: Stack overflow

The function count
traverses the delay over
and over again until it

runs out of stack space

Functional Languages for Synchronous Hardware Design and
Verification

Slide 157

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Solutions: Name Circuits

1. Naming circuits: Circuits may be
given names. Circuits with the same
name are counted only once. It is up
to the user to use different names.

example (u, v) = out
 where
 common = name “COMMON” (and2

(u, v))
 out = mux (u, (common, inv

common))

Functional Languages for Synchronous Hardware Design and
Verification

Slide 158

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Solutions: Name Circuits

1. Naming circuits: Circuits may be
given names. Circuits with the same
name are counted only once. It is up
to the user to use different names.

example (u, v) = out
 where
 common = name “AND1” (and2 (u,

v))
 out = mux (u, (common, inv

common))

Some functional
HDLs, including
Hydra used this
solution (or a
variant of it).

Functional Languages for Synchronous Hardware Design and
Verification

Slide 159

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Solution: Carry a State
Around

1. Auxiliary state variable: Since
users may make mistakes, every
circuit constructor is given a state
and returns an updated state, which
is used in the next constructor. This
state (just a number) can be used to
name circuits using unique names.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 160

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Carry a State Around

inv state w =
(state+1, name (show state) Not w)

and2 state (u, v) =
(state+1, name (show state) (And u v))

example state0 (u, v) = (state3, out)
 where
 (state1, common) = and2 state0 (u, v)
 (state2, inv_common) = inv state1 common
 (state3, out) = mux state2 (u, (common,

inv_common))

Functional Languages for Synchronous Hardware Design and
Verification

Slide 161

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Carry a State Around

inv state w =
(state+1, name (show state) Not w)

and2 state (u, v) =
(state+1, name (show state) (And u v))

example state0 (u, v) = (state3, out)
 where
 (state1, common) = and2 state0 (u, v)
 (state2, inv_common) = inv state1 common
 (state3, out) = mux state2 (u, (common,

inv_common))

Here we hide the
names, but still
have the burden
of carrying the

state.
Cumbersome
and unwieldy.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 162

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Solution: Use a State Monad

1. Use a state monad: Since users may
still make mistakes when passing the
state around, the state may be made
implicit using monads and the Haskell do
notation which hides it all away.

example (u, v) =
 do
 common <- and2 (u, v)
 out <- mux (u, (common, inv common))
 return out

Functional Languages for Synchronous Hardware Design and
Verification

Slide 163

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Solution: Use a State Monad

1. Use a state monad: Since users may
still make mistakes when passing the
state around, the state may be made
implicit using monads and the Haskell do
notation which hides it all away.

example (u, v) =
 do
 common <- and2 (u, v)
 out <- mux (u, (common, inv common))
 return out

If you have
never heard

about monads,
this is not the

time …

Functional Languages for Synchronous Hardware Design and
Verification

Slide 164

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Solution: Use a State Monad

1. Use a state monad: Since users may
still make mistakes when passing the
state around, the state may be made
implicit using monads and the Haskell do
notation which hides it all away.

example (u, v) =
 do
 common <- and2 (u, v)
 out <- mux (u, (common, inv common))
 return out

The first version
of Lava used this
trick to encode

the state.
Feedback loops

complicate
matters, though.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 165

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Use Non-Updatable
References

1. Use non-updatable reference: If we
are allowed to look at the memory
address (pointer) of a data object, we can
identify common sub-expressions. This
assumes that the compiler/interpreter
does not replicate expressions from let or
where clauses.

example (u, v) = out
 where
 common = and2 (u, v)
 out = mux (u, (common, inv common))

Functional Languages for Synchronous Hardware Design and
Verification

Slide 166

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Use Non-Updatable
References

1. Use non-updatable reference: If we
are allowed to look at the memory
address (pointer) of a data object, we can
identify common sub-expressions. This
assumes that the compiler/interpreter
does not replicate expressions from let or
where clauses.

example (u, v) = out
 where
 common = and2 (u, v)
 out = mux (u, (common, inv common))

Count should realise that
the two sub-expressions
are the same, since they
are located at the same

memory location

Functional Languages for Synchronous Hardware Design and
Verification

Slide 167

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Use Non-Updatable
References

1. Use non-updatable reference: If we
are allowed to look at the memory
address (pointer) of a data object, we can
identify common sub-expressions. This
assumes that the compiler/interpreter
does not replicate expressions from let or
where clauses.

example (u, v) = out
 where
 common = and2 (u, v)
 out = mux (u, (common, inv common))

The result is not a 100%
functionally pure solution,
but is probably one of the

better compromises
around

Functional Languages for Synchronous Hardware Design and
Verification

Slide 168

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Use Non-Updatable
References

1. Use non-updatable reference: If we
are allowed to look at the memory
address (pointer) of a data object, we can
identify common sub-expressions. This
assumes that the compiler/interpreter
does not replicate expressions from let or
where clauses.

example (u, v) = out
 where
 common = and2 (u, v)
 out = mux (u, (common, inv common))

Lava 2000, the version we
are using, uses this

solution

Functional Languages for Synchronous Hardware Design and
Verification

Slide 169

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Implementing Named
Circuits

We need to start by enriching the
datatype:

data Circuit = Low
| High
| Not Circuit
| And Circuit Circuit
| Delay Bool Circuit
| Named String Circuit
deriving (Eq, Show)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 170

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Implementing Named
Circuits

We need to start by enriching the datatype
and allowing the designers to access it:

data Circuit = Low
| …
| Delay Bool Circuit
| Named String Circuit
deriving (Eq, Show)

name string circuit = Named string circuit

Functional Languages for Synchronous Hardware Design and
Verification

Slide 171

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Implementing Named
Circuits

count fcircuit = snd (count’ [] (fcircuit zeros))
 where

count’ nmes Low = (nmes, 0)
count’ nmes High = (nmes, 0)
count’ nmes (Not c) =

let (nmes’, cnt) = count’ nmes c
in (nmes’, 1+cnt)

count’ nmes (And c1 c2) =
let (nmes’, cnt1) = count’ nmes c1
 (nmes’’,cnt2) = count’ nmes’ c2
in (nmes’’, 1+cnt1+cnt2)

count’ nmes (Delay _ c) =
let (nmes’, cnt) = count’ nmes c
in (nmes’, 1+cnt)

count’ nmes (Named n c)
| n `elem` nmes = (nmes, 0)
| otherwise = count’ (n:nmes) c

Functional Languages for Synchronous Hardware Design and
Verification

Slide 172

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Implementing Named
Circuits

count fcircuit = snd (count’ [] (fcircuit zeros))
 where

count’ nmes Low = (nmes, 0)
count’ nmes High = (nmes, 0)
count’ nmes (Not c) =

let (nmes’, cnt) = count’ nmes c
in (nmes’, 1+cnt)

count’ (And c1 c2) =
let (nmes’, cnt1) = count’ nmes c1
 (nmes’’,cnt2) = count’ nmes’ c2
in (nmes’’, 1+cnt1+cnt2)

count’ (Delay _ c) =
let (nmes’, cnt) = count’ nmes c
in (nmes’, 1+cnt)

count’ nmes (Name n c)
| n `elem` nmes = (nmes, 0)
| otherwise = count’ (n:nmes) c

As long as the
user names all
common sub-
circuits and

feedback loops,
count will now
work correctly

Functional Languages for Synchronous Hardware Design and
Verification

Slide 173

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Simulation, Again
Simulation was performing extra work, recalculating common

sub-expressions:

evaluate c = snd (evaluate [] c)
 where

evaluate’ known Low = (known, Low)
evaluate’ known High = (known, High)

evaluate’ known (Not c) =
let (known’, value) = evaluate’ known c
in case value of
 Low -> (known’, High)
 High -> (known’, Low)

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 174

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Some Limitations of Our
System

• We can only have circuits which output one
value. To be able to describe circuits like a
halfadder, we need to perform a similar
trick as we did on the input.

• To produce a netlist description, we need
to be able to name inputs. We need to
further enrich the circuit datatype, and the
CircuitStructure class to be able to create a
correct structure with distinct names.

• We did not touch on sequential simulation,
in which we would need to evaluate a list
of evaluated outputs, not just a single
value.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 175

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Conclusions

• Building a practical functional HDL is not as
straightforward as the final library may
give the impression of.

• A major issue is that of shared circuits. We
have presented some solutions to the
problem.

• Overloading via typeclasses in Haskell
works wonders!

• Lazyness can be useful when performing
sequential simulation.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 176

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Exercises

• Implement an embedded hardware
description language using named
circuits as shown.

• Add a function to allow the user to
run sequential simulation.

• Add a function to create a textual
(VHDL/Verilog-like) description of a
given closed circuit.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 177

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Functional Languages
for Synchronous Hardware

Design and Verification

Part 4: Embedded Hardware
Compilers

Gordon J. Pace
Department of Computer Science

& AI
University of Malta

Functional Languages for Synchronous Hardware Design and
Verification

Slide 178

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

What is Hardware
Compilation?

• Describe an algorithm using a
high level formalism

• Compile directly into hardware

int factorial (int n) {
 int i, result;

 result=1;
 for i=1 to n do
 result := result * I

 return (result);
}

factorial

n

resul
t

Functional Languages for Synchronous Hardware Design and
Verification

Slide 179

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Issues Regarding
Compilation

• Should the program run once every clock
tick?
– Problems with unbounded loops and non-

termination
– No memory between clock ticks
– The same program runs every clock tick

• Should we allow execution to take more
than one clock tick?
– When is the result available?
– What is the meaning of intermediate results?
– Should the programmer be able to express

clock barriers?

Functional Languages for Synchronous Hardware Design and
Verification

Slide 180

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Issues Regarding
Compilation

• Should the program run once every clock
tick?
– Problems with unbounded loops and non-

termination
– No memory between clock ticks
– The same program runs every clock tick

• Should we allow execution to take more
than one clock tick?
– When is the result available?
– What is the meaning of intermediate results?
– Should the programmer be able to express

clock barriers?

During this course we will be
dealing exclusively with
compiled languages which:

3.Potentially run over multiple
clock cycles

4.Timing is explicit in the
programs themselves

Functional Languages for Synchronous Hardware Design and
Verification

Slide 181

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Regular
Expressions

RE ::= a Single symbol
| RE+ Repetition
| RE + RE Choice
| RE . RE Catenation

For simplicity of exposition, we avoid
regular expressions which accept the
empty string.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 182

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Regular Expressions and
Hardware

• The alphabet is the set of wires.
• A single symbol a is accepted during

the next clock tick if wire a currently
carries high.

• Choice, repetition and catenation are
interpreted as usual.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 183

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Regular Expressions and
Hardware

a . (b+ + a)

Is accepted on the third clock tick, if a
was high during the first two clock
ticks, or after three or more clock
ticks, if a was high in the first, and b
was high throughout the rest of the
ticks (except possibly the last).

Functional Languages for Synchronous Hardware Design and
Verification

Slide 184

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Regular Expressions
to Hardware

• The start input tells the circuit when
to start parsing.

• A circuit can be started multiple
times

Circuit
start acceptRegular

Expression compile

ab z
…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 185

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Regular Expressions
to Hardware

The single symbol a is accepted in
the next clock tick if we start parsing
now, and a is currently high.

start

accept
a compile

a

and delay

Functional Languages for Synchronous Hardware Design and
Verification

Slide 186

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Regular Expressions
to Hardware

When e.f starts parsing, we start
parsing e, and once it is accepted, we
start parsing f.

start accept
e . f compile e f

Functional Languages for Synchronous Hardware Design and
Verification

Slide 187

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Regular Expressions
to Hardware

When e+f starts parsing, we start
parsing both e and f, and accept once
either of the two accepts.

start accept
e + f compile

e

or

f

Functional Languages for Synchronous Hardware Design and
Verification

Slide 188

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Regular Expressions
to Hardware

We start parsing e when e+ starts
parsing or e accepts. We accept
every time e accepts.

start accept
e+

compile eor

Functional Languages for Synchronous Hardware Design and
Verification

Slide 189

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a.(b++a)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 190

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a.(b++a)

and delay

b
accept

start

compile
b

Functional Languages for Synchronous Hardware Design and
Verification

Slide 191

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a.(b++a)

start

andor delay

b

accept

compile
b+

Functional Languages for Synchronous Hardware Design and
Verification

Slide 192

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a.(b++a)

start

andor delay

and delay

or

b

a

accept

compile b+

+a

Functional Languages for Synchronous Hardware Design and
Verification

Slide 193

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a.(b++a)

start

andor delay

and delay

orand delay

b

a

accept

compile a. (b+ +
a)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 194

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Regular Expression Compiler
in Lava

We embed regular expressions an a
datatype:

data RegExp =
Symbol (Signal Bool)

| Repeat RegExp
| RegExp :+: RegExp
| RegExp :>: RegExp

Functional Languages for Synchronous Hardware Design and
Verification

Slide 195

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Regular Expression Compiler
in Lava

The circuits produced have a simple
type:

type CircuitRE = Signal Bool -> Signal
Bool

So does the compiler:

compileRE :: RegExp -> CircuitRE

Functional Languages for Synchronous Hardware Design and
Verification

Slide 196

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Regular Expression Compiler
in Lava

The circuits produced have a simple
type:

type CircuitRE = Signal Bool -> Signal
Bool

So does the compiler:

compileRE :: RegExp -> CircuitRE

We can now define
compileRE using

pattern matching on
regular expressions

Functional Languages for Synchronous Hardware Design and
Verification

Slide 197

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Regular Expression Compiler
in Lava

compileRE (Symbol a) start =
delay low (a <&> start)

start

accept
a compile

a

and delay

Functional Languages for Synchronous Hardware Design and
Verification

Slide 198

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Regular Expression Compiler
in Lava

compileRE (e :>: f) start = accept
where

middle = compileRE e start
accept = compileRE f middle

start accept
e . f compile e f

Functional Languages for Synchronous Hardware Design and
Verification

Slide 199

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Regular Expression Compiler
in Lava

compileRE (e :+: f) start = accept
where

accept_e = compileRE e start
accept_f = compileRE f start
accept = accept_e <|> accept_f

start accept
e + f compile

e

or

f

Functional Languages for Synchronous Hardware Design and
Verification

Slide 200

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Regular Expression Compiler
in Lava

compileRE (Repeat e) start = accept
where

accept = compileRE e start’
start’ = start <|> accept

start accept
e+

compile eor

Functional Languages for Synchronous Hardware Design and
Verification

Slide 201

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Simulating Regular Expression
Circuits

example a b = s_a :>: (Repeat s_b :+: s_a)
where

s_a = Symbol a
s_b = Symbol b

circuit (a,b) = compileRE (example a b) (delay high
low)

Main> simulateSeq circuit
[(high, high), (high, high), (low, high), (high, low)]

[low, low, high, high]

Functional Languages for Synchronous Hardware Design and
Verification

Slide 202

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a Simple Imperative
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Functional Languages for Synchronous Hardware Design and
Verification

Slide 203

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a Simple Imperative
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

A program has only one
output variable, by default
always carrying value low,
unless it is actively pushed

up to high.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 204

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a Simple Imperative
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Does nothing and
terminates

immediately

Functional Languages for Synchronous Hardware Design and
Verification

Slide 205

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a Simple Imperative
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Does nothing and
terminates one
clock tick later

Functional Languages for Synchronous Hardware Design and
Verification

Slide 206

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a Simple Imperative
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Terminates
immediately. Pushes

that the output of
the program to high.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 207

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a Simple Imperative
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Standard
conditional,
branching

depending on
current value of a

given signal

Functional Languages for Synchronous Hardware Design and
Verification

Slide 208

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a Simple Imperative
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Standard sequential
composition:

execute the first
program, and upon

termination,
execute the second

Functional Languages for Synchronous Hardware Design and
Verification

Slide 209

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a Simple Imperative
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Standard loop,
choice depending on

current value of a
given signal

Functional Languages for Synchronous Hardware Design and
Verification

Slide 210

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a Simple Imperative
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Fork-join parallel
composition. Start
the two programs

together, and
terminate once both

have terminated

Functional Languages for Synchronous Hardware Design and
Verification

Slide 211

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Example Programs

alternate =
while high do

emit; delay; delay

wait s =
while (inv s) do delay

Functional Languages for Synchronous Hardware Design and
Verification

Slide 212

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Embedding in Haskell

data Prg =
Skip

| Emit
| Delay
| IfThenElse (Signal Bool) (Prg, Prg)
| Prg :>: Prg
| While (Signal Bool) Prg
| Prg :|: Prg

Functional Languages for Synchronous Hardware Design and
Verification

Slide 213

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Generating Programs

forever prg = While high prg

emitD = Emit :>: Delay

wait s = While (inv s) Delay

inverter s = forever (wait (inv s) :>:
emitD)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 214

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Example Programs

onOff = forever (emitD :>: Delay)
offOn = Delay :>: onOff

rising1 s =
 forever (While (inv s) Delay :>:

emitD)
rising2 s =
 forever (wait (inv s) :>: wait s :>:

Emit)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 215

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling the Programs

type CircuitPrg =
Signal Bool -> (Signal Bool, Signal
Bool)

compilePrg :: Prg -> CircuitPrg

Circuit

start

finish

Program
compile emit

Functional Languages for Synchronous Hardware Design and
Verification

Slide 216

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Skip
start

finish

emit

low

Functional Languages for Synchronous Hardware Design and
Verification

Slide 217

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Skip

compilePrg Skip start =
(finish, emit)

 where
 finish = start
 emit = low

start

finish

emit

low

Functional Languages for Synchronous Hardware Design and
Verification

Slide 218

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Delay
start

finish

emit

low
delay0

Functional Languages for Synchronous Hardware Design and
Verification

Slide 219

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Delay

compilePrg Delay start
=
(finish, emit)

 where
 finish = delay low

start
 emit = low

start

finish

emit

low
delay0

Functional Languages for Synchronous Hardware Design and
Verification

Slide 220

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Emit
start

finish

emit

Functional Languages for Synchronous Hardware Design and
Verification

Slide 221

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Emit

compilePrg Emit start =
(finish, emit)

 where
 finish = start
 emit = start

start

finish

emit

Functional Languages for Synchronous Hardware Design and
Verification

Slide 222

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Sequential
Composition

start

finish

emit

p

q

or

Functional Languages for Synchronous Hardware Design and
Verification

Slide 223

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Sequential
Composition

compilePrg (p :>: q) start =
 (finish, emit)
 where
 (finish_p, emit_p) =
 compilePrg p start
 (finish, emit_q) =
 compilePrg q finish_p

 emit = or2 (emit_p,
emit_q)

start

finish

emit

p

q

or

Functional Languages for Synchronous Hardware Design and
Verification

Slide 224

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Conditionals
start

finish

emit

p

q

or

or

and and

cond

Functional Languages for Synchronous Hardware Design and
Verification

Slide 225

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Conditionals
compilePrg
 (IfThenElse c (p,q)) start =
 (finish, emit)
 where
 start_p = and2 (start, c)
 start_q = and2 (start, inv c)

 (finish_p, emit_p) =
 compilePrg p start_p
 (finish_q, emit_q) =
 compilePrg q start_q

 emit = or2 (emit_p, emit_q)
 finish = or2 (finish_p, finish_q)

start

finish

emit

p

q

or

or

and and

cond

Functional Languages for Synchronous Hardware Design and
Verification

Slide 226

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Loops
start

finish

emit
p

or

and and

cond

Functional Languages for Synchronous Hardware Design and
Verification

Slide 227

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Loops

compilePrg (While c p) start
=

 (finish, emit)
 where
 start’ = or2 (start,

finish_p)

 start_p = and2 (start’, c)

 (finish_p, emit) =
 compilePrg p start_p

 finish = and2 (start’, inv
c)

start

finish

emit
p

or

and and

cond

Functional Languages for Synchronous Hardware Design and
Verification

Slide 228

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Parallel
Composition

start

finish

emit

p

q

or

sync

Functional Languages for Synchronous Hardware Design and
Verification

Slide 229

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Parallel
Composition

compilePrg (p :|: q) start =
 (finish, emit)
 where
 (finish_p, emit_p) =
 compilePrg p start
 (finish_q, emit_q) =
 compilePrg q start

 emit = or2 (emit_p, emit_q)
 finish = sync (finish_p,

finish_q)

start

finish

emit

p

q

or

sync

Functional Languages for Synchronous Hardware Design and
Verification

Slide 230

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

The Synchroniser

sync (f1, f2) = …
 where
 state = …

2 to go 1 to go

f1 <#> f2

f1 <#> f2

f1 <&> f2

inv f1 <&> inv
f2

inv f1 <&> inv
f2

f1 <&> f2

Functional Languages for Synchronous Hardware Design and
Verification

Slide 231

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

The Synchroniser
(assuming neither branch may

terminate immediately)
syncPrg (f1, f2) =
 forever (
 wait (f1 <|> f2) :>:
 IfThenElse (f1 <&> f2)
 (Skip
 , wait (f1 <|> f2)
) :>:
 emitD
)

sync f12 = compilePrg (syncPrg f12) (delay high
low)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 232

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Verification

inverter s = forever (wait (inv s) :>: emitD)

propInv s = is1 <==> is2
 where
 is1 = inv s
 (_, is2) = compilePrg (inverter s) (delay high

low)

Main> smv propInv
Proving: … Valid

Functional Languages for Synchronous Hardware Design and
Verification

Slide 233

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Verification

propRise s = r1 <==> r2
 where
 (_, r1) = compilePrg (rising1 s) (delay high

low)
 (_, r2) = compilePrg (rising2 s) (delay high

low)

Main> smv propRise
Proving: … Valid

Functional Languages for Synchronous Hardware Design and
Verification

Slide 234

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Extensions: Assignment
Variable

Instead of an emit output variable,
we would like to have an output
variable which can be assigned a
value which is remembered:

data Prg = …
 | Assign (Signal Bool)
 …

Functional Languages for Synchronous Hardware Design and
Verification

Slide 235

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Extensions: Assignment
Variable

• The output wire assign is high when
a new value is being assigned to the
variable.

• The new value is available on the
value wire.

Circuit

start

finish

assign

value

Functional Languages for Synchronous Hardware Design and
Verification

Slide 236

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Extensions: Assignment
Variable

At the top level, the wires are combined
together:

register (assign, value) = current
 where
 current = mux (assign, (previous, value))
 previous = delay low current

compile program start = (finish, output)
 where
 (finish, assign_value) = compileAux program

start
 output = register assign_value

Functional Languages for Synchronous Hardware Design and
Verification

Slide 237

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Extensions: Assignment
Variable

To compile an assignment:

compileAux (Assign w) start =
 (finish, (assign, value))
 where
 finish = start
 assign = start
 value = w

Functional Languages for Synchronous Hardware Design and
Verification

Slide 238

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Extensions: Assignment
Variable

Combining the assign and value
wires of two blocks is slightly more
complicated than in the case of an
emit variable:

combine ((a1, v1), (a2, v2)) = (a, v)
 where
 a = a1 <|> a2
 v = mux (a1, (v1, v2))

Functional Languages for Synchronous Hardware Design and
Verification

Slide 239

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Extensions: Multiple
Variables

Adding multiple output wires can be
done in various ways:
– Reference by index: Before

compilation a pass through the program
will identify the number of wires
required.

– Scoped and named declarations: The
compiler will have to augment its
behaviour with an auxiliary symbol table,
relating variable names and output wire
list index.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 240

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Extensions: Feedback of
Variables

To add expressions involving output
wires in conditions and assignments,
feedback loops can be created. To
resolve the problem:
– Delay assignment and emission by one

clock tick; or
– Make a constructivity analysis before

generating the circuit – this can be very
expensive to perform…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 241

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Conclusions

• A compiler is just a sophisticated
parametrised circuit.

• Although one loses in efficiency, the
trade-off is more reliable circuitry.

• Adding more features can be
challenging.

• Combining languages can be useful –
although in most cases it is just a
matter of combining language
features.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 242

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Exercises (1)

• Implement the embedded regular
language and the embedded
imperative language (with one emit
wire) hardware compiler with emit
variables.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 243

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Exercises (2)

• Use Lava and SMV to verify whether:

sync (a,b)
=

 compilePRG (wait a :|: wait b) (delay
high low)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 244

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Exercises (3)

• It was remarked that loops only work if
their body takes time to execute.
– Define a function loopBodies, which given a

program p returns all subprograms which are
bodies of a loop of p in innermost first order.

– Write a function takesTime, which given a
program p, returns an observer which checks
whether p always takes time to execute.

– Combine the previous two functions to check
that all loop bodies of a given program take
time to execute.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 245

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Exercises (4)

• Add multiple emit variables to the
language. The compiled program
should output a list of variable
values, and the instruction Emit n will
push the value of the nth variable up
to high.

• Add a new command in the
imperative language RE s, where s is
a regular expression, which allows a
regular expression to appear as part
of a program.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 246

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Functional Languages
for Synchronous Hardware

Design and Verification

Part 5: Other Functional
HDLs

Gordon J. Pace
Department of Computer Science

& AI
University of Malta

Functional Languages for Synchronous Hardware Design and
Verification

Slide 247

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Overview

• Lava is primarily aimed at hardware
design and verification.

• Other functional HDLs have different
objectives.

• We will be looking at three other
functional HDLs, which are different
from Lava.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 248

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Wired

• Wired is a functional HDL, embedded
in Haskell.

• Primary aim is to address non-
functional aspects of a circuit:
– Timing
– Netlist topology
– Layout
– Routing
– Power consumption

Functional Languages for Synchronous Hardware Design and
Verification

Slide 249

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Wired

• Wires account for 75% of path delays and
50% of power consumption – unlike Lava,
Wired is aware of wires.

• Lava is functional, due to a uniquely
forward flow of information in the circuit.
Wired requires bidirectional flow to
calculate things such as load.

• Wired uses layout combinators to construct
circuits, which are stored as relational
blocks.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 250

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Case Study: Prefix Circuits

The Problem:
Given inputs x1, x2 … xn and an associative
operator ⊗.

Calculate:
x1

x1 ⊗ x2

x1 ⊗ x2 ⊗ x3

…
x1 ⊗ x2 ⊗ … ⊗ xn

Functional Languages for Synchronous Hardware Design and
Verification

Slide 251

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Case Study: Prefix Circuits

• Applications include fast adders,
priority encoders, etc.

• The objective is to calculate the
required outputs in a shallow and
small circuit, parametrised by the
binary operator ⊗.

• Wired uses non-standard
interpretations to calculate delays
and other circuit features.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 252

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Serial Prefix

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 253

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Serial Prefix

…

⊗

Functional Languages for Synchronous Hardware Design and
Verification

Slide 254

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Serial Prefix

Lava:

serial op [x] = x
serial op (x:y:xs) =
 x: serial op (op (x,

y):xs)

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 255

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Sklansky Prefixes

Functional Languages for Synchronous Hardware Design and
Verification

Slide 256

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Sklansky Prefixes

Functional Languages for Synchronous Hardware Design and
Verification

Slide 257

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Sklansky Prefixes in Lava

sklansky op [x] = [x]

sklansky op xs = ls’ ++ [op (carry, r) | r <- rs’]

 where

 (ls, rs) = splitAt (length xs `div` 2) xs

 ls’ = sklansky op ls

 rs’ = sklansky op rs

 carry = last ls’

Functional Languages for Synchronous Hardware Design and
Verification

Slide 258

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Redoing Things Using
Combinator Lava

overlap k c1 c2 xs = init ls’ ++ rs’
where

(ls, rs) = splitAt k xs
ls’ = c1 ls
rs’ = c2 (last ls’: rs)

c1

c2
…

…

…

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 259

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Redoing Things Using
Combinator Lava

overlap2 c1 c2 xs =
overlap (length xs `div` 2) c1 c2 xs

c1

c2
…

…

…

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 260

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Redoing Things Using
Combinator Lava

extend op c (x:xs) = x: [op (x, x’) | x’
<- xs’]
where

xs’ = c xs

c

…

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 261

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Serial Prefix

Combinator Lava:

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 262

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Serial Prefix

Combinator Lava:

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 263

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Serial Prefix

Combinator Lava:

serial op =
overlap 2

extend
(serial op)

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 264

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Serial Prefix

Combinator Lava:

serial op 1 = id
serial op (k+1) =

overlap 2
extend
(serial op k)

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 265

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to Sklansky Prefixes

Functional Languages for Synchronous Hardware Design and
Verification

Slide 266

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to Sklansky Prefixes

sklansky op = overlap2 left right

where

left = sklansky op

right = extend op (sklansky
op)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 267

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to Sklansky Prefixes

sklansky op 1 = id

sklansky op k = overlap2 left right

where

half_k = k `div` 2

left = sklansky op half_k

right = extend op (sklansky op
half_k)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 268

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

And Now in Wired

Some basic combinator:

idWire =

Functional Languages for Synchronous Hardware Design and
Verification

Slide 269

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

And Now in Wired

Some basic combinator:

idFork =

Functional Languages for Synchronous Hardware Design and
Verification

Slide 270

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

And Now in Wired

Some basic combinator:

copy op (x,y) = (op (x,y), x)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 271

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

And Now in Wired

And layout combinators:
row c = multiple copies of c in a row
c1 *||~ c2 = put c1 (consuming one

wire) beside c2 (consuming the rest
of the wires).

c1 *=~ c2 = put c1 (consuming one
wire) beneath c2 (consuming the rest
of the wires).

Functional Languages for Synchronous Hardware Design and
Verification

Slide 272

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

And Now in Wired

And layout combinators:
row c = multiple copies of c
c1 *||~ c2 = put c1 (consuming one

wire) beside c2 (consuming the rest
of the wires).

c1 *=~ c2 = put c1 (consuming one
wire) beneath c2 (consuming the rest
of the wires).

Similarly ~||*, ~=*,
~||~ and ~=~

Functional Languages for Synchronous Hardware Design and
Verification

Slide 273

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Using Wired

extend op c =
(row (copy op) ~||* op) *=~ c

c

…

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 274

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Using Wired

forkLast c =
(row idWire ~||* idFork) *=~ c

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 275

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to Sklansky Prefixes

sklansky op 1 = idWire

sklansky op k = left ~||~ right

where

half_k = k `div` 2

left = forkLast (sklansky op half_k)

right = extend op (sklansky op
half_k)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 276

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Wired Conclusions

• Essentially, Wired is a combinator
library to join rectangles together,
with pluggable circuits inside.

• The information generated can then
used to perform analysis (delay,
power consumption, layout, etc).

• Functionality can also be modelled by
going down to a Lava-like
representation (ignore all shape
information).

Functional Languages for Synchronous Hardware Design and
Verification

Slide 277

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Hawk

• Hawk is a HDL embedded in Haskell.
• It was primarily aimed at modelling

microprocessors and reasoning about
them.

• Includes symbolic simulation of
microprocessors.

• Algebraic reasoning about
microprocessors allows simplifying
the models to enable automatic
verification.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 278

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Concrete Simulation of a
Microprocessor

data Op = MOV Addr Addr
| MOVI Addr Data
| ADD Addr Addr
| SUBI Addr Data
| JUMPZ Addr Loc
| JUMP Loc

Functional Languages for Synchronous Hardware Design and
Verification

Slide 279

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Concrete Simulation of a
Microprocessor

data Op = MOV Addr Addr
| MOVI Addr Data
| ADD Addr Addr
| SUBI Addr Data
| JUMPZ Addr Loc
| JUMP Loc

For the moment,
Addr, Data and

Loc are all
integers

Functional Languages for Synchronous Hardware Design and
Verification

Slide 280

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Concrete Simulation of a
Microprocessor

data MachineState =
ST (Loc -- Program counter

, [Data] -- Memory
, Program -- Actual program
)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 281

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Concrete Simulation of a
Microprocessor

add a b (ST (loc, mem, code)) =
ST (loc+1

, put a (mem `at` a + mem `at` b)
mem

, code
)

execute (ADD a b) s = add a b s

Functional Languages for Synchronous Hardware Design and
Verification

Slide 282

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Concrete Simulation of a
Microprocessor

subi a b (ST (loc, mem, code)) =
ST (loc+1

, put a (mem `at` a - b) mem
, code
)

execute (SUBI a b) s = subi a b s

Functional Languages for Synchronous Hardware Design and
Verification

Slide 283

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Concrete Simulation of a
Microprocessor

jumpz a b (ST (loc, mem, code)) =
if’ (mem `at` a === 0)

(ST (b, mem, code)
, ST (loc+1, mem, code)
)

execute (JUMPZ a b) s = jumpz a b s

Functional Languages for Synchronous Hardware Design and
Verification

Slide 284

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Concrete Simulation of a
Microprocessor

run (ST (loc, mem, prg))
| loc >= length prg = ST (loc, mem,
prg)
| otherwise =

run (execute (prg `at` loc) s)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 285

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Concrete Simulation of a
Microprocessor

Main>
run (ST (0, [1,2,3],
 [MOV 0 2

 , SUBI 0 1
 , ADD 2 2
 , JUMPZ 0 1
]

)

ST (4, [0,16, 3], […])

Functional Languages for Synchronous Hardware Design and
Verification

Slide 286

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Symbolic Simulation of a
Microprocessor

data Symbolic
= Const Int
| Var String
| Plus Symbolic Symbolic
| Minus Symbolic Symbolic
| Times Symbolic Symbolic

Functional Languages for Synchronous Hardware Design and
Verification

Slide 287

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Symbolic Simulation of a
Microprocessor

instance Num Symbolic where
Const x + Const y = Const (x+y)
Const 0 + x = x
x + Const 0 = x
x + y = Plus x y

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 288

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Symbolic Simulation of a
Microprocessor

instance Num Symbolic where
Const x + Const y = Const (x+y)
Const 0 + x = x
x + Const 0 = x
x + y = Plus x y

…

Functional Languages for Synchronous Hardware Design and
Verification

Slide 289

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Symbolic Simulation of a
Microprocessor

instance Num Symbolic where
Const x + Const y = Const (x+y)
Const 0 + x = x
x + Const 0 = x
x + y = Plus x y

…

By using Symbolic for Data
(possibly, with additional

machinery, even the other
types), we can symbolically
simulate the behaviour of a

program

Functional Languages for Synchronous Hardware Design and
Verification

Slide 290

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Concrete Simulation of a
Microprocessor

Main>
run (ST (0, [1,Var “x”,3],
 [MOV 0 2

 , SUBI 0 1
 , ADD 2 2
 , JUMPZ 0 1
]

)

ST (4, [0, 8x, 3], […])
(with appropriate simplification of symbolic

expressions)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 291

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Hawk Conclusions

• All this is actually done using typeclasses,
hence allowing the user to choose between
concrete and symbolic simulation.

• Hawk uses these techniques over a stream
based HDL similar to Lava.

• By manipulating and simulating the circuits
symbolically, the user can algebraically
modify circuits whilst still ensuring correct
behaviour.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 292

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

reFLect

• reFLect is a strongly typed, functional
reflective (or meta-) language.
– Programs can be considered to be data

objects in the language itself.
– Does this using quotation and anti-

quotation operators.
– Allows pattern matching on quoted

programs.

• Has been used to embed a Lava-like
HDL.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 293

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

reFLective Code

• Code is quoted using 〈〈 - 〉〉
Quoted code is considered to denote the abstract syntax
tree ie 〈〈 not True 〉〉 is not equivalent to 〈〈 False 〉〉.

• Code is unquoted using the ^- operator
Unquotation evaluates quoted code, for example, ^〈〈 not
True 〉〉 is equivalent to False.

• Pattern matching can be combined with quote-
anti-quote operators:

〈〈 not (^x) 〉〉 pattern matches with 〈〈 not True 〉〉, with x
matching the value of 〈〈 True 〉〉.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 294

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Deep vs Shallow Embedding

• We have already seen what an embedding
of a language in another is.

• A deep embedding is when the syntax of
the embedded language is encoded as
data, or in a manner that the host
language has direct access to it.

• A shallow embedding is one in which
embedded language programs are
constructed using functions. Inspection of
the programs is impossible.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 295

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Deep vs Shallow Embedding

• We have already seen what an embedding
of a language in another is.

• A deep embedding is when the syntax of
the embedded language is encoded as
data, or in a manner that the host
language has direct access to it.

• A shallow embedding is one in which
embedded language programs are
constructed using functions. Inspection of
the programs is impossible.

The examples we’ve seen
are all of deep embeddings
of HDLs, since the circuits
are just data objects which
one can not only construct

but also manipulate.

What would a shallow
embedding of an HDL look

like?

Functional Languages for Synchronous Hardware Design and
Verification

Slide 296

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Shallow Embedding of a
Stream Language using Lazy

Lists

type Stream a = [a]

stream `at` time = stream !! time

Functional Languages for Synchronous Hardware Design and
Verification

Slide 297

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Shallow Embedding of a
Stream Language using Lazy

Lists

low :: Stream Bool
low = repeat False

Functional Languages for Synchronous Hardware Design and
Verification

Slide 298

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Shallow Embedding of a
Stream Language using Lazy

Lists

inv :: Stream Bool -> Stream Bool
inv xs = [not x | x <- xs]

Functional Languages for Synchronous Hardware Design and
Verification

Slide 299

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Shallow Embedding of a
Stream Language using Lazy

Lists

inv :: Stream Bool -> Stream Bool
inv xs = [not x | x <- xs]

and2 :: (Stream Bool, Stream Bool) ->
Stream

Bool
and2 (xs, ys) = [x && y | (x,y) <- zip xs

ys]

Functional Languages for Synchronous Hardware Design and
Verification

Slide 300

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Shallow Embedding of a
Stream Language using Lazy

Lists

The stream (delay x xs) returns x in
the first time unit, then the elements
of xs in order.

delay :: a -> Stream a -> Stream a
delay x xs = x:xs

Functional Languages for Synchronous Hardware Design and
Verification

Slide 301

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Shallow Embedding of a
Stream Language using Lazy

Lists
or2 (xs,ys) = inv (and2 (inv xs, inv
ys))

mux (sel, (xs, ys)) =
or2 (and2(sel, ys), and2(inv sel,

xs))

always xs = outs
where

outs = and2 (xs, delay True
outs)

Functional Languages for Synchronous Hardware Design and
Verification

Slide 302

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Shallow Embedding of a
Stream Language using Lazy

Lists

Main> mux [(False, (True, False)), (True, (True,
False))]

[True, False]

Main> always [True, True, False, True]
[True, True, False, False]

Functional Languages for Synchronous Hardware Design and
Verification

Slide 303

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Shallow Embedding of a
Stream Language using Lazy

Lists
Question:

This seems to be so easy. Why aren’t
the FHDLs we’ve seen implemented
this way?

Functional Languages for Synchronous Hardware Design and
Verification

Slide 304

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Shallow Embedding of a
Stream Language using Lazy

Lists
Question:

This seems to be so easy. Why aren’t
the FHDLs we’ve seen implemented
this way?

Answer:
We can only simulate these circuits.
Try, for instance, writing a function to
count the number of gates. It is
impossible, since we have no access
to the gates as data objects.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 305

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Shallow Embedding of a
Stream Language using Lazy

Lists
Question:

This seems to be so easy. Why aren’t
the FHDLs we’ve seen implemented
this way?

Answer:
We can only simulate these circuits.
Try, for instance, writing a function to
count the number of gates. It is
impossible, since we have no access
to the gates as data objects.

Disclaimer: This is only
partially true, since we can have
different interpretations of the
various gates depending on
what we want to do, and use the
different interpretations (via
typeclasses) to perform what we
want.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 306

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Deep and Shallow
Embedding

• Clearly, a deep embedding is needed
for most applications;

• But shallow embeddings are more
straightforward to build.

• Solution (?): reflective languages
allow us to talk about code as data
objects – a shallow embedding is a
deep embedding!

Functional Languages for Synchronous Hardware Design and
Verification

Slide 307

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Deep+Shallow Embedding in
reFLect

lowC = repeat False
invC xs = map not ^xs
and2C (xs, ys) = [x && y | (x,y) <- zip ^xs

^ys]
delayC x xs = x: ^xs

low = 〈〈 lowC 〉〉
inv xs = 〈〈 invC xs 〉〉
and2 (xs, ys) = 〈〈 and2C (xs, ys) 〉〉
delay x xs = 〈〈 delayC x xs 〉〉

Functional Languages for Synchronous Hardware Design and
Verification

Slide 308

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Deep+Shallow Embedding in
reFLect

lowC = repeat False
invC xs = map not ^xs
and2C (xs, ys) = [x && y | (x,y) <- zip ^xs

^ys]
delayC x xs = x: ^xs

low = 〈〈 lowC 〉〉
inv xs = 〈〈 invC xs 〉〉
and2 (xs, ys) = 〈〈 and2C (xs, ys) 〉〉
delay x xs = 〈〈 delayC x xs 〉〉

For example:

and2 (low, inv low)
=

〈〈 and2C (〈〈 lowC 〉〉, 〈〈 invC 〈〈 lowC 〉〉 〉〉) 〉〉

Functional Languages for Synchronous Hardware Design and
Verification

Slide 309

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

reFLect: Conclusions

• Using a meta-language for embedded
languages has the advantage of giving a
cheap deep embedding.

• The use of such languages for functional
HDLs is a new field of research, and is still
very much under investigation.

• reFLect is used in the Forte hardware
verification environment, combining model
checking, decision algorithms and theorem
proving.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 310

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Conclusions

• Clearly there is no one way of
embedding a functional HDL.

• Various other languages exist: Hydra,
SAFL, Lucid Synchrone, etc.

• The common main advantages are:
– Access to a meta-language for the HDL;
– Strong abstraction techniques allow

concise descriptions of regular circuits;
– We can manipulate generated circuits.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 311

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Final Exam (1)
Question 1:

Implement an n-bit multiplier in Lava (using a
design of your choice). Use SMV and Lava to
specify and verify that multiplying a 4-bit number
by an even number always gives an even
number.

Question 2:
Design a four-bit accumulator which has two
inputs update (one bit) and value (four-bits), and
one output sum (four bits). The output starts off
at 0, and is incremented by value whenever
update is true.
Using the accumulator, implement a 4-bit
counter, which starts off outputting zero, and
increments its output with every clock tick
(resetting to zero when it overflows).

Functional Languages for Synchronous Hardware Design and
Verification

Slide 312

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Final Exam (2)

Question 3:
Modify the compiled imperative
language with emit given in part 4 of
the course to also count the number
of emits (using a 4-bit unsigned
integer) happening at that instant of
time.
egat the initial moment, (emit; emit ||

emit)
should output 3.

Functional Languages for Synchronous Hardware Design and
Verification

Slide 313

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Final Exam (3)

Question 3 (continued):
• Add also an accumulator, which

counts the total number of emits sent
by the program.

• Finally, make programs terminate
whenever the program has output
more than 10 emit signals (ignore
overflows) .

Functional Languages for Synchronous Hardware Design and
Verification

Slide 314

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Final Exam (4)

Question 4:
Explain and implement in Lava another parallel
prefix network circuit implementation (different
than the ones given in the slides). You may find
the following link useful:

http://www.stanford.edu/class/ee371/handouts/harris03.pdf#search=%22ladner%20fischer%22

Verify that with an and gate, your four input
prefix network is equivalent to the naïve one, and
the Sklansky one.

http://www.stanford.edu/class/ee371/handouts/harris03.pdf

