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What this course is about …

• Using a functional language to 
describe, manipulate, generate and 
verify synchronous hardware.

• An overview of a number of such 
functional hardware description 
languages, each with different 
objectives, different approaches.
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What it is not about …

• Circuit design
• Functional programming
• Model checking and hardware 

verification
• Asynchronous circuits

Even if you’ll be expected to know 
something and will learn more 

about the first three
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Course Structure

• 4 days of 1.5hrs of lectures, 1hr 
practical session per day.

• The functional language we will be 
using is Haskell.

• The functional HDL is Lava.
• The verification tool is SMV.
• All this is downloadable as a ready-

made package from the course 
website.



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 5

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Course Outline

Part 1: Synchronous Circuits and 
Hardware Description Languages

• Short introduction to synchronous 
circuits

• Standard hardware description 
languages
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Course Outline

Part 2: Lava

• Embedded languages
• Lava as an embedded HDL in Haskell
• Circuit descriptions in Lava
• Parametrised circuits in Lava
• Higher-order circuits in Lava
• Circuit verification in Lava
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Course Outline

Part 3: Writing your own 
Functional HDL

• Designing a simple HDL for 
simulation

• Shortcomings of the HDL
• Redesign using naming, monads and 

non-updatable references
• Verification and netlist generation
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Course Outline

Part 4: Embedded Hardware 
Compilers

• High level hardware design
• Hardware compilation
• Compilation techniques for different 

languages
• Compilers and verification
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Course Outline

Part 5: Other embedded HDLs

• Hawk
• Wired
• reFLect
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Synchronous Hardware

• All the circuits we will describe 
will use a single global clock 
controlling the system

• We will assume that the clock is 
not too fast
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Synchronous vs 
Asynchronous

Synchronous circuits are
• much easier to reason about
• hence easier to design
• and more reliable.
But
• they are more power hungry
• and slower
• large circuits also have problems with clock 

skew
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Timeless Gates

• Throughout the course figures will 
use named boxes for gates to avoid 
confusion

• We will generally be using inv (or 
not), and, or, nor, nand and xor 
gates

• If necessary we add arrows to wires 
to avoid ambiguity

etc

inv and
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Timeless Gates

• Throughout the course figures will 
use named boxes for gates to avoid 
confusion

• We will generally be using inv (or 
not), and, or, nor, nand and xor 
gates

• If necessary we add arrows to wires 
to avoid ambiguity

etc

inv and

Sometimes, to avoid 
clutter, we use a small 
circle on an input wire 
of a gate to indicate 

that that input is 
inverted
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Building a multiplexer

When the input sel is low output is 
equal to input a, otherwise it is equal 
to input b

mux

se
l

a

b

se
l

a

b and

or

and
inv
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What About Correctness?

We need a specification:
P ≡ (sel ⇒ out = b) ∧ (¬ sel ⇒ out = a)

The circuit behaviour corresponds just to the 
gates replaced by Boolean operators:
C ≡ out = ( (¬ sel ∧ a) ∨ (sel ∧ b) )

Now it’s just a matter of showing that:
 ∀sel, a, b . C ⇒ P
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Building an Equality 
Checking Circuit

Output whether inputs a and b are 
equal.

equal
a

b
xor inv

a

b
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Circuits with Memory

We will use one basic memory gate, a 
delay:

delay

clock

The clock signal is 
global to the whole 
circuit, hence we avoid 
drawing it, making it 
implicit
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Circuits with Memory

We will use one basic memory gate, a 
delay:

delay
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Circuits with Memory

We will use one basic memory gate, a 
delay:

delay

Note that the values on 
wires are now no longer 
a boolean value, but a 
stream of boolean 
values: 

TIME → Boolean
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Circuits with Memory

We will use one basic memory gate, a 
delay:

delay ∀ t: TIME . out(t) = 
in(t-1)
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Circuits with Memory

We will use one basic memory gate, a 
delay:

delay
0000

1111

1001

0110

mem
’

outmemin
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Circuits with Memory

We will use one basic memory gate, a 
delay:

delay
(out = mem) ∧ 

(mem’ = in)
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Circuits with Memory

We will use one basic memory gate, a 
delay:

delay

What about the initial 
value of the output 
(and memory)?

For the purposes of 
this course we will 
initialise it to a fixed 
value shown on the 
delay
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Circuits with Memory

We will use one basic memory gate, a 
delay:

delay0

What about the initial 
value of the output 
(and memory)?

For the purposes of 
this course we will 
initialise it to a fixed 
value shown on the 
delay

delay1



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 26

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Detecting a Rising Edge

delay1

and
inv

in

out

When the input in goes from low to 
high, output high, otherwise output 
low



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 27

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Detecting Any Edge

When the input in changes its value, 
output high, otherwise output low

delay0

xor

in

out
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A Set-Reset Memory

Output is always equal to the memory, which 
starts off as low, and is set to high when 
input s is high, and reset to low when input 
r is high.
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A Set-Reset Memory

Output is always equal to the memory, which 
starts off as low, and is set to high when 
input s is high, and reset to low when input 
r is high.

Off / 0 On / 1
s

r

¬ r¬ s
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A Set-Reset Memory

delay0

and

and

and

and

or

or

delay1set

reset

out
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A Set-Reset Memory

delay0

and

and

and

and

or

or

delay1s

r

Note that this can be 
transformed to 

use only one delay …

out
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Block Diagram Descriptions of 
Circuits

Describing circuits using block 
diagrams is useful, but has various 
disadvantages:

• Notation is cumbersome;
• Does not scale up;
• We have various ways of describing 

the same circuit;
• We end up worrying about placement 

and functionality at the same time;
• Compositionality is not 

straightforward.
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Block Diagram Descriptions of 
Circuits

Describing circuits using block 
diagrams is useful, but has various 
disadvantages:

• Notation is cumbersome;
• Does not scale up;
• We have various ways of describing 

the same circuit;
• We end up worrying about placement 

and functionality at the same time;
• Compositionality is not 

straightforward.

The solution?
Use a text based HDL 
to describe the circuits
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Textual Descriptions

Structural descriptions: Describe the 
circuits in terms of their submodules and 
gates.

Behavioural descriptions: Describe the 
behaviour of the circuit in terms of a 
software program which does not 
necessarily have an automatically 
deducible hardware counterpart.

Synthesisable descriptions: A program-
like description which can be automatically 
compiled down to a circuit.
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Textual Descriptions

Structural descriptions: Describe the 
circuits in terms of their submodules and 
gates.

Behavioural descriptions: Describe the 
behaviour of the circuit in terms of a 
software program which does not 
necessarily have an automatically 
deducible hardware counterpart.

Synthesisable descriptions: A program-
like description which can be automatically 
compiled down to a circuit.

This is what we 
will be mainly 

talking about in 
this course
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Textual Descriptions

Structural descriptions: Describe the 
circuits in terms of their submodules and 
gates.

Behavioural descriptions: Describe the 
behaviour of the circuit in terms of a 
software program which does not 
necessarily have an automatically 
deducible hardware counterpart.

Synthesisable descriptions: A program-
like description which can be automatically 
compiled down to a circuit.

These are 
primarily used for 

testing and we 
will not be dealing 

with them
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Textual Descriptions

Structural descriptions: Describe the 
circuits in terms of their submodules and 
gates.

Behavioural descriptions: Describe the 
behaviour of the circuit in terms of a 
software program which does not 
necessarily have an automatically 
deducible hardware counterpart.

Synthesisable descriptions: A program-
like description which can be automatically 
compiled down to a circuit.

We will be talking 
about these in 
part 4 of the 

course
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Describing Circuits in Verilog

• Verilog is an industry standard text-
based HDL (similar in many respects 
to VHDL)

• The language was primarily aimed at 
simulation but now tools extend its 
functionality in various ways.

• We’re just looking at this to compare 
to functional language based 
techniques. It is far, far from a 
comprehensive overview.
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Adding Together Two 1-bit 
Numbers to a 2-bit Number

and xor

in1 in2

out1 out2

Specification:

in1 + in2 = 2 * out1 + 
out2
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Adding Together Two 1-bit 
Numbers to a 2-bit Number

and xor

in1 in2

out1 out2

module halfadder(out1, out2 , in1, 
in2);

   input in1, in2;

   output out1, out2;

   and AndGate1(out1, in1, in2);

   xor XorGate1(out2, in1,in2);

endmodule;



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 41

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Adding Together Three 1-bit 
Numbers to a 2-bit Number

HA

HA

in1 in2

out1out2

Specification:

in1 + in2 + in3 = 

2 * out1 + out2

in3

or
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Adding Together Three 1-bit 
Numbers to a 2-bit Number

HA

HA

in1 in2

out1out2

in3

or

module fulladder(out1, out2, in1, in2, 
in3);

   input in1, in2, in3;

   output out1, out2;

   halfadder HA1(m1, m2, in1, in2);

   halfadder HA2(m3, out2, m2, in3);

   or OrGate1(out1, m1, m3);

endmodule;
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Adding Together Two 4-Bit 
Numbers to a 5-Bit Number

FA

a b

c s

0

FA

FA

FA

module adder4(c, s, a, b);

   input [3:0] a, b;

   output [3:0] s;

   output c;

   wire [4:0] m;

   assign m[0] = 0;

   assign c = m[3];

   fulladder FA1(m[1], s[0], a[0], b[0], 
m[0]);

   fulladder FA2(m[2], s[1], a[1], b[1], 
m[1]);

   fulladder FA3(m[3], s[2], a[2], b[2], 
m[2]);

   fulladder FA4(m[4], s[3], a[3], b[3], 
m[3]);

endmodule;
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Observations

• It is possible to describe hardware 
modularly using Verilog or a similar 
language.

• Without resorting to extensions, it is 
however, impossible to describe 
general circuits (eg an n-bit adder).
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Exercises (1)

• The majority3 circuit is a combinational 
circuit with 3 inputs x1, x2, x3, and one 
output y. The circuit outputs high if at least 
2 of the inputs are high, and outputs low if 
at least two of the inputs are low. 
– Design the majority3 circuit in terms of logical 

gates. You may use block diagrams, textual 
notation, or any other description method you 
are familiar with. 

– What is the general scheme to design a 
majorityk circuit, that has k inputs? 
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Exercises (2)

• Design an assignment circuit with two 
input wires assign and value, and one 
output out. The output is initially low, and 
changes value to match value whenever 
assign is high. Otherwise, the value of out 
does not change. 

• The always circuit has one input in, and 
one output out. As long as the input is 
high, the output out is also high. But as 
soon as in is low, then out becomes low 
and stays low forever. Design the circuit in 
terms of logical gates and delay 
components
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Exercises (3)

• Design a circuit all3 with three inputs a, b 
and c, and one output ok. The output 
should become true whenever a, b and c 
have all three been true at some point in 
the past (not necessarily at the same 
time). Generalise to allk, which works with 
k inputs.

Write a program, which given a number k, 
returns (using a textual description) allk.
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Exercises (4)
• A stack is data structure which supports three operations: push, pop and 

top. You will be designing a simple stack in hardware. For simplicity, the 
data elements that are going to be stored in the stack are booleans. The 
stack is implemented as a stateful circuit with three inputs, called push, 
pop, and data, and one output, called top:

If push is high, then the data element is pushed on the stack. If pop is high, 
then the top of the stack is taken away, and the data input is ignored. If 
neither push nor pop is high, nothing happens. At all times, the output top 
reflects the value of the top of the stack, so no special request to see the 
top of the stack is required. 

It is unspecified what happens when push and pop are high at the same 
time, when the stack is empty and pop is high, and when the stack is full 
and push is high. 

Exercises 
– Design a stack which can store at least 4 data elements. Try to use a design 

consisting of four identical cells, each corresponding to a place in the stack. 
– Add two extra outputs, called empty and full, which are high if the stack is 

respectively empty or full. 
– Add one extra output, called error, which becomes high if something has gone 

wrong. 
– What invariants hold for the delay elements in your design? (An invariant is a 

property which is true at all times). 
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Let’s start by taking 
another look at that 4-bit 
adder written in Verilog
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Adding Together Two 4-Bit 
Numbers to a 5-Bit Number

FA

a b

c s

0

FA

FA

FA

module adder4(c, s, a, b);

   input [3:0] a, b;

   output [3:0] s;

   output c;

   wire [4:0] m;

   assign m[0] = 0;

   assign c = m[3];

   fulladder FA1(m[1], s[0], a[0], b[0], 
m[0]);

   fulladder FA2(m[2], s[1], a[1], b[1], 
m[1]);

   fulladder FA3(m[3], s[2], a[2], b[2], 
m[2]);

   fulladder FA4(m[4], s[3], a[3], b[3], 
m[3]);

endmodule;
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Adding Together Two 4-Bit 
Numbers to a 5-Bit Number

FA

a b

c s

0

FA

FA

FA

module adder4(c, s, a, b);

   input [3:0] a, b;

   output [3:0] s;

   output c;

   wire [4:0] m;

   assign m[0] = 0;

   assign c = m[3];

   fulladder FA1(m[1], s[0], a[0], b[0], 
m[0]);

   fulladder FA2(m[2], s[1], a[1], b[1], 
m[1]);

   fulladder FA3(m[3], s[2], a[2], b[2], 
m[2]);

   fulladder FA4(m[4], s[3], a[3], b[3], 
m[3]);

endmodule;

Ideally we would like 
to generalise this 
repeated code to 
something more 

modular
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Adding Together Two 4-Bit 
Numbers to a 5-Bit Number

FA

a b

c s

0

FA

FA

FA

module adder(n, c, s, a, b);

   static int n;

   input [n:0] a, b;

   output [n:0] s;

   output c;

   wire [n+1:0] m;

   assign m[0] = 0;

   assign c = m[n];

   staticfor I = 0 to n

      fulladder FA(m[i+1], s[i], a[i], b[i], 
m[i]);

   endfor;

endmodule;

WARNING

This is not 
standard Verilog
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Adding Together Two 4-Bit 
Numbers to a 5-Bit Number

FA

a b

c s

0

FA

FA

FA

module adder(n, c, s, a, b);

   static int n;

   input [n:0] a, b;

   output [n:0] s;

   output c;

   wire [n+1:0] m;

   assign m[0] = 0;

   assign c = m[n];

   staticfor I = 0 to n

      fulladder FA(m[i+1], s[i], a[i], b[i], 
m[i]);

   endfor;

endmodule;

WARNING

This is not 
standard Verilog

Or even generalise 
further by being able 

to 
replace the fulladder 
by any circuit of the 

right shape
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Adding Together Two 4-Bit 
Numbers to a 5-Bit Number

FA

a b

c s

0

FA

FA

FA

module column(blk, n, c, s, a, b);

   circuit … blk;

   …

   assign m[0] = 0;

   assign c = m[n];

   staticfor I = 0 to n

      blk BLK(m[i+1], s[i], a[i], b[i], m[i]);

   endfor;

endmodule;

module adder(n, c, s, a, b);

  …

  column(halfadder, n, c, s, a, b);

endmodule;

WARNING

This is not 
standard Verilog

at all!
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A Two-Level Language

• What we need are in fact two languages:
– A basic structural HDL.
– A richer programming language which can 

access the structural HDL to generate regular 
circuits – the meta-language.

• Most extensions to Verilog and VHDL take 
a two-language approach, with a simple 
meta-language.

• An alternative is to embed an HDL in a 
standard language.
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Embedded Languages

• Programs in the embedded language 
are just data objects within the host 
language, allowing:
– Generation
– Analysis
– Manipulation
– Semantics
– Tools for free
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Lava

• Lava is an HDL embedded in Haskell
• Developed in Chalmers University in 

Gothenburg, but also separately 
developed and used in Xilinx.

• Allows description, verification, 
simulation, manipulation of 
synchronous hardware.

• Allows higher-order description of 
circuits.
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Combinational Circuits in 
Lava

and xor

in1 in2

out1 out2

halfadder (in1, in2) = (out1, out2)

   where

      out1 = and2 (in1, in2)

      out2 = xor2 (in1, in2)
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Combinational Circuits in 
Lava

and xor

in1 in2

out1 out2

halfadder :: 

   (Signal Bool, Signal Bool) -> 

   (Signal Bool, Signal Bool)

halfadder (in1, in2) = (out1, out2)

   where

      out1 = and2 (in1, in2)

      out2 = xor2 (in1, in2)
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Combinational Circuits in 
Lava

and xor

in1 in2

out1 out2

halfadder :: 

   (Stream Bool, Stream Bool) -> 

   (Stream Bool, Stream Bool)

halfadder (in1, in2) = (out1, out2)

   where

      out1 = and2 (in1, in2)

      out2 = xor2 (in1, in2)

Inputs 
Do not use currying on 

the stream 
parameters, but 

combine in tuples or 
lists 

Outputs

Basic gates 
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Simulation

Main> simulate halfadder (high, low)
(low, high)

Main> simulate halfadder (high, high)
(high, low)
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Reuse of Lava Components

HA

HA

in1 in2

out1out2

in3

or

fulladder (in1, (in2, in3)) = (out1, out2)

   where

      (m1, m2) = halfadder (in1, in2)

      (m3, out2) = halfadder (m2, in3)

      out1 = or2 (m1, m3)
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A Naïve 4-Bit Serial Adder

FA

a b

c s

0

FA

FA

FA

adder4 (a, b) = (c, s)

    where

        (a0, a1, a2, a3) = a

        (b0, b1, b2, b3) = b

        s = (s0, s1, s2, s3)

(m0, s0) = fulladder (low, (a0, b0)) 
(m1, s1) = fulladder (m0, (a1, b1)) 
(m2, s2) = fulladder (m1, (a2, b2))
(cout, s3) = fulladder (m2, (a3, b3))
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A Naïve 4-Bit Serial Adder

FA

a b

cout s

cin

FA

FA

FA

adder4 (cin, (a, b)) = (cout, s)

    where

        (a0, a1, a2, a3) = a

        (b0, b1, b2, b3) = b

        s = (s0, s1, s2, s3)

        (m0, s0) = fulladder (cin, (a0, b0))

        (m1, s1) = fulladder (m0, (a1, b1)) 

        (m2, s2) = fulladder (m1, (a2, b2))

        (cout, s3) = fulladder (m2, (a3, 
b3))
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A Better 4-Bit Serial Adder

FA

a b

cout s

cin

FA

FA

FA

adder (cin, ([], [])) = (cin, [])

adder (cin, (a:as, b:bs)) = (cout, s:ss)

    where

        (m, s) = fulladder (cin, (a, b))

        (cout, ss) = adder (m, (as, bs))
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A Better 4-Bit Serial Adder

FA

a b

cout s

cin

FA

FA

FA

adder (cin, ([], [])) = (cin, [])

adder (cin, (a:as, b:bs)) = (cout, s:ss)

    where

        (m, s) = fulladder (cin, (a, b))

        (cout, ss) = adder (m, (as, bs))

Works for any 
width of input!
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A Carry-Select Adder
• Strategy: split input wire lists in half – as 

into as1 and as2, bs into bs1 and bs2.
• (In parallel) calculate the following sums 

recursively:
– as1, bs1, cin to get ss1 and cmid
– as2, bs2, low to get ss2_0 and cout_0
– as2, bs2, high to get ss2_1 and cout_1

• Select ss2 to be ss2_0 or ss2_1 depending 
on cmid. Similarly select cout.

• The sum is now simply ss1++ss2.
• Combinational depth is O(log n) as 

opposed to O(n) (even if the number of 
gates has increased).
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A Carry-Select Adder
adder2 (cin, ([], [])) = (cin, [])
adder2 (cin, ([a], [b])) = fulladder (cin, (a, b))
adder2 (cin, (as, bs)) = (cout, ss)
  where
    (as1, as2) = split as
    (bs1, bs2) = split bs

    (cmid, ss1) = adder2 (cin, (as1, bs1))
    (cout_0, ss2_0) = adder2 (low, (as2, bs2))
    (cout_1, ss2_1) = adder2 (high, (as2, bs2))

    cout = mux (cmid, (cout_0, cout_1))
    ss2 = mux (cmid, (ss2_0, ss2_1))

    ss = ss1++ss2
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Simulation

Main> simulate adder (high, ([low, high], [high, 
low]))

(high, [low, low])

Main> simulate adder (low, ([high], [low]))
(low, [high])
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Equality

equal (x,y) = inv (xor2 (x,y))

Main> simulate equal (low, high)
low
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Equality of Lists of Wires

equals ([],[]) = high
equals (x:xs, y:ys) = 
    equal (x,y) <&> equals xs ys

Main> simulate equals 
                ([low,high], [high,low])
low
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Sequential Circuits

The edge detector:

edge inp = xor2 (previous_inp, inp)
   where
        previous_inp = delay low inp

delay0

xor

in

out
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Sequential Circuits

The edge detector:

edge in = xor2 (previous_in, in)
   where
        previous_in = delay low in

delay0

xor

in

outNote that delay 
is not a gate, but 

(delay low) is 
and so is (delay 

high)
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Sequential Circuit Simulation

Main> simulateSeq edge [low, high, high, low] 
[low, high, low, high]

Main> simulateSeq edge [low, low, low, high]
[low, low, low, high]
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Back to the Set-Reset 
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out
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Back to the Set-Reset 
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset (set, reset) = out 
  where
      mem_0 = delay high set_mem_0
      mem_1 = delay low set_mem_1

      set_mem_0 = 
          (mem_0 <&> inv set) <|> (mem_1 <&> reset)
      set_mem_1 = 
          (mem_1 <&> inv reset) <|> (mem_0 <&> set)
 
      out = set_mem_1
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Back to the Set-Reset 
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset (set, reset) = out 
  where
      mem_0 = delay high set_mem_0
      mem_1 = delay low set_mem_1

      set_mem_0 = 
          (mem_0 <&> inv set) <|> (mem_1 <&> reset)
      set_mem_1 = 
          (mem_1 <&> inv reset) <|> (mem_0 <&> set)
 
      out = set_mem_1

<&> and <|> are infix 
versions of and2 and 

or2 respectively



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 79

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Sequential Circuit Simulation

Main> simulateSeq setReset 
                 [(low,high), (high, low), (low, low)]
[low, high, high]

Main> simulateSeq setReset 
                 [(high, low), (high, low), (low, low)]
[high, high, high]
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Back to the Set-Reset 
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out 
  where
      mem_0 = delay high set_mem_0
      mem_1 = delay low set_mem_1

      set_mem_0 = 
          (mem_0 <&> inv set) <|> (mem_1 <&> reset)
      set_mem_1 = 
          (mem_1 <&> inv reset) <|> (mem_0 <&> set)
 
      out = set_mem_1

Let’s look at the circuit 
again
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Back to the Set-Reset 
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out 
  where
      mem_0 = delay high set_mem_0
      mem_1 = delay low set_mem_1

      set_mem_0 = 
          (mem_0 <&> inv set) <|> (mem_1 <&> reset)
      set_mem_1 = 
          (mem_1 <&> inv reset) <|> (mem_0 <&> set)
 
      out = set_mem_1

Since mem_0 and 
mem_1 should always 

be the negation of each 
other we can do away 
with one of them …
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Back to the Set-Reset 
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out 
  where
      mem_0 = inv mem_1
      mem_1 = delay low set_mem_1

      set_mem_0 = 
          (mem_0 <&> inv set) <|> (mem_1 <&> reset)
      set_mem_1 = 
          (mem_1 <&> inv reset) <|> (mem_0 <&> set)
 
      out = set_mem_1

Since mem_0 and 
mem_1 should always 

be the negation of each 
other we can do away 
with one of them …
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Back to the Set-Reset 
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out 
  where
      mem_0 = inv mem_1
      mem_1 = delay low set_mem_1

      set_mem_0 = 
          (mem_0 <&> inv set) <|> (mem_1 <&> reset)
      set_mem_1 = 
          (mem_1 <&> inv reset) <|> (mem_0 <&> set)
 
      out = set_mem_1

But now, set_mem_0 is 
not used in the circuit
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Back to the Set-Reset 
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out 
  where
      mem_0 = inv mem_1
      mem_1 = delay low set_mem_1

      set_mem_1 = 
          (mem_1 <&> inv reset) <|> (mem_0 <&> set)
 
      out = set_mem_1

But now, set_mem_0 is 
not used in the circuit
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Back to the Set-Reset 
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out 
  where
      mem_0 = inv mem_1
      mem_1 = delay low set_mem_1

      set_mem_1 = 
          (mem_1 <&> inv reset) <|> (mem_0 <&> set)
 
      out = set_mem_1

Since mem_0 and 
mem_1 are just 

opposites, this is just a 
multiplexer 
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Back to the Set-Reset 
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out 
  where
      mem_0 = inv mem_1
      mem_1 = delay low set_mem_1

      set_mem_1 = mux (mem_1, (set, inv reset))
 
      out = set_mem_1

Since mem_0 and 
mem_1 are just 

opposites, this is just a 
multiplexer 
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Back to the Set-Reset 
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out 
  where
      mem_0 = inv mem_1
      mem_1 = delay low set_mem_1

      set_mem_1 = mux (mem_1, (set, inv reset))
 
      out = set_mem_1

Cleaning up, we finally 
get …
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Back to the Set-Reset 
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out 
  where
      mem_1 = delay low out
      out = mux (mem_1, (set, inv reset))

Cleaning up, we finally 
get …
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Back to the Set-Reset 
Memory

delay0

and

and

and

and

or

or

delay1set

reset

out

setReset2 (set, reset) = out 
  where
      mem_1 = delay low out
      out = mux (mem_1, (set, inv reset))

But do the two circuits 
really behave the 

same?
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Comparing the Set-Reset 
Memories

checkSetReset (set, reset) = ok 
  where
      out1 = setReset (set, reset)
      out2 = setReset2 (set, reset)
     
      ok = equal (out1, out2)
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Comparing the Set-Reset 
Memories

We can now use simulation to compare the 
different implementation with a given stream 
of inputs:

Main> simulateSeq checkSetReset 
        [(low,high), (high, low), (low, low), (low, 

high)]
[high, high, high, high]

Later on, we will see how to use model-
checking to confirm its correctness.
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Parametrised Circuits

• Since we can write whatever Haskell 
programs we want, we can write 
functions, which given an input return 
a circuit.

• We call such functions parametrised 
circuits.
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Exactly n Bits are High

exactly :: Int -> [Signal Bool] -> Signal 
Bool

exactly 0 [] = high
exactly 0 (w:ws) = and2 (inv w, exactly 

0 ws)
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Exactly n Bits are High

exactly :: Int -> [Signal Bool] -> Signal 
Bool

exactly 0 [] = high
exactly 0 (w:ws) = and2 (inv w, exactly 

0 ws)
exactly (n+1) [] = low
exactly (n+1) (w:ws) = 
     mux (w, (exactly (n+1) ws, exactly n 

ws))
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Exactly n Bits are High

exactly :: Int -> [Signal Bool] -> Signal 
Bool

exactly 0 [] = high
exactly 0 (w:ws) = and2 (inv w, exactly 

0 ws)
exactly (n+1) [] = low
exactly (n+1) (w:ws) = 
     mux (w, (exactly (n+1) ws, exactly n 

ws))

Note that exactly is a 
parametrised circuit. 

Given a natural number, 
it returns an actual circuit
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Simulating Instances of 
exactly

Main> simulate (exactly 3) [high, low, high, 
high]

high

Main> simulateSeq (exactly 2)
      [[low,high,high], [high,low,low], 

[high,high,high]]
[high, low, low]
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Some Common Mistakes

exactly 0 [] = high
exactly 0 (w:ws) = and2 (inv w, exactly 

0 ws)
exactly (n+1) [] = low
exactly (n+1) (low:ws) = exactly (n+1) 

ws
exactly (n+1) (high:ws) = exactly n ws
 

Pattern-matching 
on signals is not 

possible
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Some Common Mistakes

exactly 0 [] = high
exactly 0 (w:ws) = and2 (inv w, exactly 

0 ws)
exactly (n+1) [] = low
exactly (n+1) (w:ws) = 
   if w==low 
     then exactly (n+1) ws
     else exactly n ws

Checking equality 
of signals is not 

possible, otherwise 
the result is not a 

circuit
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Generic Circuits

• We can go one step further, and 
parametrise circuits by other circuits.

• A generic circuit, or a connection 
pattern is a function, which given a 
circuit, returns another circuit.

• Using this approach to describe 
functions (circuits) without referring 
to the input-output wires is called 
combinator-based programming.
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N-Input And Gate

andl [w] = w
andl (w:ws) = 
   and2 (w, andl ws)

and

and

and

…

…
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N-Input Or Gate

orl [w] = w
orl (w:ws) = 
   or2 (w, orl ws)

or

or

or

…

…
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Binary Gate Generalised to N-
Inputs

gatel gate [w] = w
gatel gate (w:ws) = 
   gate (w, gatel gate 

ws)

gate

gate

gate

…

…
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Binary Gate Generalised to N-
Inputs

gatel gate [w] = w
gatel gate (w:ws) = 
   gate (w, gatel gate 

ws)

orl = gatel or2
andl = gatel and2

gate

gate

gate

…

…
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Binary Gate Generalised to N-
Inputs

gatel gate [w] = w
gatel gate (w:ws) = 
   gate (w, gatel gate 

ws)

orl = gatel or2
andl = gatel and2

gate

gate

gate

…

…

To avoid long 
combinational paths, we 
can reorganise to get the 

same result (provided 
the operators are 

associative).
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Binary Gate Generalised to N-
Inputs

tree gate [w] = w
tree gate ws = 
   gate (tree gate ws1, tree gate 

ws2)
   where
      (ws1, ws2) = split ws

gate

gate

gate

…

…gate gate

gate

gate

…
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Rows

gate
Given a gate with two inputs 
(left, top wires) and two 
outputs (bottom and right 
wires) …

gate :: (Signal Bool, Signal Bool) -> (Signal Bool, Signal Bool)
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Rows

gate gate gate gate…

We can construct a circuit which given an input 
wire (left) and a list of input wires (top wires), 
produces a list of output wires (bottom wires) 
and an output wire (left):

row gate :: (Signal Bool, [Signal Bool]) -> ([Signal Bool], Signal 
Bool)
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Rows

row gate (left, []) = ([], left)
row gate (left, t:tops) = (b:bottoms, 

right)
   where
       (b, left’) = gate (left, t)
       (bottoms, right) = row gate (left’, 

tops)

gate gate gate gate…
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Rows

row gate (left, []) = ([], left)
row gate (left, t:tops) = (b:bottoms, 

right)
   where
       (b, left’) = gate (left, t)
       (bottoms, right) = row gate (left’, 

tops)

gate gate gate gate…

Actually, the row as 
implemented in Lava is more 

general than this, since it 
allows for arbitrary tuples of 

lists as the top inputs
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Adders and …

We can now define an adder simply as 
a row of full adders:

adder = row fulladder

What does a row of half adders do?

????? = row halfadder
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The Carry-Select Pattern
select circ (cin, []) = (cin, [])
select circ (cin, xs) = (cout, ss)
  where
    (xs1, xs2) = split xs
    
    (cmid, ss1) = select circ (cin, xs1)  
    (cout_0, ss2_0) = select circ (low, xs2)
    (cout_1, ss2_1) = select circ (high, xs2)

    cout = mux (cmid, (cout_0, cout_1))
    ss2 = mux (cmid, (ss2_0, ss2_1))

    ss = ss1++ss2
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Parallel Adders and …

We can now define an adder simply 
as a carry-select pattern of full 
adders:

adder2 = select fulladder
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The Carry-Select Pattern
select circ (cin, []) = (cin, [])
select circ (cin, xs) = (cout, ss)
  where
    (xs1, xs2) = split xs
    
    (cmid, ss1) = select circ (cin, xs1)  
    (cout_0, ss2_0) = select circ (low, xs2)
    (cout_1, ss2_1) = select circ (high, xs2)

    cout = mux (cmid, (cout_0, cout_1))
    ss2 = mux (cmid, (ss2_0, ss2_1))

    ss = ss1++ss2
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Verification

• One of the unique features of Lava is 
its link to model checkers.

• Allows checking of circuit properties 
from within Lava, using external 
tools.

• Various model checking tools have 
been connected to Lava, but for this 
course we will only be using SMV.
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Stating Properties

• Lava can be used to describe circuits.
• For verification we also need to state 

properties.

Two solutions:

• Give a separate language to express 
properties, or

• Describe properties as circuits, which 
output one bit, stating whether the circuit 
is working correctly.
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Observers

• Lava takes the second option … we 
write observers which monitor the 
property in question.

• It is a well-known result that the 
expressiveness of observers is 
equivalent to safety properties – 
properties of the form bad things 
never happen.
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Observers

Circuit

Observer
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Rising Edges

Rising edge implementation:
rise w = w <&> inv (delay low w)

Specification:
There can never be two rising edges in 
immediate succession.

property_rise w = inv (r <&> delay low 
r)

where
r = rise w
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Rising Edges

Main> smv property_rise
Proving: … Valid
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Falling Edges

Falling edge implementation:
fall w = inv w <&> delay low w

Specification:
Rising edges of a signal are equivalent 

to falling edges of the inverse of the 
signal.

property_edges w = equal (r, f)
where

r = rise w
f = fall (inv w)
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Falling Edges

Main> smv property_edges
Proving: … Falsifiable

When w starts off with value high, 
rise w returns high, while fall (inv w) 
returns low. Otherwise, they match. 
Use Lava and SMV to check this!



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 122

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Recall the Set-Reset Memories 
Comparison

checkSetReset (set, reset) = ok 
  where
      out1 = setReset (set, reset)
      out2 = setReset2 (set, reset)
     
      ok = equal (out1, out2)
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Result?

Main> smv checkSetReset
Proving: … True
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Similarly, we can compare 
adders …

checkAdders (cin, (xs, ys)) = ok 
  where
      (cout1, ss1) = adder   (cin, (xs, ys))
      (cout2, ss2) = adder2 (cin, (xs, ys))

      ok = equal (cout1, cout2) <&>
              equals (ss1, ss2)
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Result?
But smv checkAdders gives an error because it doesn’t know what width 

to use.

fourToList (x1,x2,x3,x4) = [x1,x2,x3,x4]

checkAdders (cin, (xs’, ys’)) = ok 
  where
      xs = fourToList xs’
      ys = fourToList ys’

      (cout1, ss1) = adder   (cin, (xs, ys))
      (cout2, ss2) = adder2 (cin, (xs, ys))

      ok = equal (cout1, cout2) <&> equals (ss1, ss2)

Main> smv checkAdders
Proving: … True



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 126

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Other Features

Netlist Generation: Lava allows the 
user to generate a VHDL description 
of the circuit, to enable efficient 
simulation, testing, placement, etc.

Main> writeVhdl “rising” rise
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Other Features

Signal types: Lava supports not only 
Signals of Booleans, but also signals 
of integers:

intSquarer n = times (n, n)

Main> simulateSeq intSquarer [4,5]
[16, 25]
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Other Features

Signal types: Lava supports not only 
Signals of Booleans, but also signals 
of integers:

intSquarer n = times (n, n)

Main> simulateSeq intSquarer [4,5]
[16, 25]

This sometimes leads to 
polymorphism on Signal types. For 

example:

mux :: (Signal Bool, (Signal a, Signal a)) -> 
Signal a
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Conclusions

• Embedded languages give us more 
control over the generation and 
manipulation of the host language.

• Lava is excellent for describing 
regular circuits – the Haskell code 
runs to generate the actual circuit.

• In Part III we will look into the 
implementation of Lava and similar 
languages.
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Exercises

• Implement the circuits you drew (or otherwise 
described) in Part 1 using Lava.

• Write a property to verify that (all3 (a,b,c)) 
behaves just like (all3 (c,a,b)). Verify it.

• Write a property which states that a falling edge 
never appears on the output of always w. Verify 
it.

• Generalise the stack example to take a numeric 
parameter with the size of the stack.
Express and verify the property that if you push 
an element on the stack, and then pop, the top 
element has not changed. What goes wrong? How 
can you fix this? 
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Objectives

• The elegance and expressivity of the 
functional approach to HDLs should 
be evident by now.

• Taking a look at the mechanisms 
beneath the hood will give us a better 
understanding.

• The aim of this part of the course is 
to build a simple functional HDL in 
Haskell.
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The Language
• We will build a simple language, 

which will have just negation, 
conjunction and delay gates, and 
using only Boolean streams.

• Our principal aims are to be able to:
– Describe circuits
– Manipulate circuits
– Simulate circuits
– Produce a textual description of a circuit 

(this would be used in netlist generation 
and verification)
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A Quick Hack

We can use a standard abstract 
datatype in Haskell to describe 
circuits:

data Circuit = Low
| High
| Not Circuit
| And Circuit Circuit
| Delay Bool Circuit
deriving (Eq, Show)
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A Quick Hack

With some helper functions, we can have a 
simple version of Lava running, no?

low = Low
high = High
inv w = Not w
and2 (u,v) = And u v

delay Low w = Delay False w
delay High w = Delay True w
delay _ _ = 

error “Delays can only take static 
initialisation”
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More Utility Functions

or2 (u, v) = inv (and2 (inv u, inv v))

u <&> v = and2 (u,v)
u <|> v = or2 (u,v)

xor2 (u,v) = (u <&> inv v) <|> (inv u 
<&> v)
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Evaluation of a Closed 
Circuit

A closed circuit is one with no inputs:

evaluate Low = Low
evaluate High = High

evaluate (Not c) = 
  case evaluate c of
     Low -> High
     High -> Low

evaluate (And c1 c2) =
  case (evaluate c1, evaluate c2) of
      (High, High) -> High
      _                 -> Low
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Let’s Try to Simulate a 
Combinational Circuit

Recall that simulate takes a circuit 
which takes an input, and an input, 
and evaluates the output:

simulate fcircuit value = 
evaluate (fcircuit value)
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Let’s try it out…

mux (sel, (l, h)) = 
(sel <&> h) <|> (inv sel <&> l) 

Main> simulate mux (high, (high, low))
Low
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What about counting gates?

count fcircuit = count’ (fcircuit Low)
  where

count’ Low = 0
count’ High = 0
count’ (Not c) = 1+ count’ c
count’ (And c1 c2) = 

1+ count’ c1 + count’ c2
count’ (Delay _ c) = 1 + count’ c
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Let’s try it out…

mux (sel, (l, h)) = 
(sel <&> h) <|> (inv sel <&> l) 

Main> count mux
ERROR: Type error in application
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Let’s try it out…

mux (sel, (l, h)) = 
(sel <&> h) <|> (inv sel <&> l) 

Main> count mux
ERROR: Type error in application

What’s wrong?
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What about counting gates?

Main> count mux
ERROR: Type error in application

count fcircuit = count’ (fcircuit Low)
  where 
     … Count assumes that the 

circuit takes only one 
input. How can we fix it?
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What about counting gates?

Main> count mux
ERROR: Type error in application

count fcircuit = count’ (fcircuit Low)
  where 
     … We need a way of 

generating arbitrary 
tuples (possibly of 

tuples) of Lows
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Typeclasses to the Rescue

Types in class CircuitStructure can be 
populated by zeros…

class CircuitStructure a where
    zeros :: a
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Typeclasses to the Rescue

Types in class CircuitStructure can be 
populated by zeros…

class CircuitStructure a where
    zeros :: a

count fcircuit = count’ (fcircuit zeros)
  where 
     …
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Solution Using Typeclasses

A circuit can be zero:

instance CircuitStructure Circuit where
    zeros = Low
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Solution Using Typeclasses

Given two types which can be zeros, 
a pair of such types can also be 
zeros:

instance (CircuitStructure a, 
CircuitStructure b) 

    => CircuitStructure (a, b) where
    zeros = (zeros, zeros)
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Does it work now?

Main> count mux
7
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Does it work now?

Main> count mux
7

7?! Yes, of course, 
because our or2 gates 
are built from three inv 

and one and2 gates
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Another Example

example (u, v) = out
   where
       common = and2 (u, v)
       out = mux (u, (common, inv 

common))

How many gates should this have?
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Another Example

example (u, v) = out
   where
       common = and2 (u, v)
       out = mux (u, (common, inv 

common))

How many gates should this have?
7 (mux) + 1 (inv) + 1 (and2) = 9
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Another Example

example (u, v) = out
   where
       common = and2 (u, v)
       out = mux (u, (common, inv 

common))

Main> count example
10
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Why?
example (u, v) = out
   where
       common = and2 (u, v)
       out = mux (u, (common, inv common))

is equivalent to 

example (u, v) = out
   where
       out = mux (u, (and2 (u, v), inv (and2 (u, 

v))))
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It is even worse than this …

Consider the following circuit with feedback…

always s = out
    where
         out = s <&> delay low out

Main> count always
ERROR: Stack overflow
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It is even worse than this …

Consider the following circuit with feedback…

always s = out
    where
         out = s <&> delay low out

Main> count always
ERROR: Stack overflow

The function count 
traverses the delay over 
and over again until it 

runs out of stack space
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Solutions: Name Circuits

1. Naming circuits: Circuits may be 
given names. Circuits with the same 
name are counted only once. It is up 
to the user to use different names.

example (u, v) = out
   where
       common = name “COMMON” (and2 

(u, v))
       out = mux (u, (common, inv 

common))
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Solutions: Name Circuits

1. Naming circuits: Circuits may be 
given names. Circuits with the same 
name are counted only once. It is up 
to the user to use different names.

example (u, v) = out
   where
       common = name “AND1” (and2 (u, 

v))
       out = mux (u, (common, inv 

common))

Some functional 
HDLs, including 
Hydra used this 
solution (or a 
variant of it).
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Solution: Carry a State 
Around

1. Auxiliary state variable: Since 
users may make mistakes, every 
circuit constructor is given a state 
and returns an updated state, which 
is used in the next constructor. This 
state (just a number) can be used to 
name circuits using unique names.
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Carry a State Around

inv state w = 
(state+1, name (show state) Not w)

and2 state (u, v) = 
(state+1, name (show state) (And u v))

example state0 (u, v) = (state3, out)
   where
       (state1, common) = and2 state0 (u, v)
       (state2, inv_common) = inv state1 common
       (state3, out) = mux state2 (u, (common, 

inv_common))
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Carry a State Around

inv state w = 
(state+1, name (show state) Not w)

and2 state (u, v) = 
(state+1, name (show state) (And u v))

example state0 (u, v) = (state3, out)
   where
       (state1, common) = and2 state0 (u, v)
       (state2, inv_common) = inv state1 common
       (state3, out) = mux state2 (u, (common, 

inv_common))

Here we hide the 
names, but still 
have the burden 
of carrying the 

state.
Cumbersome 
and unwieldy.
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Solution: Use a State Monad

1. Use a state monad: Since users may 
still make mistakes when passing the 
state around, the state may be made 
implicit using monads and the Haskell do 
notation which hides it all away.

example (u, v) = 
    do 
       common <- and2 (u, v)
       out <- mux (u, (common, inv common))
       return out
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Solution: Use a State Monad

1. Use a state monad: Since users may 
still make mistakes when passing the 
state around, the state may be made 
implicit using monads and the Haskell do 
notation which hides it all away.

example (u, v) = 
    do 
       common <- and2 (u, v)
       out <- mux (u, (common, inv common))
       return out

If you have 
never heard 

about monads, 
this is not the 

time …
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Solution: Use a State Monad

1. Use a state monad: Since users may 
still make mistakes when passing the 
state around, the state may be made 
implicit using monads and the Haskell do 
notation which hides it all away.

example (u, v) = 
    do 
       common <- and2 (u, v)
       out <- mux (u, (common, inv common))
       return out

The first version 
of Lava used this 
trick to encode 

the state. 
Feedback loops 

complicate 
matters, though.
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Use Non-Updatable 
References

1. Use non-updatable reference: If we 
are allowed to look at the memory 
address (pointer) of a data object, we can 
identify common sub-expressions. This 
assumes that the compiler/interpreter 
does not replicate expressions from let or 
where clauses.

example (u, v) = out
   where
       common = and2 (u, v)
       out = mux (u, (common, inv common))
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Use Non-Updatable 
References

1. Use non-updatable reference: If we 
are allowed to look at the memory 
address (pointer) of a data object, we can 
identify common sub-expressions. This 
assumes that the compiler/interpreter 
does not replicate expressions from let or 
where clauses.

example (u, v) = out
   where
       common = and2 (u, v)
       out = mux (u, (common, inv common))

Count should realise that 
the two sub-expressions 
are the same, since they 
are located at the same 

memory location



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 167

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Use Non-Updatable 
References

1. Use non-updatable reference: If we 
are allowed to look at the memory 
address (pointer) of a data object, we can 
identify common sub-expressions. This 
assumes that the compiler/interpreter 
does not replicate expressions from let or 
where clauses.

example (u, v) = out
   where
       common = and2 (u, v)
       out = mux (u, (common, inv common))

The result is not a 100% 
functionally pure solution, 
but is probably one of the 

better compromises 
around
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Use Non-Updatable 
References

1. Use non-updatable reference: If we 
are allowed to look at the memory 
address (pointer) of a data object, we can 
identify common sub-expressions. This 
assumes that the compiler/interpreter 
does not replicate expressions from let or 
where clauses.

example (u, v) = out
   where
       common = and2 (u, v)
       out = mux (u, (common, inv common))

Lava 2000, the version we 
are using, uses this 

solution
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Implementing Named 
Circuits

We need to start by enriching the 
datatype:

data Circuit = Low
| High
| Not Circuit
| And Circuit Circuit
| Delay Bool Circuit
| Named String Circuit
deriving (Eq, Show)
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Implementing Named 
Circuits

We need to start by enriching the datatype 
and allowing the designers to access it:

data Circuit = Low
| …
| Delay Bool Circuit
| Named String Circuit
deriving (Eq, Show)

name string circuit = Named string circuit
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Implementing Named 
Circuits

count fcircuit = snd (count’ [] (fcircuit zeros))
  where

count’ nmes Low = (nmes, 0)
count’ nmes High = (nmes, 0)
count’ nmes (Not c) = 

let (nmes’, cnt) = count’ nmes c
in  (nmes’, 1+cnt)

count’ nmes (And c1 c2) = 
let (nmes’, cnt1) = count’ nmes c1
     (nmes’’,cnt2) = count’ nmes’ c2
in  (nmes’’, 1+cnt1+cnt2)

count’ nmes (Delay _ c) = 
let (nmes’, cnt) = count’ nmes c
in  (nmes’, 1+cnt)

count’ nmes (Named n c)
| n `elem` nmes = (nmes, 0)
| otherwise         = count’ (n:nmes) c
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Implementing Named 
Circuits

count fcircuit = snd (count’ [] (fcircuit zeros))
  where

count’ nmes Low = (nmes, 0)
count’ nmes High = (nmes, 0)
count’ nmes (Not c) = 

let (nmes’, cnt) = count’ nmes c
in  (nmes’, 1+cnt)

count’ (And c1 c2) = 
let (nmes’, cnt1) = count’ nmes c1
     (nmes’’,cnt2) = count’ nmes’ c2
in  (nmes’’, 1+cnt1+cnt2)

count’ (Delay _ c) = 
let (nmes’, cnt) = count’ nmes c
in  (nmes’, 1+cnt)

count’ nmes (Name n c)
| n `elem` nmes = (nmes, 0)
| otherwise         = count’ (n:nmes) c

As long as the 
user names all 
common sub-
circuits and 

feedback loops, 
count will now 
work correctly
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Simulation, Again
Simulation was performing extra work, recalculating common 

sub-expressions:

evaluate c = snd (evaluate [] c)
  where

evaluate’ known Low = (known, Low)
evaluate’ known High = (known, High)

evaluate’ known (Not c) = 
let (known’, value) = evaluate’ known c
in  case value of
        Low -> (known’, High)
        High -> (known’, Low)

…
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Some Limitations of Our 
System

• We can only have circuits which output one 
value. To be able to describe circuits like a 
halfadder, we need to perform a similar 
trick as we did on the input.

• To produce a netlist description, we need 
to be able to name inputs. We need to 
further enrich the circuit datatype, and the 
CircuitStructure class to be able to create a 
correct structure with distinct names.

• We did not touch on sequential simulation, 
in which we would need to evaluate a list 
of evaluated outputs, not just a single 
value.
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Conclusions

• Building a practical functional HDL is not as 
straightforward as the final library may 
give the impression of.

• A major issue is that of shared circuits. We 
have presented some solutions to the 
problem.

• Overloading via typeclasses in Haskell 
works wonders!

• Lazyness can be useful when performing 
sequential simulation.
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Exercises

• Implement an embedded hardware 
description language using named 
circuits as shown.

• Add a function to allow the user to 
run sequential simulation.

• Add a function to create a textual 
(VHDL/Verilog-like) description of a 
given closed circuit.
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What is Hardware 
Compilation?

• Describe an algorithm using a 
high level formalism

• Compile directly into hardware

int factorial (int n) {
   int i, result;

   result=1;
   for i=1 to n do
      result := result * I

   return (result);
}

factorial

n

resul
t
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Issues Regarding 
Compilation

• Should the program run once every clock 
tick?
– Problems with unbounded loops and non-

termination
– No memory between clock ticks
– The same program runs every clock tick

• Should we allow execution to take more 
than one clock tick?
– When is the result available?
– What is the meaning of intermediate results?
– Should the programmer be able to express 

clock barriers?
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Issues Regarding 
Compilation

• Should the program run once every clock 
tick?
– Problems with unbounded loops and non-

termination
– No memory between clock ticks
– The same program runs every clock tick

• Should we allow execution to take more 
than one clock tick?
– When is the result available?
– What is the meaning of intermediate results?
– Should the programmer be able to express 

clock barriers?

During this course we will be 
dealing exclusively with 
compiled languages which:

3.Potentially run over multiple 
clock cycles

4.Timing is explicit in the 
programs themselves



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 181

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling Regular 
Expressions

RE ::= a Single symbol
| RE+ Repetition
| RE + RE Choice
| RE . RE Catenation

For simplicity of exposition, we avoid 
regular expressions which accept the 
empty string.
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Regular Expressions and 
Hardware 

• The alphabet is the set of wires.
• A single symbol a is accepted during 

the next clock tick if wire a currently 
carries high.

• Choice, repetition and catenation are 
interpreted as usual.
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Regular Expressions and 
Hardware 

a . (b+ + a)

Is accepted on the third clock tick, if a 
was high during the first two clock 
ticks, or after three or more clock 
ticks, if a was high in the first, and b 
was high throughout the rest of the 
ticks (except possibly the last).
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Compiling Regular Expressions 
to Hardware

• The start input tells the circuit when 
to start parsing. 

• A circuit can be started multiple 
times

Circuit
start acceptRegular 

Expression compile

ab z
…
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Compiling Regular Expressions 
to Hardware

The single symbol a is accepted in 
the next clock tick if we start parsing 
now, and a is currently high.

start

accept
a compile

a

and delay
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Compiling Regular Expressions 
to Hardware

When e.f starts parsing, we start 
parsing e, and once it is accepted, we 
start parsing f. 

start accept
e . f compile e f
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Compiling Regular Expressions 
to Hardware

When e+f starts parsing, we start 
parsing both e and f, and accept once 
either of the two accepts. 

start accept
e + f compile

e

or

f
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Compiling Regular Expressions 
to Hardware

We start parsing e when e+ starts 
parsing or e accepts. We accept 
every time e accepts. 

start accept
e+

compile eor
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Compiling a.(b++a)
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Compiling a.(b++a)

and delay

b
accept

start

compile 
b



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 191

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a.(b++a)

start

andor delay

b

accept

compile 
b+
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Compiling a.(b++a)

start

andor delay

and delay

or

b

a

accept

compile b+ 

+a
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Compiling a.(b++a)

start

andor delay

and delay

orand delay

b

a

accept

compile  a. (b+  + 
a)
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A Regular Expression Compiler 
in Lava

We embed regular expressions an a 
datatype:

data RegExp =
Symbol (Signal Bool)

| Repeat RegExp
| RegExp :+: RegExp
| RegExp :>: RegExp
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A Regular Expression Compiler 
in Lava

The circuits produced have a simple 
type:

type CircuitRE = Signal Bool -> Signal 
Bool

So does the compiler:

compileRE :: RegExp -> CircuitRE
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A Regular Expression Compiler 
in Lava

The circuits produced have a simple 
type:

type CircuitRE = Signal Bool -> Signal 
Bool

So does the compiler:

compileRE :: RegExp -> CircuitRE

We can now define 
compileRE using 

pattern matching on 
regular expressions
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A Regular Expression Compiler 
in Lava

compileRE (Symbol a) start = 
delay low (a <&> start)

start

accept
a compile

a

and delay
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A Regular Expression Compiler 
in Lava

compileRE (e :>: f) start = accept
where

middle = compileRE e start
accept = compileRE f middle

start accept
e . f compile e f
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A Regular Expression Compiler 
in Lava

compileRE (e :+: f) start = accept
where

accept_e = compileRE e start
accept_f = compileRE f start
accept = accept_e <|> accept_f

start accept
e + f compile

e

or

f
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A Regular Expression Compiler 
in Lava

compileRE (Repeat e) start = accept
where

accept = compileRE e start’
start’ = start <|> accept 

start accept
e+

compile eor
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Simulating Regular Expression 
Circuits

example a b = s_a :>: (Repeat s_b :+: s_a)
where

s_a = Symbol a
s_b = Symbol b

circuit (a,b) = compileRE (example a b) (delay high 
low)

Main> simulateSeq circuit 
[(high, high), (high, high), (low, high), (high, low)]

[low, low, high, high]
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Compiling a Simple Imperative 
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg
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Compiling a Simple Imperative 
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

A program has only one 
output variable, by default 
always carrying value low, 
unless it is actively pushed 

up to high.
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Compiling a Simple Imperative 
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Does nothing and 
terminates 

immediately
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Compiling a Simple Imperative 
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Does nothing and 
terminates one 
clock tick later



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 206

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Compiling a Simple Imperative 
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Terminates 
immediately. Pushes 

that the output of 
the program to high.
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Compiling a Simple Imperative 
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Standard 
conditional, 
branching 

depending on 
current value of a 

given signal
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Compiling a Simple Imperative 
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Standard sequential 
composition: 

execute the first 
program, and upon 

termination, 
execute the second
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Compiling a Simple Imperative 
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Standard loop, 
choice depending on 

current value of a 
given signal
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Compiling a Simple Imperative 
Language

Prg ::= skip
| delay
| emit
| if Signal then Prg else Prg
| Prg ; Prg
| while Signal do Prg
| Prg || Prg

Fork-join parallel 
composition. Start 
the two programs 

together, and 
terminate once both 

have terminated
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Example Programs

alternate = 
while high do

emit; delay; delay

wait s =
while (inv s) do delay
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Embedding in Haskell

data Prg = 
Skip

| Emit
| Delay
| IfThenElse (Signal Bool) (Prg, Prg)
| Prg :>: Prg
| While (Signal Bool) Prg
| Prg :|: Prg
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Generating Programs

forever prg = While high prg

emitD = Emit :>: Delay

wait s = While (inv s) Delay

inverter s = forever (wait (inv s) :>: 
emitD) 
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Example Programs

onOff = forever ( emitD :>: Delay )
offOn = Delay :>: onOff

rising1 s = 
   forever (While (inv s) Delay :>: 

emitD)
rising2 s =
   forever (wait (inv s) :>: wait s :>: 

Emit)
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Compiling the Programs

type CircuitPrg = 
Signal Bool -> (Signal Bool, Signal 
Bool)

compilePrg :: Prg -> CircuitPrg

Circuit

start

finish

Program
compile emit
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Compiling Skip
start

finish

emit

low
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Compiling Skip

compilePrg Skip start =
(finish, emit)

   where
       finish = start
       emit = low

start

finish

emit

low
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Compiling Delay
start

finish

emit

low
delay0
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Compiling Delay

compilePrg Delay start 
=
(finish, emit)

   where
       finish = delay low 

start
       emit = low

start

finish

emit

low
delay0
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Compiling Emit
start

finish

emit
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Compiling Emit

compilePrg Emit start =
(finish, emit)

   where
       finish = start
       emit = start

start

finish

emit
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Compiling Sequential 
Composition

start

finish

emit

p

q

or
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Compiling Sequential 
Composition

compilePrg (p :>: q) start =
   (finish, emit)
   where
       (finish_p, emit_p) = 
         compilePrg p start
       (finish, emit_q) = 
         compilePrg q finish_p

       emit = or2 (emit_p, 
emit_q)

start

finish

emit

p

q

or
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Compiling Conditionals
start

finish

emit

p

q

or

or

and and

cond
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Compiling Conditionals
compilePrg 
   (IfThenElse c (p,q)) start =
   (finish, emit)
   where
       start_p = and2 (start, c)
       start_q = and2 (start, inv c)

       (finish_p, emit_p) = 
         compilePrg p start_p
       (finish_q, emit_q) = 
         compilePrg q start_q

       emit = or2 (emit_p, emit_q)
       finish = or2 (finish_p, finish_q)

start

finish

emit

p

q

or

or

and and

cond
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Compiling Loops
start

finish

emit
p

or

and and

cond
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Compiling Loops

compilePrg (While c p) start 
=

   (finish, emit)
   where
       start’ = or2 (start, 

finish_p)

       start_p = and2 (start’, c)

       (finish_p, emit) = 
         compilePrg p start_p

       finish = and2 (start’, inv 
c)

start

finish

emit
p

or

and and

cond
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Compiling Parallel 
Composition

start

finish

emit

p

q

or

sync
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Compiling Parallel 
Composition

compilePrg (p :|: q) start =
   (finish, emit)
   where
       (finish_p, emit_p) = 
         compilePrg p start
       (finish_q, emit_q) = 
         compilePrg q start

       emit = or2 (emit_p, emit_q)
       finish = sync (finish_p, 

finish_q)

start

finish

emit

p

q

or

sync
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The Synchroniser

sync (f1, f2) = …
  where
      state = …

2 to go 1 to go

f1 <#> f2

f1 <#> f2

f1 <&> f2

inv f1 <&> inv 
f2

inv f1 <&> inv 
f2

f1 <&> f2
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The Synchroniser
(assuming neither branch may 

terminate immediately)
syncPrg (f1, f2) = 
    forever (
       wait (f1 <|> f2) :>:
       IfThenElse (f1 <&> f2) 
          ( Skip
          , wait (f1 <|> f2)
          ) :>:
       emitD
    )

sync f12 = compilePrg (syncPrg f12) (delay high 
low)
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Verification

inverter s = forever (wait (inv s) :>: emitD)

propInv s = is1 <==> is2
  where
     is1 = inv s
     (_, is2) = compilePrg (inverter s) (delay high 

low)

Main> smv propInv
Proving: … Valid
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Verification

propRise s = r1 <==> r2
  where
     (_, r1) = compilePrg (rising1 s) (delay high 

low)
     (_, r2) = compilePrg (rising2 s) (delay high 

low)

Main> smv propRise
Proving: … Valid
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Extensions: Assignment 
Variable

Instead of an emit output variable, 
we would like to have an output 
variable which can be assigned a 
value which is remembered:

data Prg = …
                    |  Assign (Signal Bool)
                      …
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Extensions: Assignment 
Variable

• The output wire assign is high when 
a new value is being assigned to the 
variable.

• The new value is available on the 
value wire.

Circuit

start

finish

assign

value
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Extensions: Assignment 
Variable

At the top level, the wires are combined 
together:

register (assign, value) = current
    where
         current = mux (assign, (previous, value))
         previous = delay low current

compile program start = (finish, output)
    where
         (finish, assign_value) = compileAux program 

start
         output = register assign_value
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Extensions: Assignment 
Variable

To compile an assignment:

compileAux (Assign w) start =
       (finish, (assign, value))
       where
           finish = start
           assign = start
           value = w
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Extensions: Assignment 
Variable

Combining the assign and value 
wires of two blocks is slightly more 
complicated than in the case of an 
emit variable:

combine ((a1, v1), (a2, v2)) = (a, v)
       where
            a = a1 <|> a2
            v = mux (a1, (v1, v2))
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Extensions: Multiple 
Variables

Adding multiple output wires can be 
done in various ways:
– Reference by index: Before 

compilation a pass through the program 
will identify the number of wires 
required.

– Scoped and named declarations: The 
compiler will have to augment its 
behaviour with an auxiliary symbol table, 
relating variable names and output wire 
list index.
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Extensions: Feedback of 
Variables

To add expressions involving output 
wires in conditions and assignments, 
feedback loops can be created. To 
resolve the problem:
– Delay assignment and emission by one 

clock tick; or
– Make a constructivity analysis before 

generating the circuit – this can be very 
expensive to perform…
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Conclusions

• A compiler is just a sophisticated 
parametrised circuit.

• Although one loses in efficiency, the 
trade-off is more reliable circuitry.

• Adding more features can be 
challenging.

• Combining languages can be useful – 
although in most cases it is just a 
matter of combining language 
features.
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Exercises (1)

• Implement the embedded regular 
language and the embedded 
imperative language (with one emit 
wire) hardware compiler with emit 
variables.
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Exercises (2)

• Use Lava and SMV to verify whether:

sync (a,b) 
=

   compilePRG (wait a :|: wait b) (delay 
high low)
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Exercises (3)

• It was remarked that loops only work if 
their body takes time to execute.
– Define a function loopBodies, which given a 

program p returns all subprograms which are 
bodies of a loop of p in innermost first order.

– Write a function takesTime, which given a 
program p, returns an observer which checks 
whether p always takes time to execute. 

– Combine the previous two functions to check 
that all loop bodies of a given program take 
time to execute.
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Exercises (4)

• Add multiple emit variables to the 
language. The compiled program 
should output a list of variable 
values, and the instruction Emit n will 
push the value of the nth variable up 
to high.

• Add a new command in the 
imperative language RE s, where s is 
a regular expression, which allows a 
regular expression to appear as part 
of a program.
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Overview

• Lava is primarily aimed at hardware 
design and verification.

• Other functional HDLs have different 
objectives.

• We will be looking at three other 
functional HDLs, which are different 
from Lava.
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Wired

• Wired is a functional HDL, embedded 
in Haskell.

• Primary aim is to address non-
functional aspects of a circuit:
– Timing
– Netlist topology
– Layout
– Routing
– Power consumption
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Wired

• Wires account for 75% of path delays and 
50% of power consumption – unlike Lava, 
Wired is aware of wires.

• Lava is functional, due to a uniquely 
forward flow of information in the circuit. 
Wired requires bidirectional flow to 
calculate things such as load.

• Wired uses layout combinators to construct 
circuits, which are stored as relational 
blocks.
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Case Study: Prefix Circuits

The Problem:
Given inputs x1, x2 … xn and an associative 
operator ⊗.

Calculate:
x1

x1 ⊗ x2

x1 ⊗ x2 ⊗ x3

…
x1 ⊗ x2 ⊗ … ⊗ xn
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Case Study: Prefix Circuits

• Applications include fast adders, 
priority encoders, etc.

• The objective is to calculate the 
required outputs in a shallow and 
small circuit, parametrised by the 
binary operator ⊗.

• Wired uses non-standard 
interpretations to calculate delays 
and other circuit features.
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A Serial Prefix

…
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A Serial Prefix

…

⊗
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A Serial Prefix

Lava:

serial op [x] = x
serial op (x:y:xs) = 
  x: serial op (op (x, 

y):xs) 

…
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Sklansky Prefixes
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Sklansky Prefixes
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Sklansky Prefixes in Lava

sklansky op [x] = [x]

sklansky op xs = ls’ ++ [ op (carry, r) | r <- rs’ ]

     where

          (ls, rs) = splitAt (length xs `div` 2) xs

          ls’ = sklansky op ls

          rs’ = sklansky op rs

          carry = last ls’
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Redoing Things Using 
Combinator Lava

overlap k c1 c2 xs = init ls’ ++ rs’
where

(ls, rs) = splitAt k  xs
ls’ = c1 ls
rs’ = c2 (last ls’: rs)

c1

c2
…

…

…

…
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Redoing Things Using 
Combinator Lava

overlap2 c1 c2 xs = 
overlap (length xs `div` 2) c1 c2 xs

c1

c2
…

…

…

…
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Redoing Things Using 
Combinator Lava

extend op c (x:xs) = x: [ op (x, x’) | x’ 
<- xs’ ]
where

xs’ = c xs

c

…

…



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 261

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Back to the Serial Prefix

Combinator Lava:

…
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Back to the Serial Prefix

Combinator Lava:

…
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Back to the Serial Prefix

Combinator Lava:

serial op = 
overlap 2 

extend 
(serial op)

…
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Back to the Serial Prefix

Combinator Lava:

serial op 1 = id
serial op (k+1) = 

overlap 2 
extend 
(serial op k)

…
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Back to Sklansky Prefixes
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Back to Sklansky Prefixes

sklansky op = overlap2 left right

where

left = sklansky op 

right = extend op (sklansky 
op)
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Back to Sklansky Prefixes

sklansky op 1 = id

sklansky op k = overlap2 left right

where

half_k = k `div` 2

left = sklansky op half_k

right = extend op (sklansky op 
half_k)
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And Now in Wired

Some basic combinator:

idWire = 
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And Now in Wired

Some basic combinator:

idFork = 
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And Now in Wired

Some basic combinator:

copy op (x,y) = (op (x,y), x)
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And Now in Wired

And layout combinators:
row c = multiple copies of c in a row
c1 *||~ c2 = put c1 (consuming one 

wire) beside c2 (consuming the rest 
of the wires).

c1 *=~ c2 = put c1 (consuming one 
wire) beneath c2 (consuming the rest 
of the wires).
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And Now in Wired

And layout combinators:
row c = multiple copies of c
c1 *||~ c2 = put c1 (consuming one 

wire) beside c2 (consuming the rest 
of the wires).

c1 *=~ c2 = put c1 (consuming one 
wire) beneath c2 (consuming the rest 
of the wires).

Similarly ~||*, ~=*, 
~||~ and ~=~
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Using Wired

extend op c = 
(row (copy op) ~||* op) *=~ c

c

…

…
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Using Wired

forkLast c = 
(row idWire ~||* idFork) *=~ c

…
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Back to Sklansky Prefixes

sklansky op 1 = idWire

sklansky op k = left ~||~ right

where

half_k = k `div` 2

left = forkLast (sklansky op half_k)

right = extend op (sklansky op 
half_k)
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Wired Conclusions

• Essentially, Wired is a combinator 
library to join rectangles together, 
with pluggable circuits inside.

• The information generated can then 
used to perform analysis (delay, 
power consumption, layout, etc).

• Functionality can also be modelled by 
going down to a Lava-like 
representation (ignore all shape 
information).
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Hawk

• Hawk is a HDL embedded in Haskell.
• It was primarily aimed at modelling 

microprocessors and reasoning about 
them.

• Includes symbolic simulation of 
microprocessors.

• Algebraic reasoning about 
microprocessors allows simplifying 
the models to enable automatic 
verification.
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Concrete Simulation of a 
Microprocessor

data Op = MOV Addr Addr
| MOVI Addr Data
| ADD Addr Addr
| SUBI Addr Data
| JUMPZ Addr Loc
| JUMP Loc



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 279

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Concrete Simulation of a 
Microprocessor

data Op = MOV Addr Addr
| MOVI Addr Data
| ADD Addr Addr
| SUBI Addr Data
| JUMPZ Addr Loc
| JUMP Loc

For the moment, 
Addr, Data and 

Loc are all 
integers
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Concrete Simulation of a 
Microprocessor

data MachineState =
ST ( Loc -- Program counter

, [ Data ] -- Memory
, Program -- Actual program
)
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Concrete Simulation of a 
Microprocessor

add a b (ST ( loc, mem, code )) =
ST ( loc+1

, put a (mem `at` a + mem `at` b) 
mem

, code
)

execute (ADD a b) s = add a b s
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Concrete Simulation of a 
Microprocessor

subi a b (ST ( loc, mem, code )) =
ST ( loc+1

, put a (mem `at` a - b) mem
, code
)

execute (SUBI a b) s = subi a b s
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Concrete Simulation of a 
Microprocessor

jumpz a b (ST ( loc, mem, code )) =
if’ ( mem `at` a === 0)

( ST ( b, mem, code)
, ST ( loc+1, mem, code)
)

execute (JUMPZ a b) s = jumpz a b s
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Concrete Simulation of a 
Microprocessor

run (ST (loc, mem, prg) ) 
| loc >= length prg = ST (loc, mem, 
prg)
| otherwise = 

run (execute (prg `at` loc) s)
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Concrete Simulation of a 
Microprocessor

Main> 
run (ST (0, [1,2,3], 
    [ MOV 0 2

        , SUBI  0 1
        , ADD 2 2
        , JUMPZ 0 1 
        ]

)

ST (4, [0,16, 3], […])
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Symbolic Simulation of a 
Microprocessor

data Symbolic
= Const Int
| Var String
| Plus Symbolic Symbolic
| Minus Symbolic Symbolic
| Times Symbolic Symbolic
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Symbolic Simulation of a 
Microprocessor

instance Num Symbolic where
Const x + Const y = Const (x+y)
Const 0 +  x = x
x + Const 0 = x
x + y = Plus x y 

…
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Symbolic Simulation of a 
Microprocessor

instance Num Symbolic where
Const x + Const y = Const (x+y)
Const 0 +  x = x
x + Const 0 = x
x + y = Plus x y 

…
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Symbolic Simulation of a 
Microprocessor

instance Num Symbolic where
Const x + Const y = Const (x+y)
Const 0 +  x = x
x + Const 0 = x
x + y = Plus x y 

…

By using Symbolic for Data 
(possibly, with additional 

machinery, even the other 
types), we can symbolically 
simulate the behaviour of a 

program
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Concrete Simulation of a 
Microprocessor

Main> 
run (ST (0, [1,Var “x”,3], 
    [ MOV 0 2

        , SUBI  0 1
        , ADD 2 2
        , JUMPZ 0 1 
        ]

)

ST (4, [0, 8x, 3], […]) 
(with appropriate simplification of symbolic 

expressions)
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Hawk Conclusions

• All this is actually done using typeclasses, 
hence allowing the user to choose between 
concrete and symbolic simulation.

• Hawk uses these techniques over a stream 
based HDL similar to Lava.

• By manipulating and simulating the circuits 
symbolically, the user can algebraically 
modify circuits whilst still ensuring correct 
behaviour.
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reFLect

• reFLect is a strongly typed, functional 
reflective (or meta-) language.
– Programs can be considered to be data 

objects in the language itself.
– Does this using quotation and anti-

quotation operators.
– Allows pattern matching on quoted 

programs.

• Has been used to embed a Lava-like 
HDL.
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reFLective Code

• Code is quoted using  〈〈 - 〉〉
Quoted code is considered to denote the abstract syntax 
tree ie 〈〈 not True 〉〉 is not equivalent to 〈〈 False 〉〉.

• Code is unquoted using the ^- operator
Unquotation evaluates quoted code, for example,  ^〈〈 not 
True 〉〉 is equivalent to False.

• Pattern matching can be combined with quote-
anti-quote operators:

〈〈 not (^x) 〉〉 pattern matches with 〈〈 not True 〉〉, with x 
matching the value of 〈〈 True 〉〉.



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 294

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

Deep vs Shallow Embedding

• We have already seen what an embedding 
of a language in another is.

• A deep embedding is when the syntax of 
the embedded language is encoded as 
data, or in a manner that the host 
language has direct access to it.

• A shallow embedding is one in which 
embedded language programs are 
constructed using functions. Inspection of 
the programs is impossible.
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Deep vs Shallow Embedding

• We have already seen what an embedding 
of a language in another is.

• A deep embedding is when the syntax of 
the embedded language is encoded as 
data, or in a manner that the host 
language has direct access to it.

• A shallow embedding is one in which 
embedded language programs are 
constructed using functions. Inspection of 
the programs is impossible.

The examples we’ve seen 
are all of deep embeddings 
of HDLs, since the circuits 
are just data objects which 
one can not only construct 

but also manipulate.

What would a shallow 
embedding of an HDL look 

like?
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Shallow Embedding of a 
Stream Language using Lazy 

Lists

type Stream a = [a]

stream `at` time = stream !! time
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Shallow Embedding of a 
Stream Language using Lazy 

Lists

low :: Stream Bool
low = repeat False
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Shallow Embedding of a 
Stream Language using Lazy 

Lists

inv :: Stream Bool -> Stream Bool
inv xs = [ not x | x <- xs ]
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Shallow Embedding of a 
Stream Language using Lazy 

Lists

inv :: Stream Bool -> Stream Bool
inv xs = [ not x | x <- xs ]

and2 :: (Stream Bool, Stream Bool) -> 
Stream 

Bool
and2 (xs, ys) = [ x && y | (x,y) <- zip xs 

ys ]
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Shallow Embedding of a 
Stream Language using Lazy 

Lists

The stream (delay x xs) returns x in 
the first time unit, then the elements 
of xs in order.

delay :: a -> Stream a -> Stream a
delay x xs = x:xs
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Shallow Embedding of a 
Stream Language using Lazy 

Lists
or2 (xs,ys) = inv (and2 (inv xs, inv 
ys))

mux (sel, (xs, ys)) = 
or2 ( and2(sel, ys), and2(inv sel, 

xs) )

always xs = outs
where

outs = and2 (xs, delay True 
outs)
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Shallow Embedding of a 
Stream Language using Lazy 

Lists

Main> mux [ (False, (True, False)), (True, (True, 
False))]

[True, False]

Main> always [True, True, False, True]
[True, True, False, False]
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Shallow Embedding of a 
Stream Language using Lazy 

Lists
Question:

This seems to be so easy. Why aren’t 
the FHDLs we’ve seen implemented 
this way?
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Shallow Embedding of a 
Stream Language using Lazy 

Lists
Question:

This seems to be so easy. Why aren’t 
the FHDLs we’ve seen implemented 
this way?

Answer:
We can only simulate these circuits. 
Try, for instance, writing a function to 
count the number of gates. It is 
impossible, since we have no access 
to the gates as data objects.
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Shallow Embedding of a 
Stream Language using Lazy 

Lists
Question:

This seems to be so easy. Why aren’t 
the FHDLs we’ve seen implemented 
this way?

Answer:
We can only simulate these circuits. 
Try, for instance, writing a function to 
count the number of gates. It is 
impossible, since we have no access 
to the gates as data objects.

Disclaimer: This is only 
partially true, since we can have 
different interpretations of the 
various gates depending on 
what we want to do, and use the 
different interpretations (via 
typeclasses) to perform what we 
want.



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 306

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Deep and Shallow 
Embedding

• Clearly, a deep embedding is needed 
for most applications;

• But shallow embeddings are more 
straightforward to build.

• Solution (?): reflective languages 
allow us to talk about code as data 
objects – a shallow embedding is a 
deep embedding!



  

Functional Languages for Synchronous Hardware Design and 
Verification

Slide 307

Institute of Cybernetics, Tallinn, Estonia 25-29 September 2006

A Deep+Shallow Embedding in 
reFLect

lowC = repeat False
invC xs = map not ^xs
and2C (xs, ys) = [ x && y | (x,y) <- zip ^xs 

^ys ]
delayC x xs = x: ^xs 

low = 〈〈 lowC 〉〉
inv xs = 〈〈 invC xs 〉〉
and2 (xs, ys) = 〈〈 and2C (xs, ys) 〉〉
delay x xs = 〈〈 delayC x xs 〉〉
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A Deep+Shallow Embedding in 
reFLect

lowC = repeat False
invC xs = map not ^xs
and2C (xs, ys) = [ x && y | (x,y) <- zip ^xs 

^ys ]
delayC x xs = x: ^xs 

low = 〈〈 lowC 〉〉
inv xs = 〈〈 invC xs 〉〉
and2 (xs, ys) = 〈〈 and2C (xs, ys) 〉〉
delay x xs = 〈〈 delayC x xs 〉〉

For example:

and2 (low, inv low)
=

〈〈 and2C (〈〈 lowC 〉〉, 〈〈 invC 〈〈 lowC 〉〉 〉〉) 〉〉
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reFLect: Conclusions

• Using a meta-language for embedded 
languages has the advantage of giving a 
cheap deep embedding.

• The use of such languages for functional 
HDLs is a new field of research, and is still 
very much under investigation.

• reFLect is used in the Forte hardware 
verification environment, combining model 
checking, decision algorithms and theorem 
proving. 
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Conclusions

• Clearly there is no one way of 
embedding a functional HDL.

• Various other languages exist: Hydra, 
SAFL, Lucid Synchrone, etc.

• The common main advantages are:
– Access to a meta-language for the HDL;
– Strong abstraction techniques allow 

concise descriptions of regular circuits;
– We can manipulate generated circuits.
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Final Exam (1)
Question 1:

Implement an n-bit multiplier in Lava (using a 
design of your choice). Use SMV and Lava to 
specify and verify that multiplying a 4-bit number 
by an even number always gives an even 
number.

Question 2:
Design a four-bit accumulator which has two 
inputs update (one bit) and value (four-bits), and 
one output sum (four bits). The output starts off 
at 0, and is incremented by value whenever 
update is true.
Using the accumulator, implement a 4-bit 
counter, which starts off outputting zero, and 
increments its output with every clock tick 
(resetting to zero when it overflows). 
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Final Exam (2)

Question 3:
Modify the compiled imperative 
language with emit given in part 4 of 
the course to also count the number 
of emits (using a 4-bit unsigned 
integer) happening at that instant of 
time. 
egat the initial moment, (emit; emit || 

emit)
should output 3.
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Final Exam (3)

Question 3 (continued):
• Add also an accumulator, which 

counts the total number of emits sent 
by the program.

• Finally, make programs terminate 
whenever the program has output 
more than 10 emit signals (ignore 
overflows) .
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Final Exam (4)

Question 4:
Explain and implement in Lava another parallel 
prefix network circuit implementation (different 
than the ones given in the slides). You may find 
the following link useful:

http://www.stanford.edu/class/ee371/handouts/harris03.pdf#search=%22ladner%20fischer%22
 

Verify that with an and gate, your four input 
prefix network is equivalent to the naïve one, and 
the Sklansky one.

http://www.stanford.edu/class/ee371/handouts/harris03.pdf

