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GL asafragment of FOL

Geometric formula: C=>D
C=A1/N...\NAn (n>0, Al atoms)
D=E1V..\VEm (m>0)
Ej=(Exi...xxk)C}] (k=0, CjlikeC)
Implicit universal closure

No function symbols (yet), only constants



Examples

L attices (meet is associative, Horn clause):
XNy=u/\unz=v A\ ynNnz=w => xNw=u
Projective unicity (resolution clause):

ol A plm A g|l A gm=>p=gV |I=m
Diamond property (geometric clause):
a—b/\a—-c=>(Ed) (b—d/\ c—d)

Ingeneral: A1\ ...\ An=>
(Ex) Az N\ .. NAL)V ...V (Ey) Akt ... \ Ak))




Rationale

e Horn clauses: DCG and Prolog
* Resolution: ATP

e Geometriclogic: ATPand ?
— Less skolemization
— Direct proofs
— Constructive logic
— Natural proof theory/objects



Inductive definition of X |y D

* (base) XD if X|D

¢ (step) X,Ci|-D,...,X.Cn}D
) I ————
X |-D
X afinite set of facts (= closed atoms)
D closed geometric digunction (parametersin D must occur in X)

X|Diff D=..V (Ex)C V... and X contains all factsin C[x:=a]
for suitable parameters a

(%) there exists aclosed instance Co=>Do of an axiomin T with
Coincluded in X (X contains all factsin Co) and
Do=...\V(Ex) Ci V... and each Ci afresh instance of Ci (1<i<n)



Examples of derivations

* T={true=>p, p=>q}, 2 |- g

* T={pVq, p=>1,0=>1}, 8 |- T

* T={p, p=>q, g=>Talse}, o |- 1
* T=U(EX)p(X), p(x)=>0q}, 2 |- q

* T={s(ab), s(x,y)=>(E z) s(y,z)},
@ |- (E x y)(s(ax)\s(x,y))

 Forward reasoning (cf. Prolog)!



Metaproperties

Soundness

Completeness

Constructivity

Consearvativity

Semidecidability

Automation (SATCHMOQO!)



Samplesof ATP

e eX|Ist.in
e Or.IN

* Nijm.in



Case studies

o Confluence theory: induction steps in Newman's
Lemma, Hindley-Rosen, Self-lengthening Thm, ..

o Latticetheory: xN(yUz) < (xNy)U(xNz) for all
x,y,z implies (xUy)N(xUz) < xU(yNz) for al x,y,z

* Projective geometry: equivalence of two versions
of Pappus Axiom (1 minute, 1M B proof)



Semantics and compl eteness

o Geometric logic: no proof by contradiction
(=EM, TND,AV~A,~~A =>A)
« Digression: constructivism in mathematics
— pV gstronger than ~(~p \ ~q)
— (E x) p(x) stronger than ~(A X) ~p(X)
— more strict on ontology of objects
— EM only in specific cases, f.e., for integers
(A X)(x=0V/ x+£0), but not for reas



Example of non-constructivism

e Dothereexist irrationa real numbers x and
y such that X’ is rational ?

« Greek constructivists: V2 isirrational

+ Non-constructivist: take X = y = V2. 1f Xis
rational, then I’ mdone If X/ |s not rational,
then I'm also done: (X))’ =xY =x*=2is
rational. Next problem, please

e Constructivist: what do you mean?



Tarskian semantics

Truth values from a complete Boolean algebra,
without loss of generality ({ 0,1}, max, min, not(X)

=1-x), [IpVall= max([|p[] [lall) etc.

Thus pVqgistrueiff pistrueor gistrue (Girard:
“what adiscovery!”)

Sound but not complete for constructive logic, not
sound for some forms of constructive mathematics

Constructive logic is more expressive (\/,E) and
regquires a more refined semantics ...



Semantics for constructivism (digr.)

Algebraic: complete Heyting algebras (plural!)
Topological: open sets as truth values

Kripke semantics. tree-structured Tarski models
(graph-stuctured for modal logic), creative subject

Curry-Howard interpretation: [|o[] is the set of
oroofs of ¢

Kleene, Beth, Joyal, ...
Different aspects, counter models, metatheory, ...




Semantics for GL

Tarskian (non-constructive compl eteness)

Beth-Joyal-Coquand (fully constructive,
extra information, but highly non-trivial)

Curry-Howard (for proof objects)
Other semantics unexplored ...



Completeness wrt Tarskian models

e Given D truein al modelsof T, how do you
find aproof ? Try them all !

* Breadth-first derivability on the blackboard
* Herbrand models along the branches
 KOnig's Lemmato get the treefinite
* Finitetree => breadth-first proof => |- proof




