A depth-first implementation of Geometric Logic in Prolog

(extended overview)

Marc Bezem
University of Bergen

GL as a fragment of FOL

- Geometric formula: $\mathrm{C}=>\mathrm{D}$
- $\mathrm{C}=\mathrm{A}_{1} \wedge \ldots \wedge \mathrm{An} \quad(\mathrm{n} \geq 0, \mathrm{Ai}$ atoms)
- $\mathrm{D}=\mathrm{E}_{1} \vee \ldots \vee \mathrm{Em} \quad(\mathrm{m} \geq 0)$
- $\mathrm{Ej}=\left(\mathrm{Ex} \mathrm{x}_{1} \ldots \mathrm{xk}\right) \mathrm{Cj} \quad(\mathrm{k} \geq 0, \mathrm{Cj}$ like C$)$
- Implicit universal closure
- No function symbols (yet), only constants

Examples

- Lattices (meet is associative, Horn clause):

$$
\mathrm{x} \cap \mathrm{y}=\mathrm{u} \wedge \mathrm{u} \cap_{\mathrm{z}}=\mathrm{v} \wedge \mathrm{y} \cap_{\mathrm{z}}=\mathrm{w}=>\mathrm{x} \cap \mathrm{w}=\mathrm{u}
$$

- Projective unicity (resolution clause): $\mathrm{p}|1 \wedge \mathrm{p}| \mathrm{m} \wedge \mathrm{q}|\mathrm{l} \wedge \mathrm{q}| \mathrm{m}=>\mathrm{p}=\mathrm{q} \vee \mathrm{l}=\mathrm{m}$
- Diamond property (geometric clause): $a \rightarrow b \wedge a \rightarrow c=>(E d)(b \rightarrow d \wedge c \rightarrow d)$
- In general: Ai $\wedge \ldots \wedge$ An $=>$ $\left((\mathrm{E} \mathbf{x}) \mathrm{A}_{11} \wedge \ldots \wedge \mathrm{~A}_{1 i}\right) \vee \ldots \vee\left((\mathrm{E} \mathbf{y}) \mathrm{A}_{k 1} \wedge \ldots \wedge \mathrm{~A}_{k j}\right)$

Rationale

- Horn clauses: DCG and Prolog
- Resolution: ATP
- Geometric logic: ATP and ?
- Less skolemization
- Direct proofs
- Constructive logic
- Natural proof theory/objects

Inductive definition of $X \vdash_{(T)} D$

- (base)

$$
\mathrm{X} \mid-\mathrm{D} \text { if } \mathrm{X} \downarrow \mathrm{D}
$$

- (step) \quad X, $\underline{C_{1}}|-\mathrm{D}, \ldots, \mathrm{X}, \underline{\mathrm{Cn}}|-\mathrm{D}$
(\%)
$\mathrm{X} \mid-\mathrm{D}$
X a finite set of facts (= closed atoms)
D closed geometric disjunction (parameters in D must occur in X) $\mathrm{X} \downarrow \mathrm{D}$ iff $\mathrm{D}=\ldots \vee(\mathrm{E} \mathbf{x}) \mathrm{C} \vee \ldots$ and X contains all facts in $\mathrm{C}[\mathbf{x}:=\mathbf{a}]$ for suitable parameters a
(\%) there exists a closed instance $\mathrm{C} 0=>\mathrm{D} 0$ of an axiom in T with C 0 included in X (X contains all facts in C 0) and $\mathrm{D} 0=\ldots \mathrm{V}(\mathrm{E} \mathbf{x}) \mathrm{Ci} \vee \ldots$ and each $\underline{\mathrm{Ci}}$ a fresh instance of $\mathrm{Ci}(1 \leq \mathrm{i} \leq \mathrm{n})$

Examples of derivations

- $T=\{$ true $=>p, p=>q\}, \varnothing \mid-q$
- $\mathrm{T}=\{\mathrm{p} \vee \mathrm{q}, \mathrm{p}=>\mathrm{r}, \mathrm{q}=>\mathrm{r}\}, \varnothing \mid-\mathrm{r}$
- $T=\{p, p=>q, q=>f a l s e\}, \varnothing \mid-r$
- $\mathrm{T}=\{(\mathrm{E} x) \mathrm{p}(\mathrm{x}), \mathrm{p}(\mathrm{x})=>\mathrm{q}\}, \varnothing \mid-\mathrm{q}$
- $\mathrm{T}=\{\mathrm{s}(\mathrm{a}, \mathrm{b}), \mathrm{s}(\mathrm{x}, \mathrm{y})=>(\mathrm{E} \mathrm{z}) \mathrm{s}(\mathrm{y}, \mathrm{z})\}$,

$$
\varnothing \mid-(\mathrm{Ex} y)(\mathrm{s}(\mathrm{a}, \mathrm{x}) / \mathrm{s}(\mathrm{x}, \mathrm{y}))
$$

- Forward reasoning (cf. Prolog)!

Metaproperties

- Soundness
- Completeness
- Constructivity
- Conservativity
- Semidecidability
- Automation
(SATCHMO!)

Samples of ATP

- exist.in
- or.in
- nijm.in

Case studies

- Confluence theory: induction steps in Newman's Lemma, Hindley-Rosen, Self-lengthening Thm, ..
- Lattice theory: $\mathrm{x} \cap(\mathrm{y} U \mathrm{z}) \leq(\mathrm{x} \cap \mathrm{y}) \mathrm{U}(\mathrm{x} \cap \mathrm{z})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ implies $(\mathrm{xUy}) \cap(\mathrm{xUz}) \leq \mathrm{xU}(\mathrm{y} \cap \mathrm{z})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$
- Projective geometry: equivalence of two versions of Pappus' Axiom (1 minute, 1MB proof)

Semantics and completeness

- Geometric logic: no proof by contradiction (= EM, TND, A $\vee \sim \mathrm{A}, \sim \sim \mathrm{A}=>\mathrm{A}$)
- Digression: constructivism in mathematics
- $\mathrm{p} \vee \mathrm{q}$ stronger than $\sim(\sim \mathrm{p} \wedge \sim q)$
$-(E x) p(x)$ stronger than $\sim(A x) \sim p(x)$
- more strict on ontology of objects
- EM only in specific cases, f.e., for integers
(A $x)(x=0 \vee x \neq 0)$, but not for reals

Example of non-constructivism

- Do there exist irrational real numbers x and y such that x^{y} is rational ?
- Greek constructivists: $\sqrt{ } 2$ is irrational
- Non-constructivist: take $x=y=\sqrt{ } 2$. If x^{y} is rational, then I'm done. If x^{y} is not rational, then I'm also done: $\left(x^{y}\right)^{y}=x^{y \cdot y}=x^{2}=2$ is rational. Next problem, please.
- Constructivist: what do you mean?

Tarskian semantics

- Truth values from a complete Boolean algebra, without loss of generality $(\{0,1\}, \max , \min , \operatorname{not}(x)$ $=1-x),[|p \vee q|]=\max ([|p|][|q|])$ etc.
- Thus $\mathrm{p} \vee \mathrm{q}$ is true iff p is true or q is true (Girard: "what a discovery!")
- Sound but not complete for constructive logic, not sound for some forms of constructive mathematics
- Constructive logic is more expressive (V,E) and requires a more refined semantics ...

Semantics for constructivism (digr.)

- Algebraic: complete Heyting algebras (plural!)
- Topological: open sets as truth values
- Kripke semantics: tree-structured Tarski models (graph-stuctured for modal logic), creative subject
- Curry-Howard interpretation: $[|\varphi|]$ is the set of proofs of φ
- Kleene, Beth, Joyal, ...
- Different aspects, counter models, metatheory, ...

Semantics for GL

- Tarskian (non-constructive completeness)
- Beth-Joyal-Coquand (fully constructive, extra information, but highly non-trivial)
- Curry-Howard (for proof objects)
- Other semantics unexplored ...

Completeness wrt Tarskian models

- Given D true in all models of T, how do you find a proof? Try them all!
- Breadth-first derivability on the blackboard
- Herbrand models along the branches
- König's Lemma to get the tree finite
- Finite tree => breadth-first proof $=>\mid$ - proof

