Functional Quantum Programming

Thorsten Altenkirch
University of Nottingham
based on joint work with Jonathan Grattage
supported by EPSRC grant GR/S30818/01

Simulation of quantum systems is expensive:
 PSPACE complexity for polynomial circuits.

- Simulation of quantum systems is expensive:
 PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?

- Simulation of quantum systems is expensive:
 PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.

- Simulation of quantum systems is expensive:
 PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $O(\sqrt{n})$

- Simulation of quantum systems is expensive:
 PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $O(\sqrt{n})$
- Can we build a quantum computer?

- Simulation of quantum systems is expensive:
 PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $O(\sqrt{n})$
- Can we build a quantum computer?
 yes We can run quantum algorithms.

- Simulation of quantum systems is expensive:
 PSPACE complexity for polynomial circuits.
- Feynman: Can we exploit this fact to perform computations more efficiently?
- Shor: Factorisation in quantum polynomial time.
- Grover: Blind search in $O(\sqrt{n})$
- Can we build a quantum computer?
 - yes We can run quantum algorithms.
 - no Nature is classical after all!

 Quantum algorithms are usually presented using the circuit model.

- Quantum algorithms are usually presented using the circuit model.
- Nielsen and Chuang, p.7, Coming up with good quantum algorithms is hard.

- Quantum algorithms are usually presented using the circuit model.
- Nielsen and Chuang, p.7, Coming up with good quantum algorithms is hard.
- Richard Josza, QPL 2004: We need to develop quantum thinking!

QML: a functional language for quantum computations on finite types.

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by semantics

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by semantics
- Analogy with classical computation
 - FCC Finite classical computations
 - FQC Finite quantum computations

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by semantics
- Analogy with classical computation
 - FCC Finite classical computations
 - FQC Finite quantum computations
- Important issue: control of decoherence

- QML: a functional language for quantum computations on finite types.
- Quantum control and quantum data.
- Design guided by semantics
- Analogy with classical computation
 - FCC Finite classical computations
 - FQC Finite quantum computations
- Important issue: control of decoherence
- Compiler under construction (Jonathan)

Example: Hadamard operation

Example: Hadamard operation

Matrix

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Example: Hadamard operation

Matrix

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

```
had: Q_2 \multimap Q_2
had: x = \mathbf{if}^{\circ} x
\mathbf{then} \{qfalse \mid (-1) \ qtrue\}
\mathbf{else} \{qfalse \mid qtrue\}
```

Deutsch algorithm

```
deutsch: 2 \multimap 2 \multimap Q_2
deutsch \ a \ b =
  let (x, y) = \mathbf{if}^{\circ} \{ \text{qfalse} \mid \text{qtrue} \}
                    then (qtrue, if a
                                      then \{qfalse \mid (-1) qtrue\}
                                      else \{(-1) qfalse | qtrue \}
                    else (qfalse, if b
                                      then \{(-1) \text{ qfalse } | \text{ qtrue} \}
                                      else {qfalse | (-1) qtrue}
   in H x
```

Overview

- 1. Finite classical computation
- 2. Finite quantum computation
- 3. QML basics
- 4. Compiling QML
- 5. Conclusions and further work

1. Semantics

- Finite classical computation
- 2. Finite quantum computation
- 3. QML basics
- 4. Compiling QML
- 5. Conclusions and further work

Start with classical computations on finite types.

- Start with classical computations on finite types.
- Quantum mechanics is time-reversible...

- Start with classical computations on finite types.
- Quantum mechanics is time-reversible...
- hence quantum computation is based on reversible operations.

- Start with classical computations on finite types.
- Quantum mechanics is time-reversible...
- hence quantum computation is based on reversible operations.
- However: Newtonian mechanics, Maxwellian electrodynamics are also time-reversible...

- Start with classical computations on finite types.
- Quantum mechanics is time-reversible...
- hence quantum computation is based on reversible operations.
- However: Newtonian mechanics, Maxwellian electrodynamics are also time-reversible...
- ... hence classical computation should be based on reversible operations.

Given finite sets A (input) and B (output):

Given finite sets A (input) and B (output):



 \bullet a finite set of initial heaps H,

Given finite sets A (input) and B (output):

- \bullet a finite set of initial heaps H,
- an initial heap $h \in H$,

Classical computation (FCC)

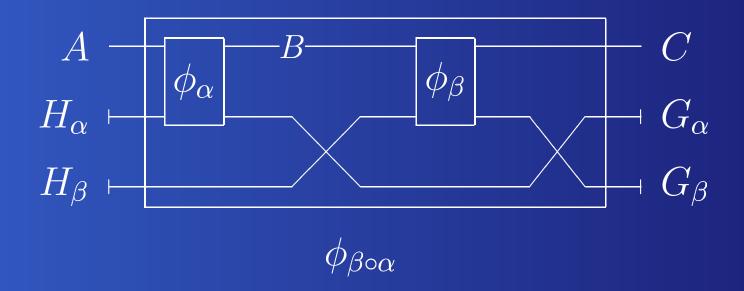
- \bullet a finite set of initial heaps H,
- ullet an initial heap $h \in H$,
- \bullet a finite set of garbage states G,

Classical computation (FCC)

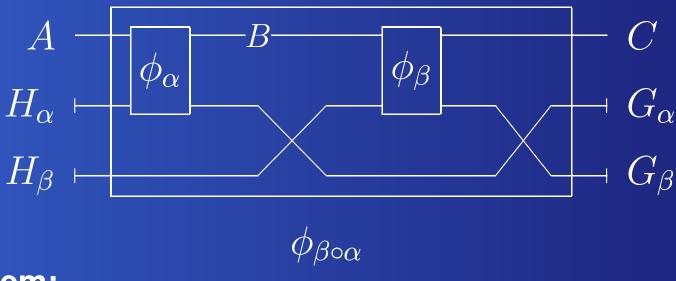
- \bullet a finite set of initial heaps H,
- an initial heap $h \in H$,
- \bullet a finite set of garbage states G,
- a bijection $\phi \in A \times H \simeq B \times G$,

Composing classical computations

Composing classical computations



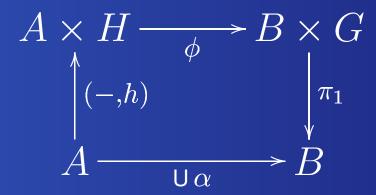
Composing classical computations



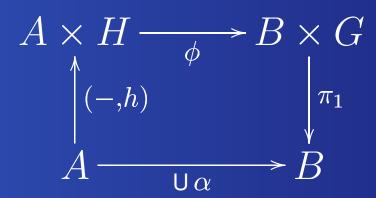
Theorem:

$$\mathbf{U}\left(\beta\circ\alpha\right)=\left(\mathbf{U}\,\beta\right)\circ\left(\mathbf{U}\,\alpha\right)$$

• A classical computation $\alpha = (H, h, G, \phi)$ induces a function $U\alpha \in A \rightarrow B$ by



• A classical computation $\alpha = (H, h, G, \phi)$ induces a function $U\alpha \in A \rightarrow B$ by



 We say that two computations are extensionally equivalent, if they give rise to the same function.

Theorem:

$$U(\beta \circ \alpha) = (U\beta) \circ (U\alpha)$$

Theorem:

$$\mathsf{U}\left(\beta \circ \alpha\right) = (\mathsf{U}\,\beta) \circ (\mathsf{U}\,\alpha)$$

 Hence, classical computations upto extensional equality give rise to the category FCC.

Theorem:

$$\mathsf{U}\left(\beta \circ \alpha\right) = (\mathsf{U}\,\beta) \circ (\mathsf{U}\,\alpha)$$

- Hence, classical computations upto extensional equality give rise to the category FCC.
- **Theorem:** Any function $f \in A \rightarrow B$ on finite sets A, B can be realized by a computation.

Theorem:

$$\mathsf{U}\left(\beta \circ \alpha\right) = (\mathsf{U}\,\beta) \circ (\mathsf{U}\,\alpha)$$

- Hence, classical computations upto extensional equality give rise to the category FCC.
- **Theorem:** Any function $f \in A \rightarrow B$ on finite sets A, B can be realized by a computation.
- Translation for Category Theoreticians:
 U is full and faithful.

Example π_1 :

function

$$\pi_1 \in (2,2) \to 2$$

$$\pi_1 (x,y) = x$$

Example π_1 :

function

$$\pi_1 \in (2,2) \to 2$$

$$\pi_1 (x,y) = x$$

computation

Example δ :

function

$$\delta \in 2 \to (2,2)$$
$$\delta x = (x,x)$$

Example δ :

function

$$\delta \in 2 \to (2,2)$$

$$\delta x = (x,x)$$

computation

$$x:2$$
 $x:2$ $0:2$ $x:2$

 ϕ_{δ}

$$\phi_{\delta} \in (2,2) \to (2,2)$$
 $\phi_{\delta} (0,x) = (0,x)$
 $\phi_{\delta} (1,x) = (1, \neg x)$

2. Finite quantum computation

- 1. Finite classical computation
- 2. Finite quantum computation
- 3. QML basics
- 4. Compiling QML
- 5. Conclusions and further work

Given a finite set A (the base) $\mathbb{C}^A = A \to \mathbb{C}$ is a **Hilbert space**.

Given a finite set A (the base) $\mathbb{C}^A = A \to \mathbb{C}$ is a Hilbert space. Linear operators:

 $f \in A \to B \to \mathbb{C}$ induces $\hat{f} \in \mathbb{C}^A \to \mathbb{C}^B$. we write $f \in A \multimap B$

Given a finite set A (the base) $\mathbb{C}^A = A \to \mathbb{C}$ is a **Hilbert space**.

Linear operators:

 $f \in A \to B \to \mathbb{C}$ induces $\hat{f} \in \mathbb{C}^A \to \mathbb{C}^B$. we write $f \in A \multimap B$

Norm of a vector:

$$||v|| = \sum_{a \in A} (va)^*(va) \in \mathbb{R}^+,$$

Given a finite set A (the base)

 $\mathbb{C}^A = A \to \mathbb{C}$ is a Hilbert space.

Linear operators:

 $f\in A o B o \mathbb{C}$ induces $\hat{f}\in \mathbb{C}^A o \mathbb{C}^B$.

we write $f \in A \multimap B$

Norm of a vector:

$$||v|| = \sum_{a \in A} (va)^* (va) \in \mathbb{R}^+,$$

Unitary operators:

A unitary operator $\phi \in A \multimap_{\text{unitary}} B$ is a linear isomorphism that preserves the norm.

Basics of quantum computation

Basics of quantum computation

• A pure state over A is a vector $v \in \mathbb{C}^A$ with unit norm ||v|| = 1.

Basics of quantum computation

- A pure state over A is a vector $v \in \mathbb{C}^A$ with unit norm ||v|| = 1.
- A reversible computation is given by a unitary operator $\phi \in A \multimap_{\text{unitary}} B$.



Given finite sets A (input) and B (output):

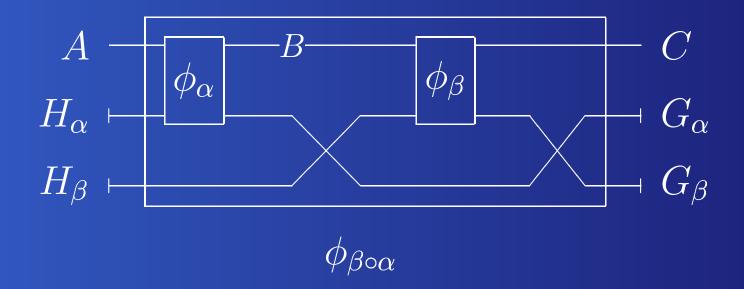
a finite set H, the base of the space of initial heaps,

- a finite set H, the base of the space of initial heaps,
- a heap initialisation vector $h \in \mathbb{C}^H$,

- a finite set H, the base of the space of initial heaps,
- lacksquare a heap initialisation vector $h\in\mathbb{C}^H$,
- a finite set G, the base of the space of garbage states,

- a finite set H, the base of the space of initial heaps,
- lacksquare a heap initialisation vector $h\in\mathbb{C}^H$,
- a finite set G, the base of the space of garbage states,
- ullet a unitary operator $\phi \in A \otimes H \multimap_{\mathsf{unitary}} B \otimes G$.

Composing quantum computations



Semantics of quantum computations..

... is a bit more subtle.

Semantics of quantum computations..

- ... is a bit more subtle.
- There is no (sensible) operator on vector spaces, replacing $\pi_1 \in B \times G \to B$.

Semantics of quantum computations..

- ... is a bit more subtle.
- There is no (sensible) operator on vector spaces, replacing $\pi_1 \in B \times G \to B$.
- Indeed: Forgetting part of a pure state results in a mixed state.

• Mixed states can be represented by *density* $matrizes \rho \in A \multimap A$.

- Mixed states can be represented by *density* $matrizes \rho \in A \multimap A$.
- Eigenvalues represent probabilities

$$\rho \vec{v} = \lambda \vec{v}$$

System is in state \vec{v} with prob. λ

- Mixed states can be represented by *density* $matrizes \rho \in A \multimap A$.
- Eigenvalues represent probabilities

$$\rho \vec{v} = \lambda \vec{v}$$

System is in state \vec{v} with prob. λ

Eigenvalues have to be positive and their sum (the trace) is 1.

Example: forgetting a qbit

Example: forgetting a qbit

EPR is represented by

$$\rho \in \mathcal{Q}_2 \otimes \mathcal{Q}_2 \multimap \mathcal{Q}_2 \otimes \mathcal{Q}_2$$
:

$$\begin{pmatrix}
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2}
\end{pmatrix}$$

Example: forgetting a qbit

EPR is represented by

$$ho \in \mathcal{Q}_2 \otimes \mathcal{Q}_2 \multimap \mathcal{Q}_2 \otimes \mathcal{Q}_2$$
:

$$\begin{pmatrix}
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2}
\end{pmatrix}$$

•
$$\rho\left(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle\right) = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

Example: forgetting a qbit ...

• After measuring one qbit we obtain $\rho' \in \mathcal{Q}_2 \multimap \mathcal{Q}_2$:

$$\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

Example: forgetting a qbit

• After measuring one qbit we obtain $\rho' \in \mathcal{Q}_2 \multimap \mathcal{Q}_2$:

$$\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

$$\rho' |0\rangle = \frac{1}{2}|0\rangle$$

$$\rho' |1\rangle = \frac{1}{2}|1\rangle$$

Superoperators

Superoperators

- Morphisms on density matrizes are called superoperators, these are linear maps, which are
 - completely positive, and
 - trace preserving

Superoperators

- Morphisms on density matrizes are called superoperators, these are linear maps, which are
 - completely positive, and
 - trace preserving
- Every unitary operator ϕ gives rise to a superoperator $\widehat{\phi}$.

Superoperators...

There is an operator

$$\operatorname{tr}_{B,G} \in B \otimes G \multimap_{\operatorname{super}} B$$

called partial trace.

Superoperators...

There is an operator

$$\operatorname{tr}_{B,G} \in B \otimes G \multimap_{\operatorname{super}} B$$

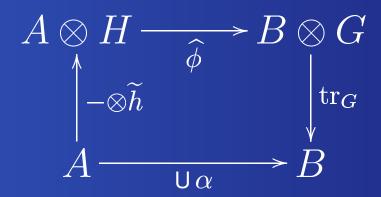
called partial trace.

• E.g. $\operatorname{tr}_{\mathcal{Q}_2,\mathcal{Q}_2} \in \mathcal{Q}_2 \otimes \mathcal{Q}_2 - \circ_{\operatorname{super}} \mathcal{Q}_2$ is represented by a 16×4 matrix.

Semantics

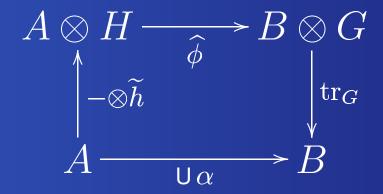
Semantics

Every quantum computation α gives rise to a superoperator $\cup \alpha \in A \multimap_{\text{super}} B$



Semantics

Every quantum computation α gives rise to a superoperator U $\alpha \in A \multimap_{\text{super}} B$



Theorem: Every superoperator $F \in A \longrightarrow_{\text{super}} B$ (on finite Hilbert spaces) comes from a quantum computation.

classical (FCC)	quantum (FQC)

classical (FCC)	quantum (FQC)
finite sets	

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert space

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert space
cartesian product (\times)	

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert space
cartesian product (×)	tensor product (⊗)

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert space
cartesian product (\times)	tensor product (⊗)
bijections	

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert space
cartesian product (×)	tensor product (⊗)
bijections	unitary operators

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert space
cartesian product (×)	tensor product (⊗)
bijections	unitary operators
functions	

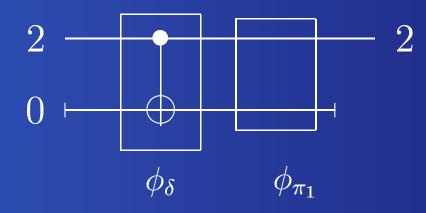
quantum (FQC)
finite dimensional Hilbert space
tensor product (⊗)
unitary operators
superoperators

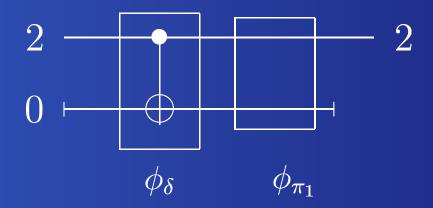
classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
cartesian product (×)	tensor product (⊗)
bijections	unitary operators
functions	superoperators
injective functions (\mathbf{FCC}°)	

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
cartesian product (\times)	tensor product (⊗)
bijections	unitary operators
functions	superoperators
injective functions (\mathbf{FCC}°)	isometries (\mathbf{FQC}°)

classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
cartesian product (×)	tensor product (⊗)
bijections	unitary operators
functions	superoperators
injective functions (\mathbf{FCC}°)	isometries (\mathbf{FQC}°)
projections	

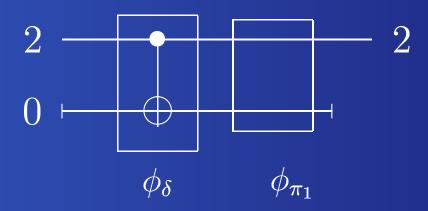
classical (FCC)	quantum (FQC)
finite sets	finite dimensional Hilbert spaces
cartesian product (×)	tensor product (⊗)
bijections	unitary operators
functions	superoperators
injective functions (\mathbf{FCC}°)	isometries (\mathbf{FQC}°)
projections	partial trace





Classically

$$\pi_1 \circ \delta = I$$

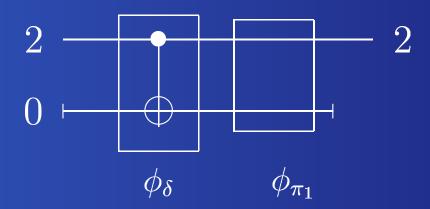


Classically

$$\pi_1 \circ \delta = I$$

Quantum

Decoherence



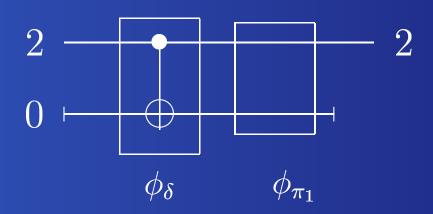
Classically

$$\pi_1 \circ \delta = I$$

Quantum

input:
$$\{\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |0\rangle \}$$

Decoherence



Classically

$$\pi_1 \circ \delta = I$$

Quantum

input:
$$\{\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |0\rangle \}$$

output:
$$\frac{1}{2}\{|0\rangle\} + \frac{1}{2}\{|1\rangle\}$$

- 1. Finite classical computation
- 2. Finite quantum computation
- QML basics
- 4. Compiling QML
- 5. Conclusions and further work

 QML is a first order functional languages, i.e. programs are well-typed expressions.

- QML is a first order functional languages, i.e. programs are well-typed expressions.
- QML types are $1, \sigma \otimes \tau, \mathcal{Q}_2$

- QML is a first order functional languages, i.e. programs are well-typed expressions.
- QML types are $1, \sigma \otimes \tau, \mathcal{Q}_2$
- Qbytes

$$\mathcal{Q}_2^8=\mathcal{Q}_2\otimes\mathcal{Q}_2\otimes\mathcal{Q}_2\otimes\mathcal{Q}_2\otimes\mathcal{Q}_2\otimes\mathcal{Q}_2\otimes\mathcal{Q}_2\otimes\mathcal{Q}_2$$
 .

 A QML program is an expression in a context of typed variables, e.g.

```
qnot: Q_2 \multimap Q_2
qnot x = \mathbf{if}^\circ x
\mathbf{then} \text{ qfalse}
\mathbf{else} \text{ qtrue}
```

A QML program is an expression in a context of typed variables, e.g.

$$qnot: Q_2 \multimap Q_2$$
 $qnot x = \mathbf{if}^\circ x$
 $\mathbf{then} \text{ qfalse}$
 $\mathbf{else} \text{ qtrue}$

 We can compile QML programs into quantum computations (i.e. quantum circuits).

Forgetting variables has to be explicit.

Forgetting variables has to be explicit. E.g.

```
qfst: Q_2 \otimes Q_2 \multimap Q_2 qfst(x,y) = x is illegal,
```

Forgetting variables has to be explicit. E.g.

```
qfst: Q_2 \otimes Q_2 \multimap Q_2 qfst(x,y) = x is illegal, but qfst: Q_2 \otimes Q_2 \multimap Q_2 qfst(x,y) = x \uparrow \{y\} is ok.
```

Tallinn Feb 06 – p.33/4

There are two different if-then-else constructs.

There are two different if-then-else constructs.

$$id: Q_2 \multimap Q_2$$
 $id: x = \mathbf{if}^\circ x$
then qtrue
else qfalse
is just the identity,

There are two different if-then-else constructs.

$$id: Q_2 \multimap Q_2$$
 $id: x = \mathbf{if}^\circ x$
 $then qtrue$
 $else qfalse$
 $is just the identity, but$
 $meas: Q_2 \multimap Q_2$
 $meas: x = \mathbf{if} x$
 $then qtrue$
 $else qfalse$
 $introduces a measurement (end hence decoherence).$

Using if° is only allowed, if the branches are orthogonal, i.e. observable different.

Using if° is only allowed, if the branches are orthogonal, i.e. observable different.

```
cswap: Q_2 \otimes Q_2 \multimap Q_2 \multimap Q_2 \otimes Q_2 cswap(x,y) c = \mathbf{if}^{\circ} c then (y,x) else (x,y) is illegal,
```

Using if° is only allowed, if the branches are orthogonal, i.e. observable different.

```
cswap: Q_2 \otimes Q_2 \multimap Q_2 \multimap Q_2 \otimes Q_2
      cswap(x,y) c = \mathbf{if}^{\circ} c
         then (y, x)
         else (x,y)
is illegal, but
      cswap: Q_2 \otimes Q_2 \multimap Q_2 \multimap Q_2 \otimes (Q_2 \otimes Q_2)
      cswap(x,y) c = \mathbf{if}^{\circ} c
         then (qtrue, (y, x))
         else (qfalse, (x, y))
is ok.
```

We can introduce superpositions, e.g.

```
had: Q_2 \multimap Q_2
had: x = \mathbf{if}^\circ x
\mathbf{then} \{ \text{qfalse} \mid (-1) \text{ qtrue} \}
\mathbf{else} \{ \text{qfalse} \mid \text{qtrue} \}
```

We can introduce superpositions, e.g.

```
had: Q_2 \multimap Q_2
had: x = \mathbf{if}^\circ x
\mathbf{then} \{qfalse \mid (-1) \ qtrue\}
\mathbf{else} \{qfalse \mid qtrue\}
```

However, the terms in the superposition have to be orthogonal.

4. Compiling QML

- 1. Finite classical computation
- 2. Finite quantum computation
- 3. QML basics
- Compiling QML
- 5. Conclusions and further work

Compilation

Compilation

 Correct QML programs are defined by typing rules, e.g.

$$\begin{array}{c} \Gamma \vdash t : \sigma \otimes \tau \\ \Delta, x : \sigma, y : \tau \vdash u : C \\ \hline \Gamma \otimes \Delta \vdash \mathsf{let}\ (x,y) = t\ \mathsf{in}\ u : C \end{array} \otimes \mathsf{elim}$$

Compilation

 Correct QML programs are defined by typing rules, e.g.

$$\begin{array}{c} \Gamma \vdash t : \sigma \otimes \tau \\ \Delta, x : \sigma, y : \tau \vdash u : C \\ \hline \Gamma \otimes \Delta \vdash \mathsf{let}\ (x,y) = t\ \mathsf{in}\ u : C \end{array} \otimes \mathsf{elim}$$

For each rule we can construct a quantum computation, i.e. a circuit.

⊗-elim

$$\Gamma \vdash t : \sigma \otimes \tau$$

$$\Delta, x : \sigma, y : \tau \vdash u : C$$

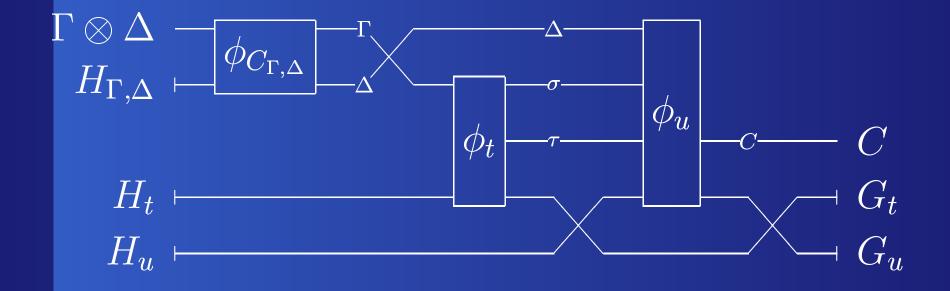
$$\Gamma \otimes \Delta \vdash \mathsf{let}\ (x, y) = t \ \mathsf{in}\ u : C \otimes \mathsf{elim}$$

⊗-elim

$$\Gamma \vdash t : \sigma \otimes \tau$$

$$\Delta, x : \sigma, y : \tau \vdash u : C$$

$$\Gamma \otimes \Delta \vdash \mathsf{let}\ (x, y) = t \ \mathsf{in}\ u : C \otimes \mathsf{elim}$$



 A compiler is currently being implemented by my student Jonathan Grattage (in Haskell).

- A compiler is currently being implemented by my student Jonathan Grattage (in Haskell).
- The output of the compiler are quantum circuits which can be simulated by a quantum circuit simulator.

- A compiler is currently being implemented by my student Jonathan Grattage (in Haskell).
- The output of the compiler are quantum circuits which can be simulated by a quantum circuit simulator.
- Amr Sabry and Juliana Vizotti (Indiana University) embarked on an independent implementation of QML based on our paper.

- 1. Semantics of finite classical and quantum computation
- 2. QML basics
- 3. Compiling QML
- 4. Conclusions and further work

Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.

- Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.
- Our analysis also highlights the differences between classical and quantum programming.

- Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.
- Our analysis also highlights the differences between classical and quantum programming.
- We have developed an algebra of quantum programs which for pure programs is complete wrt the semantics and a normalisation algorithm.

- Our semantic ideas proved useful when designing a quantum programming language, analogous concepts are modelled by the same syntactic constructs.
- Our analysis also highlights the differences between classical and quantum programming.
- We have developed an algebra of quantum programs
 which for pure programs is complete wrt the semantics
 and a normalisation algorithm.
- Quantum programming introduces the problem of control of decoherence, which we address by making forgetting variables explicit and by having different if-then-else constructs.

We have to analyze more quantum programs to evaluate the practical usefulness of our approach.

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- We should be able to extend our algebra and normalisation to the full language (including measurements).

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- We should be able to extend our algebra and normalisation to the full language (including measurements).
- Are we able to come up with completely new algorithms using QML?

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- We should be able to extend our algebra and normalisation to the full language (including measurements).
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- We should be able to extend our algebra and normalisation to the full language (including measurements).
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?
- How to deal with infinite datatypes?

- We have to analyze more quantum programs to evaluate the practical usefulness of our approach.
- We should be able to extend our algebra and normalisation to the full language (including measurements).
- Are we able to come up with completely new algorithms using QML?
- How to deal with higher order programs?
- How to deal with infinite datatypes?
- Investigate the similarities/differences between FCC and FQC from a categorical point of view.

The end

Thank you for your attention.

```
Papers, available from
//www.cs.nott.ac.uk/~txa/publ/
```

A functional quantum programming language LICS 2005 with J.Grattage

Structuring Quantum Effects: Superoperators as Arrows
MFCS 2006
with J.Vizzotto and A.Sabry

An Algebra of Pure Quantum Programming QPL 2005 with J.Grattage, J.Vizzotto and A.Sabry