
Semantics with Applications:

Model-Based

Program Analysis

c©Hanne Riis Nielson c©Flemming Nielson

Computer Science Department, Aarhus University, Denmark

(October 1996)

Contents

1 Introduction 1

1.1 Side-stepping the Halting Problem 2

1.2 Classification of Program Analyses 4

1.3 Ccpo’s and Complete Lattices 5

2 Detection of Signs Analysis 9

2.1 Detection of Signs Analysis 9

2.2 Existence of the Analysis . 21

2.3 Safety of the Analysis . 26

2.4 Application of the Analysis 32

3 Implementation of Analyses 35

3.1 The general and monotone frameworks 37

3.2 The completely additive framework 39

3.3 Iterative program schemes 42

4 More Program Analyses 47

4.1 The Framework . 47

4.2 Dependency Analysis . 53

i

ii Contents

Preface

These notes on model-based program analysis have been used for teach-
ing semantics-based program analysis to third year students familiar with
denotational semantics as covered in Chapter 4 of

H.R.Nielson, F.Nielson:
Semantics with Applications: A Formal Introduction,
Wiley, 1992. [ISBN 0 471 92980 8]

(referred to as [NN] in the sequel). Indeed, these notes may be used as an
alternative to the treatment of static program analysis in Chapter 5 of [NN].
The present notes go deeper into the ideas behind program analysis: how to
define an analysis, how to prove it correct, how to implement it, and how to
use its results for improving the program at hand. Furthermore, the main
part of the development focuses on the intuitively understandable analysis
of “detection of signs” and only develops the somewhat more demanding
analysis of [NN, Chapter 5] towards the end.

For a short course (based on Sections 1.2, 1.3, 4.1, 4.2, and 4.3 of [NN]) we
recommend covering just Chapters 1 and 2 of this note.

Aarhus, October 1996 H.R.Nielson & F.Nielson

iii

iv Contents

Chapter 1

Introduction

The availability of powerful tools is crucial for the design, implementation
and maintenance of large programs. Advanced programming environments
provide many such tools: syntax directed editors, optimizing compilers and
debuggers in addition to tools for transforming programs and for estimating
their performance. Program analyses play a major role in many of these
tools: they are able to give useful information about the dynamic behaviour
of programs without actually running them. Below we give a few examples.

In a syntax directed editor we may meet warnings as “variable x is used
before it is initialised”, or “the part of the program starting at line 1298 and
ending at line 1354 will never be entered”, or “there is a reference outside
the bounds of array a”. Such information is the result of various program
analyses. The first warning is the result of a definition-use analysis: at
each point of a program where the value of a variable is used, the analysis
will determine those points where the variable might have obtained its
present value; if there are none then clearly the variable is uninitialised.
The second warning might be the result of a constant propagation analysis:
at each point of a program where an expression is evaluated the analysis will
attempt to deduce that the expression always evaluates to a constant. So
if the expression is the test of a conditional we might deduce that only one
of the branches can ever be taken. The third warning could be the result
of an interval analysis: instead of determining a possible constant value
we determine upper and lower bounds of the value that the expression
may evaluate to. So if the expression is an index into an array, then a
comparison with the bounds of the array will suffice for issuing the third
warning above.

Traditionally, program analyses have been developed for optimizing compil-
ers. They are used at all levels in the compiler: some optimizations apply

1

2 Introduction

to the source program, others to the various intermediate representations
used inside the compiler and finally there are optimizations that exploit
the architecture of the target machine and therefore directly improve the
target code. The improvements facilitated by these analyses, and the as-
sociated transformations, may result in dramatic reductions of the running
time. One example is the available expressions analysis: an expression E is
available at a program point p if E has been computed previously and the
values of the free variables of E have not changed since then. Clearly we can
avoid recomputing the expression and instead use the previously computed
value. This information is particularly useful at the intermediate level in
a compiler for computing actual addresses into data structures with arrays
as a typical example. Another example is live variable analysis: given a
variable x and a point p in the program will the value of x at p be used at
a later stage; if so then x is said to be live at p and otherwise it is said to
be dead. Such information is useful when deciding how to use the registers
of a machine: the values of dead variables need not be stored in memory
when the registers in which they reside are reused for other purposes.

Many program transformations are only valid when certain conditions are
fulfilled. As an example it is only safe to move the computation of an
expression outside a loop if its value is not affected by the computations
in the remainder of the loop. Similarly we may only replace an expression
with a variable if we know that the expression already has been evaluated
in a context where it gave the same result as here and where its value has
been assigned to the variable. Such information may be collected by a slight
extension of an available expression analysis: an expression E is available
in x at a program point p if E has been evaluated and assigned to x on all
paths leading to p and if the values of x and the free variables of E have
not changed since then.

One of the more difficult tasks in an advanced programming environment
is to evaluate the performance of programs. Typically this falls outside the
power of automatic program analyses and requires more user coorporation.

1.1 Side-stepping the Halting Problem

It is important to realize that exact answers to many of the program anal-
yses we have mentioned above do involve solving the Halting Problem! As
an example consider the program fragment

(if · · · then x := 1 else (S; x := 2)); y := x

1.1 Side-stepping the Halting Problem 3

�
�
�
�
�
�
�
�
�
��

YES︷ ︸︸ ︷ NO︷ ︸︸ ︷
exact answers

��

��

��

��

��

YES!
︸ ︷︷ ︸

NO?
︸ ︷︷ ︸

analysis

Table 1.1: Safe approximations to exact answers

and the constant propagation analysis: does x always evaluate to the con-
stant 1 in the assignment to y? This is the case if and only if S never termi-
nates (or if S ends with a run-time error). To allow for an implementable
analysis we allow constant propagation to provide safe approximations to
the exact answers: in the example we always deem that x does not evaluate
to a constant at the assignment to y. In this way the possible outcomes of
the analysis are

• YES!: the expression E always evaluates to the constant c, or

• NO?: the expression E might not always evaluate to a constant,

and where the second answer is not equivalent to saying that “the expres-
sion E does not always evaluate to a constant”. To be useful the second
answer should not be produced too often: a useless but correct analysis is
obtained by always producing the second answer. We shall see that this
is a general phenomenon: one answer of the analysis will imply the exact
answer but the other answer will not; this is illustrated in Table 1.1 and we
say that the analysis errs on the safe side. To be more precise about this
requires a study of the concrete analysis and the use in which we intend to
put it. We thus return to the issue when dealing with the correctness of a
given analysis.

4 Introduction

1.2 Classification of Program Analyses

Program analyses give information about the dynamic behaviour of pro-
grams. The analyses are performed statically meaning that the programs
are not run on all possible inputs in order to find the result of the analysis.
On the other hand the analyses are safe meaning that the result of the
analysis describes all possible runs of the program. This effect is obtained
by letting the analysis compute with abstract properties of the “real” values
rather than with the “real” values themselves.

Program analyses are often classified in two respects:

• what kind of properties do they compute, and

• how do they compute with them.

Basically, there are two kinds of properties:

• properties of values, and

• properties of relationships between values.

The first class of analyses is often called first order analyses as they com-
pute with direct properties of the values. The second class of analyses is
called second order analyses as they compute with properties derived from
relationships between values.

An example of an analysis falling within the first category is a detection of
signs analysis. The properties of interest are the signs of values so rather
than computing with numbers we will compute with the sign properties
pos, zero, neg and any. Also constant propagation and interval analysis
are examples of first order analyses.

An example of an analysis falling within the second category is live variable
analysis. Here the properties associated with the variables are live and
dead and obviously this does not say much about the “real” value of the
variables. However, it expresses a property of the relationship between
“real” values: if the property is dead then the variable could have any
value whatsoever – the result of the computation would be the same since
the value will never be used. On the other hand, if the property is live
then the “real” value of the variable might influence the final outcome
of the computation. Detection of common subexpressions and available
subexpression analysis are other examples of second order analyses.

1.3 Ccpo’s and Complete Lattices 5

The other classification is concerned with how the analyses compute with
the properties. Again there are basically two approaches (although mix-
tures exist):

• forward analyses, and

• backwards analyses.

In a forward analysis the computation proceeds much as in the direct style
denotational semantics: given the properties of the input the analysis will
compute properties of the output. For example, the detection of signs
analysis proceeds in this way.

As the name suggests, a backwards analysis performs the computation the
other way round: given properties of the output of the computation it will
predict the properties that the input should have. Here live variable anal-
ysis is a classical example: the output certainly should have the property
live and the idea is then to calculate backwards to see which parts of the
input (and which parts of the intermediate results) really are needed in
order to compute the output.

The two classifications can be freely mixed so for example the detection of
signs analysis is a first order forward analysis and live variable analysis is
a second order backwards analysis. An example of a first order backward
analysis is an error detection analysis: we might want to ensure that the
program does not result in an error (say, from an attempt to divide by
zero) and the analysis could then provide information about inputs that
definitely would prevent this from happening. This kind of information
might be crucial for the design of safety critical systems. An example of
a second order forward analysis is a functional dependency analysis: does
the output of the computation depend functionally on the input or is it
effected by uninitialised variables. Such information might be important
during debugging to nail down spurious errors.

1.3 Ccpo’s and Complete Lattices

The analyses will all work with a set P of properties. As an example, in
the detection of signs analysis, P will contain the properties pos, zero,
neg and any (and others) and in a live variable analysis it will contain
the properties live and dead. Since some properties are more informative
than others we shall equip P with a partial ordering vP . So for example
in the detection of signs analysis we have pos vP any because it is more

6 Introduction

informative to know that a number is positive than it is to know that it can
have any sign. Similarly, in the live variable analysis we may take dead
vP live because it is more informative to know that the value of a variable
definitely is not used in the rest of the computation than it is to know that
it might be used. (One might rightly feel that this intuition is somewhat
at odds with the view point of denotational semantics; nonetheless the
approach makes sense!) When specifying an analysis we shall always make
sure that

(P, vP) is a complete lattice

as defined in Chapter 4 of [NN]1. The lattice structure gives us a convenient
method for combining properties: if some value has the two properties p1

and p2 then we can combine this to say that it has the property
⊔
P{p1, p2}

where
⊔
P is the least upper bound operation on P. It is convenient to write

p1 tP p2 for
⊔
P{p1, p2}.

Many analyses (for example the detection of signs analysis) associate prop-
erties with the individual variables of the program and here the function
spaces are often used to model property states: in the standard semantics
states map variables to values whereas in the analysis the property states
will map variables to their properties:

PState = Var → P

The property states inherit the ordering from the properties in a point-wise
manner. This is in fact a corollary of a fairly general result which can be
expressed as follows:

Lemma 1.1 Assume that S is a non-empty set and that (D, v) is a par-
tially ordered set. Let v′ be the ordering on the set S → D defined by

f1 v′ f2 if and only if f1 x v f2 x for all x ∈ S

Then (S → D, v′) is a partially ordered set. Furthermore, (S → D, v′) is
a ccpo if D is and it is a complete lattice if D is. In both cases we have

(
⊔′ Y) x =

⊔{f x | f ∈ Y }

so that least upper bounds are determined pointwise.

1[NN]: H.R.Nielson, F.Nielson: Semantics with Applications – A Formal Introduction,
Wiley 1992.

1.3 Ccpo’s and Complete Lattices 7

Proof It is straightforward to verify that v′ is a partial order so we omit the
details. We shall first prove the lemma in the case where D is a complete
lattice so let Y be a subset of S → D. Then the formula

(
⊔′ Y) x =

⊔{f x | f ∈ Y }

defines an element
⊔′ Y of S → D because D being a complete lattice

means that
⊔{f x | f ∈ Y } exists for all x of S. This shows that

⊔′ Y is a
well-defined element of S → D. To see that

⊔′ Y is an upper bound of Y let
f0 ∈ Y and we shall show that f0 v′

⊔′ Y . This amounts to considering
an arbitrary x in S and showing

f0 x v
⊔{f x | f ∈ Y }

and this is immediate because
⊔

is the least upper bound operation in D.
To see that

⊔′ Y is the least upper bound of Y let f1 be an upper bound
of Y and we shall show that

⊔′ Y v′ f1. This amounts to showing

⊔{f x | f ∈ Y } v f1 x

for an arbitrary x ∈ S. However, this is immediate because f1 x must be
an upper bound of {f x | f ∈ Y } and because

⊔
is the least upper bound

operation in D.

To prove the other part of the lemma assume that D is a ccpo and that Y
is a chain in S → D. The formula

(
⊔′ Y) x =

⊔{f x | f ∈ Y }

defines an element
⊔′ Y of S → D: each {f x | f ∈ Y } will be a chain in D

because Y is a chain and hence each
⊔{f x | f ∈ Y } exists because D is a

ccpo. That
⊔′ Y is the least upper bound of Y in S → D follows as above. 2

8 Introduction

Chapter 2

Detection of Signs Analysis

In this chapter we restrict our attention to first order forward analyses.
Thus we shall be interested in properties of the values computed by the
standard semantics and the analysis will proceed in a forward manner just
as the standard semantics. We shall focus on one particular analysis, the
detection of signs analysis, and leave the development of other analyses to
the exercises. First we show how to specify the analysis and next we prove
its existence. We then show that it is a safe approximation of the standard
semantics. Finally, we address the applicability of the analysis in program
transformations.

2.1 Detection of Signs Analysis

The rules for computation with signs are well-known and the idea is now
to turn them into an analysis of programs in the While language. The
specification of the analysis falls into two parts. First we have to specify
the properties that we compute with: in this case properties of numbers
and truth values. Next we specify the analysis itself for the three syntactic
categories: arithmetic expressions, boolean expressions, and statements.

The detection of signs analysis is based on three basic properties of num-
bers:

• pos: the number is positive,

• zero: the number is zero, and

• neg: the number is negative.

9

10 Detection of Signs Analysis

Although a given number will have one (and only one) of these properties
it is obvious that we easily loose precision when calculating with signs: the
subtraction of two positive numbers may give any number so the sign of
the result cannot be described by one of the three basic properties. This
is a common situation in program analysis and the solution is to introduce
extra properties that express combinations of the basic properties. For the
detection of signs analysis we may add the following properties:

• non-neg: the number is not negative,

• non-zero: the number is not zero,

• non-pos: the number is not positive, and

• any: the number can have any sign.

For each property we can determine a set of numbers that are described
by that property. When formulating the analysis it is convenient to have a
property corresponding to the empty set of numbers as well and we therefore
introduce the property

• none: the number belongs to ∅.

Let now Sign be the set

{neg, zero, pos, non-pos, non-zero, non-neg, any, none}

We shall equip Sign with a partial ordering vS reflecting the subset order-
ing on the underlying sets of numbers. The ordering is depicted by means
of the Hasse diagram of Table 2.1. So for example pos vS non-zero holds
because {z ∈ Z | z > 0} ⊆ {z ∈ Z | z 6= 0} and none vS neg holds
because ∅ ⊆ {z ∈ Z | z < 0}.

Exercise 2.1 Show that (Sign, vS) is a complete lattice and let
⊔
S be

the associated least upper bound operation. For each pair p1 and p2 of
elements from Sign specify p1 tS p2. 2

Clearly we can associate a “best” property with each number. To formalise
this we define a function

absZ : Z → Sign

that will abstract a number into its sign:

2.1 Detection of Signs Analysis 11

• any

• non-pos • non-zero • non-neg

• neg • zero • pos

• noneHH
HH

HH
HH

��
��
��
��

��
��
��
��

HH
HH

HH
HH

��
��
��
��

HH
HH

HH
HH

��
��
��
��

HH
HH

HH
HH

Table 2.1: (Sign, vS)

absZ z =

neg if z < 0
zero if z = 0
pos if z > 0

In the detection of signs analysis we define the set PState of property
states by

PState = Var → Sign

and we shall use the meta-variable ps to range over PState. The operation
absZ is lifted to states

abs: State → PState

by defining it in a component wise manner: (abs s) x = absZ (s x) for all
variables x.

From Lemma 1.1 we have

Corollary 2.2 Let vPS be the ordering on PState defined by

ps1 vPS ps2 if and only if ps1 x vS ps2 x for all x ∈ Var.

Then (PState, vPS) is a complete lattice. In particular the least upper
bound

⊔
PS Y of a subset Y of PState is characterized by

(
⊔
PS Y) x =

⊔
S {ps x | ps ∈ Y }

and is thus defined in a componentwise manner.

12 Detection of Signs Analysis

• any

• tt • ff

• noneHH
HH

��
��

��
��

HH
HH

Table 2.2: (TT, vT)

We shall write init for the least element of PState, that is for the property
state that maps all variables to none.

In the analysis we compute with the properties of Sign rather than the
numbers of Z. Similarly, we will have to replace the truth values T with
some set of properties: although knowledge about the signs may enable
us to predict the truth value of certain boolean expressions this need not
always be the case. We shall therefore introduce four properties corre-
sponding to the four subsets of the truth values:

• tt: corresponding to the set {tt},

• ff: corresponding to the set {ff},

• any: corresponding to the set {tt, ff}, and

• none: corresponding to the set ∅.

The set is equiped with an ordering vT reflecting the subset ordering on
the sets of truth values. This is depicted in Table 2.2.

Exercise 2.3 Show that (TT, vT) is a complete lattice and let
⊔
T be

the associated least upper bound operation. For each pair p1 and p2 of
elements from TT specify p1 tT p2. 2

We shall also introduce an abstraction function for truth values. It has the
functionality

absT : T → TT

and is defined by absT tt = tt and absT ff = ff.

Analysis of expressions

Recall that the semantics of arithmetic expression is given by a function

2.1 Detection of Signs Analysis 13

SA[[n]]ps = absZ(N [[n]])

SA[[x]]ps = ps x

SA[[a1 + a2]]ps = SA[[a1]]ps +S SA[[a2]]ps

SA[[a1 ∗ a2]]ps = SA[[a1]]ps ∗S SA[[a2]]ps

SA[[a1 − a2]]ps = SA[[a1]]ps −S SA[[a2]]ps

Table 2.3: Detection of signs analysis of arithmetic expressions

A: Aexp → State → Z

In the analysis we do not know the exact value of the variables but only
their properties and consequently we can only compute a property of the
arithmetic expression. So the analysis will be given by a function

SA: Aexp → PState → Sign

whose defining clauses are given in Table 2.3.

In the clause for n we use the function absZ to determine the property of
the corresponding number. For variables we simply consult the property
state. For the composite constructs we proceed in a compositional manner
and rely on addition, multiplication and subtraction operations defined on
Sign. For addition the operation +S is written in detail in Table 2.4.
The multiplication and subtraction operations ∗S and −S are only partly
specified in that table.

The semantics of boolean expressions is given by a function

B : Bexp → State → T

As in the case of arithmetic expressions the analysis will use property states
rather than states. The truth values will be replaced by the set TT of
properties of truth values so the analysis will be given by a function

SB : Bexp → PState → TT

whose defining clauses are given in Table 2.5.

The clauses for true and false should be straightforward. For the tests
on arithmetic expressions we rely on operations defined on the lattice Sign
and giving results in TT; these operations are partly specified in Table 2.6.
In the case of negation and conjunction we need similar operations defined
on TT and these are also specified in Table 2.6.

14 Detection of Signs Analysis

+S none neg zero pos
non-
pos

non-
zero

non-
neg any

none none none none none none none none none
neg none neg neg any neg any any any

zero none pos zero pos
non-
pos

non-
zero

non-
neg any

pos none any pos pos any any pos any
non-
pos none neg

non-
pos any

non-
pos any any any

non-
zero none any

non-
zero any any any any any

non-
neg none any

non-
neg pos any any

non-
neg any

any none any any any any any any any

∗S neg zero pos
neg pos zero neg
zero zero zero zero
pos neg zero pos

−S neg zero pos
neg any neg neg
zero pos zero neg
pos pos pos any

Table 2.4: Operations on Sign

SB[[true]]ps = tt

SB[[false]]ps = ff

SB[[a1 = a2]]ps = SA[[a1]]ps =S SA[[a2]]ps

SB[[a1 ≤ a2]]ps = SA[[a1]]ps ≤S SA[[a2]]ps

SB[[¬b]]ps = ¬T (SB[[b]]ps)

SB[[b1 ∧ b2]]ps = SB[[b1]]ps ∧ T SB[[b2]]ps

Table 2.5: Detection of signs analysis of boolean expressions

Example 2.4 We have SB[[¬(x=1)]]ps = ¬T (ps x =S pos) which can be
represented by the following table

ps x none neg zero pos
non-
pos

non-
zero

non-
neg any

SB[[¬(x=1)]]ps none tt tt any tt any any any

Thus if x is positive we cannot deduce anything about the outcome of the
test whereas if x is negative then the test will always give true. 2

2.1 Detection of Signs Analysis 15

=S neg zero pos
neg any ff ff
zero ff tt ff
pos ff ff any

≤S neg zero pos
neg any tt tt
zero ff tt tt
pos ff ff any

¬T
none none
tt ff
ff tt
any any

∧ T none tt ff any
none none none none none
tt none tt ff any
ff none ff ff ff
any none any ff any

Table 2.6: Operations on Sign and TT

Analysis of statements

In the denotational semantics the meaning of statements is given by a
function

Sds: Stm → (State ↪→ State).

In the analysis we perform two changes: First, we replace the states by
property states so that given information about the signs of the variables
before the statement is executed we will obtain information about the signs
of the variables after the execution has (possibly) terminated. Second, we
replace partial functions by total functions; this is a crucial change in that
the whole point of performing a program analysis is to trade precision for
termination. So the analysis will be specified by a function

SS: Stm → PState → PState

whose clauses are given in Table 2.7.

At the surface these clauses are exactly as those of the direct style deno-
tational semantics in Chapter 4 of [NN]. However, the auxiliary function
condS is different in that it has to take into account that the outcome of
the test can be any of the four properties of TT. We shall define it by

condS(f, h1, h2)ps

=

init if f ps = none
h1 ps if f ps = tt
h2 ps if f ps = ff
(h1 ps) tPS (h2 ps) if f ps = any

16 Detection of Signs Analysis

SS[[x := a]]ps = ps[x 7→ SA[[a]]ps]

SS[[skip]] = id

SS[[S1;S2]] = SS[[S2]] ◦ SS[[S1]]

SS[[if b then S1 else S2]] =
condS(SB[[b]], SS[[S1]], SS[[S2]])

SS[[while b do S]] = FIX H
where H h = condS(SB[[b]], h ◦ SS[[S]], id)

Table 2.7: Detection of signs analysis of statements

Here the operation tPS is the binary least upper bound operation of PState:

ps1 tPS ps2 =
⊔
PS{ps1, ps2}

Since (PState, vPS) is a complete lattice (Corollary 2.2) this is a well-
defined operation. The idea behind the definition of condS is that if the
outcome of the test is tt or ff then we know exactly which branch will
be taken when executing the statement. So we select the analysis of that
branch to be the result of analysing the conditional. If the outcome of the
test is any then the execution of the conditional might result in tt as well
as ff so in the analysis we have to combine the results of the two branches.
So if one branch says that x has the property pos and the other says that it
has the property neg then we can only deduce that after execution of the
conditional x will be either positive or negative and this is exactly what is
achieved by using the least upper bound operation. The case where the test
gives none should not be possible so in this case we return the property
state init that does not describe any states.

In the clause for the while-loop we also use the function condS and other-
wise the clause is as in the direct style denotational semantics. In particu-
lar we use the fixed point operation FIX as it corresponds to unfolding the
while-loop a number of times — once for each time the analysis traverses
the loop. As in Chapter 4 of [NN] the fixed point is defined by

FIX H =
⊔{Hn⊥ | n ≥ 0}

where the functionality of H is

H: (PState → PState) → (PState → PState)

2.1 Detection of Signs Analysis 17

and where PState → PState is the set of total functions from PState to
PState. In order for this to make sense H must be a continuous function
on a ccpo with least element ⊥. We shall shortly verify that this is indeed
the case.

Example 2.5 We are now in a position where we can attempt the appli-
cation of the analysis to the factorial statement:

SS[[y := 1; while ¬(x = 1) do (y := y ? x; x := x − 1)]]

We shall apply this function to the property state ps0 that maps x to pos
and all other variables (including y) to any. So we are interested in

(FIX H) (ps0[y 7→ pos])

where

H h = condS(SB[[¬(x = 1)]], h ◦ hfac, id)

hfac = SS[[y := y ? x; x := x − 1]]

Thus we have to compute the approximations H0 ⊥, H1 ⊥, H2 ⊥ · · ·.
Below we shall show that

H3 ⊥ (ps0[y 7→ pos]) y = any.

Since H3 ⊥ v FIX H we have

H3 ⊥ (ps0[y 7→ pos]) vPS (FIX H) (ps0[y 7→ pos])

and thereby

H3 ⊥ (ps0[y 7→ pos]) y vP (FIX H) (ps0[y 7→ pos]) y.

Thus (FIX H) (ps0[y 7→ pos]) y = any must be the case. Thus even though
we start by the assumption that x is positive the analysis cannot deduce
that the factorial of x is positive. We shall remedy this shortly.

Using the definition of hfac and SB[[¬(x = 1)]] (as tabulated in Example
2.4) we get

18 Detection of Signs Analysis

H3 ⊥ (ps0[y7→pos])

= H(H2 ⊥) (ps0[y7→pos])

= (H2 ⊥) (hfac(ps0[y7→pos]))
tPS id (ps0[y7→pos])

= H(H1 ⊥) (ps0[x7→any][y7→pos])
tPS (ps0[y7→pos])

= (H1 ⊥) (hfac (ps0[x7→any][y7→pos]))
tPS id (ps0[x7→any][y7→pos]) tPS (ps0[y7→pos])

= H(H0 ⊥) (ps0[x7→any][y7→any])
tPS (ps0[x7→any][y7→pos])

= (H0 ⊥) (hfac (ps0[x7→any][y7→any]))
tPS id(ps0[x7→any][y7→any]) tPS (ps0[x7→any][y7→pos])

= init tPS (ps0[x7→any][y7→any])

= ps0[x7→any][y7→any]

Thus we see that the ‘mistake’ was made when we applied hfac to the
property state ps0[x7→any][y7→pos]). 2

Remark A more precise analysis may be performed if we change the defi-
nition of condS in the case where f ps = any. To do so we first introduce
the notion of an atomic property state: ps is atomic if there exists a state
s such that abs(s) = ps. Equivalently, ps is atomic if

∀x ∈ Var: ps x ∈ {neg, zero, pos}

Clearly, not all property states are atomic but all property states can be
described as the least upper bound of a set of atomic property states:

ps =
⊔
PS {ps′ | ps′ vPS ps, and ps′ is atomic}

holds for all property states ps. If f ps′ = tt then we know that only
the true branch may be taken, if f ps′ = ff then only the false branch
may be taken and only in the case where f ps′ = any we need to take
both possibilities into account. So we define the two sets filterT (f, ps) and
filterF (f, ps) by

filterT (f, ps) = {ps′ | ps′ vPS ps, ps′ is atomic, tt vT f ps′}
filterF (f, ps) = {ps′ | ps′ vPS ps, ps′ is atomic, ff vT f ps′}

2.1 Detection of Signs Analysis 19

We can now replace (h1 ps) tPS (h2 ps) in the definition of condS by

(h1 (
⊔
PS filterT (f, ps))) tPS(h2 (

⊔
PS filterF (f, ps)))

Here
⊔
PS is used to combine the set of property states into a single property

state before applying the analysis of the particular branch to it.

We note in passing that an even more precise analysis might result if the
use of

⊔
PS was postponed until after hi had been applied pointwise to the

property states in the corresponding set. 2

Example 2.6 To be able to obtain useful information from the analysis of
the factorial statement we need to do two things:

• use the definition of condS given in the previous remark, and

• rewrite the test of the factorial statement to use ¬(x≤1) instead of
¬(x=1).

With these amendments we are interested in

SS[[y := 1; while ¬(x ≤ 1) do (y := y * x; x := x - 1)]] ps0

where ps0 x = pos and ps0 maps all other variables to any. So we are
interested in

(FIX H) (ps0[y 7→ pos])

where

H h = condS(SB[[¬(x ≤ 1)]], h ◦ hfac, id)

hfac = SS[[y := y * x; x := x - 1]]

In the case where ps x = p ∈ {pos, any} and ps y = pos we have

H h ps = (h ◦ hfac)(
⊔
PS filterT (SB[[¬(x ≤ 1)]], ps))

tPS id (
⊔
PS filterF (SB[[¬(x ≤ 1)]], ps))

= (h ◦ hfac)(ps[x 7→ pos])
tPS (ps[x 7→ p])

= h(ps[x 7→ any]) tPS ps

20 Detection of Signs Analysis

We can now compute the iterands Hn ⊥ ps as follows when ps x = p ∈
{pos, any} and ps y = pos:

H0 ⊥ ps = init

H1 ⊥ ps = H0 ⊥ (ps[x 7→ any]) tPS (ps[x 7→ p])
= ps

H2 ⊥ ps = H1 ⊥ (ps[x 7→ any]) tPS (ps[x 7→ p])
= ps[x 7→ any]

H3 ⊥ ps = H2 ⊥ (ps[x 7→ any]) tPS (ps[x 7→ p])
= ps[x 7→ any]

One can show that for all n ≥ 2

Hn ⊥ ps = ps[x 7→ any]

when ps x ∈ {pos, any} and ps y = pos. It then follows that

(FIX H)(ps0[y 7→ pos]) = ps0[x 7→ any][y 7→ pos]

So the analysis tells us that if x is positive in the initial state then y will
be positive in the final state (provided that the program terminates). 2

Exercise 2.7 Show that ifH: (PState→PState)→ (PState→PState)
is continuous (or just monotone) and

Hn ⊥ = Hn+1 ⊥

for some n then Hn+m ⊥ = Hn+1+m ⊥ for all m > 0. Conclude that

Hn ⊥ = Hm ⊥

for m ≥ n and therefore FIX H = Hn ⊥.

Show by means of an example that Hn ⊥ ps0 = Hn+1 ⊥ ps0 for some
ps0 ∈ PState does not necessarily imply that FIX H ps0 = Hn ⊥ ps0. 2

Exercise 2.8 A constant propagation analysis attempts to predict whether
arithmetic and booleans expressions always evaluate to constant values. For
natural numbers the following properties are of interest:

• any: it can be any number,

2.2 Existence of the Analysis 21

• z: it is definitely the number z ∈ Z, and

• none: the number belongs to ∅

Let now Const = Z ∪ {any, none} and let vC be the ordering defined
by

• none vC p for all p ∈ Const, and

• p vC any for all p ∈ Const

All other elements are incomparable. Draw the Hasse-diagram for (Const,
vC).

Let PState = Var → Const be the set of property states and let TT
be the properties of the truth values. Specify the constant propagation
analysis by defining the functionals

CA: Aexp → PState → Const

CB: Bexp → PState → TT

CS: Stm → PState → PState

Be careful to specify the auxiliary operations in detail. Give a couple of
examples illustrating the power of the analysis. 2

2.2 Existence of the Analysis

Having specified the detection of signs analysis we shall now show that it
is indeed well-defined. We proceed in three stages:

• First we introduce a partial order on PState→ PState such that it
becomes a ccpo.

• Then we show that certain auxiliary functions used in the definition
of SS are continuous.

• Finally we show that the fixed point operator only is applied to con-
tinuous functions.

22 Detection of Signs Analysis

The ccpo

Thus our first task is to define a partial order on PState → PState and
for this we use the approach developed in Lemma 1.1. Instantiating the
non-empty set S to the set PState and the partially ordered set (D, v) to
(PState, vDS) we get:

Corollary 2.9 Let v be the ordering on PState → PState defined by

h1 v h2 if and only if h1 ps vPS h2 ps for all ps ∈ PState.

Then (PState→ PState, v) is a complete lattice, and hence a ccpo, and
the formula for least upper bounds is

(
⊔
Y) ps =

⊔
PS {h ps | h ∈ Y }

for all subsets Y of PState → PState.

Auxiliary functions

Our second task is to ensure that the function H used in Table 2.7 is a
continuous function from PState → PState to PState → PState. For
this we follow the approach of Section 4.3 and show that condS is continuous
in its second argument and later that composition is continuous in its first
argument.

Lemma 2.10 Let f : PState → TT, h0: PState → PState and define

H h = condS(f , h, h0)

Then H: (PState → PState) → (PState → PState) is a continuous
function.

Proof We shall first prove that H is monotone so let h1 and h2 be such
that h1 v h2, that is h1 ps vPS h2 ps for all property states ps. We
then have to show that condS(f , h1, h0) ps vPS condS(f , h2, h0) ps for all
property states ps. The proof is by cases on the value of f ps. If f ps =
none then the result trivially holds. If f ps = tt then the result follows
from the assumption

2.2 Existence of the Analysis 23

h1 ps vPS h2 ps.

If f ps = ff then the result trivially holds. If f ps = any then the result
follows from

(h1 ps tPS h0 ps) vPS (h2 ps tPS h0 ps)

which again follows from the assumption h1 ps vPS h2 ps.

To see that H is continuous let Y be a non-empty chain in PState →
PState. Using the characterization of least upper bounds in PState given
in Corollary 2.9 we see that we must show that

(H(
⊔
Y)) ps =

⊔
PS {(H h)ps | h ∈ Y }

for all property states ps in PState. The proof is by cases on the value of
f ps. If f ps = none then we have (H (

⊔
Y)) ps = init and

⊔
PS {(H h)ps | h ∈ Y } =

⊔
PS {init | h ∈ Y }

= init

Thus we have proved the required result in this case. If f ps = tt then we
have

(H(
⊔
Y))ps = (

⊔
Y)ps

= (
⊔
PS{h ps | h ∈ Y })

using the characterization of least upper bounds and furthermore

⊔
PS{(H h)ps | h ∈ Y } =

⊔
PS{h ps | h ∈ Y }

and the result follows. If f ps = ff then we have

(H(
⊔
Y))ps = h0 ps

and

⊔
PS{(H h)ps | h ∈ Y } =

⊔
PS{h0 ps | h ∈ Y }

= h0 ps

where the last equality follows because Y is non-empty. If f ps = any then
the characterization of least upper bounds in PState gives:

24 Detection of Signs Analysis

(H(
⊔
Y))ps = ((

⊔
Y)ps) tPS (h0 ps)

= (
⊔
PS{h ps | h ∈ Y }) tPS (h0 ps)

=
⊔
PS{h ps | h ∈ Y ∪ {h0}}

and

⊔
PS{(H h)ps | h ∈ Y } =

⊔
PS{(h ps) tPS (h0 ps) | h ∈ Y }

=
⊔
PS{h ps | h ∈ Y ∪ {h0}}

where the last equality follows because Y is non-empty. Thus H is contin-
uous. 2

Exercise 2.11 Let f : PState → TT, h0: PState → PState and define

H h = condS(f , h0, h)

Show that H: (PState→PState)→ (PState→ PState) is a continuous
function. 2

Lemma 2.12 Let h0: PState → PState and define

H h = h ◦ h0

Then H: (PState → PState) → (PState → PState) is a continuous
function.

Proof We shall first show that H is monotone so let h1 and h2 be such that
h1 v h2, that is h1 ps vPS h2 ps for all property states ps. Clearly we
then have h1(h0 ps) vPS h2(h0 ps) for all property states ps and thereby
we have proved the monotonicity of H.

To prove the continuity of H let Y be a non-empty chain in PState →
PState. We must show that

(H(
⊔
Y))ps = (

⊔{H h | h ∈ Y })ps

for all property states ps. Using the characterization of least upper bounds
given in Corollary 2.9 we get

2.2 Existence of the Analysis 25

(H(
⊔
Y))ps = ((

⊔
Y) ◦ h0)ps

= (
⊔
Y)(h0 ps)

=
⊔
PS{h(h0 ps) | h ∈ Y }

and

(
⊔{H h | h ∈ Y })ps =

⊔
PS{(H h)ps | h ∈ Y }

=
⊔
PS{(h ◦ h0)ps | h ∈ Y }

Hence the result follows. 2

Exercise 2.13 Show that there exists h0: PState → PState such that
H defined by H h = h0 ◦ h is not even a monotone function from PState
→ PState to PState → PState . 2

Remark The example of the above exercise indicates a major departure
from the secure world of Chapter 4 of [NN]. Luckily an insurance policy
can be arranged. The premium is to replace all occurrences of

PState → PState, PState → Sign, and PState → TT

by

[PState → PState], [PState → Sign], and [PState → TT]

where [D → E] = { f : D → E | f is continuous }. One can then show
that [D → E] is a ccpo if D and E are and that the characterization
of least upper bounds given in Lemma 1.1 still holds. Furthermore, the
entire development in this section still carries through although there are
additional proof obligations to be carried out. In this setting one gets that
if h0: [PState → PState] then H defined by H h = h0 ◦ h is a continuous
function from [PState → PState] to [PState → PState]. 2

Well-definedness

First we note that the equations of Tables 2.3 and 2.5 define total functions
SA and SB in Aexp → PState → Sign and Bexp → PState → TT,
respectively. For the well-definedness of SS we have:

26 Detection of Signs Analysis

Proposition 2.14 The function SS: Stm→ PState→ PState of Table
2.7 is a well-defined function.

Proof We prove by structural induction on S that SS[[S]] is well-defined
and only the case of the while-loop is interesting. We note that the function
H used in Table 2.7 is given by

H = H1 ◦ H2

where

H1 h = condS(SB[[b]], h, id)

H2 h = h ◦ SS[[S]]

Since H1 and H2 are continuous functions by Lemmas 2.10 and 2.12 we
have that H is a continuous function by [NN, Lemma 4.35]. Hence FIX H
is well-defined and this completes the proof. 2

Exercise 2.15 Extend While with the statement repeat S until b and
give the new (compositional) clause for SS. Motivate your extension and
validate the well-definedness. 2

Exercise 2.16 Show that the constant propagation analysis specified in
Exercise 2.8 is indeed well-defined. 2

2.3 Safety of the Analysis

In this section we shall show that the analysis functions SA, SB and SS
are safe with respect to the semantic functions A, B and Sds. We begin
with the rather simple case of expressions.

Expressions

Let g: State → Z be a function, perhaps of the form A[[a]] for some arith-
metic expression a ∈ Aexp, and let h: PState → Sign be another
function, perhaps of the form SA[[a]] for some arithmetic expression a ∈
Aexp. We shall introduce a relation

2.3 Safety of the Analysis 27

g safeA h

for expressing when the analysis h is safe with respect to the semantics g.
It is defined by

abs(s) vPS ps
⇓
absZ(g s) vS h ps

for all states s and property states ps. Thus the predicate says that if ps
describes the sign of the variables of s then the sign of g s will be described
by h ps.

Exercise 2.17 Prove that for all arithmetic expressions a ∈ Aexp we
have

A[[a]] safeA SA[[a]]. 2

To express the safety of the analysis of boolean expressions we shall intro-
duce a relation

g safeB h

for expressing when the analysis h: PState → TT is safe with respect to
the semantics g: State → T. It is defined by

abs(s) vPS ps
⇓
absT (g s) vT h ps

for all states s and property states ps. We have

Exercise 2.18 Prove that for all arithmetic expressions b ∈ Bexp we
have

B[[b]] safeB SB[[b]] 2

Statements

The safety of the analysis of statements will express that if the signs of the
initial state is described by some property state then the signs of the final
state (if ever reached) will be described by the property state obtained by
applying the analysis to the initial property state. We shall formalize this
by defining a relation

28 Detection of Signs Analysis

g safeS h

between a function g: State ↪→ State, perhaps of the form Sds[[S]] for some
S ∈ Stm, and another function h: PState→ PState, perhaps of the form
SS[[S]] for some S ∈ Stm. The formal definition amounts to

abs(s) vPS ps and g s 6= undef
⇓
abs(g s) vPS h ps

for all states s ∈ State and all property states ps ∈ PState.

We may then formulate the desired relationship between the semantics and
the analysis as follows:

Theorem 2.19 For all statements S of While: Sds[[S]] safeS SS[[S]] .

Before conducting the proof we need to establish some properties of the
auxiliary operations composition and conditional.

Lemma 2.20 Let g1, g2: State ↪→ State and h1, h2: PState→ PState.
Then

g1 safeS h1 and g2 safeS h2 imply g2 ◦ g1 safeS h2 ◦ h1

Proof Let s and ps be such that

abs(s) vPS ps and (g2 ◦ g1)s 6= undef

Then g1 s 6= undef must be the case and from the assumption g1 safeS h1

we then get

abs(g1 s) vPS h1 ps

Since g2 (g1 s) 6= undef we use the assumption g2 safeS h2 to get

abs(g2 (g1 s)) vPS h2(h1 ps)

and we have completed the proof. 2

2.3 Safety of the Analysis 29

Lemma 2.21 Assume that g1, g2: State ↪→ State, and g: State → T
and that h1, h2: PState → PState and f : PState → TT. Then

g safeB f , g1 safeS h1 and g2 safeS h2 imply

cond(g, g1, g2) safeS condS(f , h1, h2)

Proof Let s and ps be such that

abs(s) vPS ps and cond(g, g1, g2) s 6= undef

We shall now proceed by a case analysis on g s. First assume that g s =
tt. It must be the case that g1 s 6= undef so from g1 safeS h1 we get

abs(g1 s) vPS h1 ps

From g safeB f we get that

absT (g s) vT f ps

and thereby tt vT f ps. Since h1 ps vPS h1 ps tPS h2 ps we get the
required result both when f ps = tt and when f ps = any. The case
where g s = ff is similar. 2

We now have the apparatus needed to show the safety of SS:

Proof (of Theorem 2.19) We shall show that Sds[[S]] safeS SS[[S]] and we
proceed by structural induction on the statement S.

The case x := a: Let s and ps be such that

abs(s) vPS ps and Sds[[x := a]] s 6= undef

We have to show that

abs(Sds[[x := a]] s) vPS SS[[x := a]]ps

that is

absZ((Sds[[x := a]] s) y) vS (SS[[x := a]]ps) y

for all y ∈ Var. If y 6= x then it is immediate from the assumption abs(s)
vPS ps. If y = x then we use that Exercise 2.17 gives

30 Detection of Signs Analysis

abs(A[[a]] s) vS SA[[a]] ps

Hence we have the required relationship.

The case skip: Straightforward.

The case S1;S2: The induction hypothesis applied to S1 and S2 gives

Sds[[S1]] safeS SS[[S1]] and Sds[[S2]] safeS SS[[S2]]

The desired result

Sds[[S2]] ◦ Sds[[S1]] safeS SS[[S2]] ◦ SS[[S1]]

follows directly from Lemma 2.20.

The case if b then S1 else S2: From Exercise 2.18 we have

B[[b]] safeB SB[[b]]

and the induction hypothesis applied to S1 and S2 gives

Sds[[S1]] safeS SS[[S1]] and Sds[[S2]] safeS SS[[S2]]

The desired result

cond(B[[b]], Sds[[S1]], Sds[[S2]]) safeS condS(SB[[b]], SS[[S1]], SS[[S2]])

then follows directly from Lemma 2.21.

The case while b do S: We must prove that

FIX(G) safeS FIX(H)

where

G g = cond(B[[b]], g ◦ Sds[[S]], id)

H h = condS(SB[[b]], h ◦ SS[[S]], id)

To do this we recall from Chapter 4 of [NN] the definition of the least fixed
points:

FIX G =
⊔ {Gn g0 | n ≥ 0 } where g0 s = undef for all s

FIX H =
⊔ {Hn h0 | n ≥ 0 } where h0 ps = init for all ps

2.3 Safety of the Analysis 31

The proof proceeds in two stages. We begin by proving that

Gn g0 safeS FIX H for all n (*)

and then

FIX G safeS FIX H (**)

We prove (*) by induction on n. For the base case we observe that

g0 safeS FIX H

holds trivially since g0 s = undef for all states s. For the induction step we
assume that

Gn g0 safeS FIX H

and we shall prove the result for n+ 1. We have

B[[b]] safeB SB[[b]]

from Exercise 2.18,

Sds[[S]] safeS SS[[S]]

from the induction hypothesis applied to the body of the while-loop, and
it is clear that

id safeS id

We then obtain

cond(B[[b]], (Gn g0) ◦ Sds[[S]], id) safeS

condS(SB[[b]], (FIX H) ◦ SS[[S]], id)

from Lemmas 2.20 and 2.21 and this is indeed the desired result since the
right-hand side amounts to H (FIX H) which equals FIX H.

Finally we must show (**). This amounts to showing

(
⊔
Y) safeS FIX H

where Y = { Gng0 | n ≥ 0 }. So assume that

32 Detection of Signs Analysis

abs(s) vPS ps and (
⊔
Y) s 6= undef

By [NN, Lemma 4.25] we have

graph(
⊔
Y) =

⋃ { graph g | g ∈ Y }

and (
⊔
Y) s 6= undef therefore shows the existence of an element g in Y

such that g s 6= undef and (
⊔
Y) s = g s. Since g safeS FIX H holds for all

g ∈ Y by (*) we get that

abs(g s) vPS (FIX H) ps

and therefore abs((
⊔
Y)s) vPS (FIX H) ps as required. 2

Exercise 2.22 Extend the proof of Theorem 2.19 to incorporate the safety
of the analysis developed for repeat S until b in Exercise 2.15. 2

Exercise 2.23 Prove that the constant propagation analysis specified in
Exercise 2.8 is safe. That is show that

A[[a]] safeA CA[[a]]

B[[b]] safeB CB[[b]]

Sds[[a]] safeS CS[[S]]

for appropriately defined predicates safeA, safeB and safeS. 2

2.4 Application of the Analysis

The detection of signs analysis can be used to predict the values of tests in
conditionals and loops and thereby they may be used to facilitate certain
program transformations. Some program transformations have a global
nature as for example

Replace if b then S1 else S2

by S1

when SB[[b]] top = tt

2.4 Application of the Analysis 33

where we have written top for the property state that maps all variables to
any. The condition SB[[b]] top = tt will only be satisfied when B[[b]] s =
tt for all states s so the transformation can be used rather seldom. Other
transformations take the context into account and we may use the property
states to describe the contexts. So we may extend the above format to:

In context ps
replace if b then S1 else S2

by S1

when SB[[b]]ps = tt

We shall formalise these transformations as a transition system. The tran-
sitions have the form

ps `S ; S ′

meaning that in the context described by ps the statement S can be re-
placed by S ′. So the above transformation rule can be formulated as

ps `if b then S1 else S2 ; S1, if SB[[b]]ps = tt

where the side condition expresses when the rule is applicable. The dual
transformation rule is

ps `if b then S1 else S2 ; S2, if SB[[b]]ps = ff

We might also want to transform inside composite statements like S1;S2.
This is expressed by the rule

ps `S1 ; S ′1, (SS[[S1]] ps) `S2 ; S ′2
ps `S1;S2 ; S ′1;S ′2

Combined with the trivial transformation rule

ps `S ; S

this opens up for the possibility of only transforming parts of the statement.

In general a transformation ps `S ; S ′ is (weakly) valid if

abs(s) vPS ps and Sds[[S]]s 6= undef
⇓
Sds[[S]]s = Sds[[S ′]]s

34 Detection of Signs Analysis

for all states s. This is a weak notion of validity because a transformation
as

top ` while true do skip ; skip

is valid even though it allows us to replace a looping statement with one
that always terminates.

Lemma 2.24 The transformation rule

ps `if b then S1 else S2 ; S1

is valid provided that SB[[b]]ps = tt.

Proof Assume that

abs(s) vPS ps and Sds[[if b then S1 else S2]] s 6= undef.

From SB[[b]]ps = tt, abs(s) vPS ps, and Exercise 2.18 we get that

absT (B[[b]]s) vT tt

and thereby B[[b]]s = tt since B[[b]] is a total function. From the definition
of Sds in Chapter 4 of [NN] we get

Sds[[if b then S1 else S2]] s = Sds[[S1]] s

and this is the required result. 2

Exercise 2.25 Prove that the transformation rule for S1;S2 is valid. 2

Exercise 2.26 Prove that the transformation rule

ps `S1 ; S ′1, (SS[[S ′1]] ps) `S2 ; S ′2
ps `S1;S2 ; S ′1;S

′
2

is valid. Note that it differs from the rule given earlier in the second premise
where the transformed statement is analysed rather than the original. 2

Exercise 2.27 Suggest a transformation rule for assignment and prove
that it is valid. 2

Exercise 2.28 Suggest a transformation rule that allows transformations
inside the branches of a conditional and prove that it is valid. 2

Exercise 2.29 ∗∗ Try to develop a transformation rule that allows trans-
formations inside the body of a while-loop. 2

Chapter 3

Implementation of Analyses

In this chapter we consider the problem of computing fixed points in pro-
gram analysis. The whole purpose of program analysis is to get information
about programs without actually running them and it is important that the
analyses always terminate. In general, the analysis of a recursive (or itera-
tive) program will itself be recursively defined and it is therefore important
to “solve” this recursion such that termination is ensured.

In general the setting is as follows: To each program the analysis associates
an element h of a complete lattice (A → B,v) of abstract values. In the
case of an iterative construct as the while-loop the value h is determined
as the least fixed point, FIX H, of a continuous functional H : (A→ B)→
(A→ B). Formally, the fixed point of H is given by

FIX H =
⊔{H i⊥ | i ≥ 0}

where ⊥ is the least element of A → B and
⊔

is the least upper bound
operation on A→ B. It is well-known that the iterands {H i⊥ | i ≥ 0} is
a chain in A→ B and in Exercise 2.7 we have shown that

if Hk⊥ = Hk+1⊥ for some k ≥ 0 then FIX H = Hk⊥

So the obvious algorithm for computing FIX H will be to determine the
iterands H0⊥, H1⊥, · · · one after the other while testing for stabilization,
i.e. equality with the predecessor. When A→ B is finite this procedure is
guaranteed to terminate. The cost of this algorithm depends on

• the number k of iterations needed before stabilization,

• the cost of comparing two iterands, and

35

36 Implementation of Analyses

• the cost of computing a new iterand.

We shall now study how to minimize the cost of the above algorithm. Most
of our efforts are spent on minimizing the number k.

We shall assume that A and B are finite complete lattices and we shall
consider three versions of the framework:

• the general framework where functions of A → B only are required
to be total; this is written A→t B.

• the monotone framework where functions of A → B must be mono-
tone; this is written A→m B.

• the completely additive framework where functions of A → B must
be strict and additive; this is written A→sa B.

We give precise bounds on the number k of iterations needed to compute
the fixed point of an arbitrary continuous functional H.

For the detection of signs analysis and many other program analyses A and
B will both be PState. Since a given program always mentions a finite
number of variables we can assume that Var is finite so PState = Var →
P is a function space with a finite domain. In the more general development
we shall therefore pay special attention to the case where A = B = S → L
for some non-empty set S with p elements and some finite complete lattice
(L, v). We shall show that the number k of iterations needed to compute
the fixed point is at most

• exponential in p for the general and the monotone frameworks, and

• quadratic in p for the completely additive framework.

The above results hold for arbitrary continuous functionals H. A special
case is where H is in iterative form:

H is in iterative form if it is of the form H h = f t (h ◦ g)

For strict and additive functions f and g we then show that k is at most

• linear in p, and furthermore

• the fixed point can be computed pointwise.

This result is of particular interest for the analysis of While programs
since the functional obtained for the while-loop often can be written in
this form.

3.1 The general and monotone frameworks 37

3.1 The general and monotone frameworks

We shall first introduce some notation. Let (D,v) be a finite complete
lattice, that is

• v is a partial order on D, and

• each subset Y of D has a least upper bound in D denoted
⊔
Y .

When d v d′ ∧ d 6= d′ we simply write d < d′. Next we write

C D : for the cardinality of D

H D : for the maximal length of chains in D

where a chain {d0, d1, · · · , dk} has length k if it contains k + 1 distinct
elements. As an example Sign has cardinality 8 and height 3 whereas TT
has cardinality 4 and height 2. For a complete lattice of the form S → L
we have

Fact 3.1 C(S → L) = (C L)p and H(S → L) = p · (H L) for p ≥ 1
being the cardinality of S.

Thus for the detection of signs analysis of the factorial program we have
C PState = 64 and H PState = 6 because the program contain only two
variables.

In the general framework we have

Proposition 3.2 H(A→t B) ≤ (C A) · (H B).

Proof Let hi : A→t B and assume that

h0 < h1 < · · · < hk

From hi < hi+1 we get that there exists w ∈ A such that hi w < hi+1 w
because the ordering on A →t B is defined componentwise. There are at
most (C A) choices of w and each w can occur at most (H B) times. Thus

k ≤ (C A) · (H B)

38 Implementation of Analyses

as was to be shown. 2

Any monotone function is a total function so Proposition 3.2 yields:

Corollary 3.3 Corollary 3.3: H(A→m B) ≤ (C A) · (H B).

We shall now apply Proposition 3.2 to the special chains obtained when
computing fixed points:

Theorem 3.4 In the general framework any continuous functional

H : (A→t B)→ (A→t B)

satisfies FIX H = Hk⊥ for

k = (C A) · (H B)

This result carries over to the monotone framework as well. When A = B
= S → L we have k = (C L)p · p · (H L) where p is the cardinality of S.

Proof Consider the chain

H0⊥ v H1⊥ v · · ·

Since A→t B is a finite complete lattice it cannot be the case that all H i⊥
are distinct. Let k′ be the minimal index for which Hk′⊥ = Hk′+1⊥. Then

H0⊥ < H1⊥ < · · · < Hk′⊥

Using Proposition 3.2 we then get that k ′ ≤ (C A) · (H B), i.e. k′ ≤ k.
Since Hk′⊥ = FIX H and Hk′⊥ v Hk⊥ v FIX H we get FIX H = Hk⊥ as
required. 2

Note that by finiteness of A and B the continuity of H simply amounts to
monotonicity of H.

Example 3.5 The detection of signs analysis of the factorial program gives
rise to a continuous functional

3.2 The completely additive framework 39

H : (PState→t PState)→ (PState→t PState)

Now C PState = 64 and H PState = 6 because the factorial program only
contains two variables. So, according to the theorem, at most 64 · 6 = 384
iterations are needed to determine the fixed point. However, the simple
calculation of Example 2.6 shows that the fixed point is obtained already
after the second iteration! Thus our bound is very pessimistic. 2

3.2 The completely additive framework

The reason why the upper bound determined in Theorem 3.4 is so imprecise
is that we consider all functions in PState →PState and do not exploit
any special properties of the functions Hn⊥, such as continuity. To obtain
a better bound we shall exploit properties of the SS[[S]] analysis functions.

We shall assume that the functions of interest are strict and additive; by
strictness of a function h we mean that

h ⊥ = ⊥

and by additivity that

h(d1 t d2) = (h d1) t (h d2)

Since the complete lattices considered are all finite it follows that a strict
and additive function h is also completely additive, that is

h(
⊔
Y) =

⊔{ h d | d ∈ Y }

for all subsets Y .

Exercise 3.2.1 Consider the detection of signs analysis and the claims:
(1) each SA[[a]] is strict; (2) each SB[[b]] is strict; (3) each SS[[S]] is strict;
(4) each SA[[a]] is additive; (5) each SB[[b]] is additive; (6) each SS[[S]] is
additive. Determine the truth or falsity of each of these claims.

An element d of a complete lattice (D,v) is called join-irreducible if for all
d1, d2 ∈ L:

d = d1 t d2 implies d = d1 or d = d2

40 Implementation of Analyses

As an example Sign has four join-irreducible elements: none, neg, zero
and pos. The element non-pos is not join-irreducible since it is the least
upper bound of zero and neg but is is equal to none of them.

From the definition it follows that the least element ⊥ of D is always join-
irreducible but we shall be more interested in the non-trivial join-irreducible
elements, i.e. those that are not ⊥. To this end we shall write

RJC L : for the number of non-bottom join-irreducible elements of L.

We thus have RJC Sign = 3 and RJC TT = 2.

Fact 3.6 RJC(S → L) = p · (RJC L) where p is the cardinality of S.

Proof The join-irreducible elements of S → L are those functions h that
map all but one element of S to ⊥ and one element to a join-irreducible
element of L. 2

Lemma 3.7 If (L,v) is a finite complete lattice we have

w =
⊔{ x | x v w, x is join-irreducible and x 6= ⊥}

for all w ∈ L.

Proof Assume by way of contradiction that the claim of the lemma is false.
Let W ⊆ L be the set of w ∈ L for which the condition fails. Since W is
finite and non-empty it has a minimal element w. From w ∈ W it follows
that w is not join-irreducible. Hence there exist w1 and w2 such that

w = w1 t w2, w 6= w1, w 6= w2

It follows that w1 < w, w2 < w and by choice of w that w1 /∈ W and
w2 /∈ W . We may then calculate

w = w1 t w2

=
⊔{ x | x v w1, x is join-irreducible and x 6= ⊥}
t⊔{ x | x v w2, x is join-irreducible and x 6= ⊥}

=
⊔{ x | (x v w1 or x v w2), x is join-irreducible and x 6= ⊥}

v ⊔{ x | x v w, x is join-irreducible and x 6= ⊥}
v w

3.2 The completely additive framework 41

This shows that

w =
⊔{ x | x v w, x is join-irreducible and x 6= ⊥}

and contradicts w ∈ W . HenceW = ∅ and the claim of the lemma holds. 2

In the completely additive framework we have

Proposition 3.8 H(A→sa B) ≤ (RJC A) · (H B).

Proof The proof is a refinement of that of Proposition 3.2. So we begin
by assuming that hi ∈ A→sa B and that

h0 < h1 < · · · < hk

As in the proof of Proposition 3.2 we get an element w such that hi w <

hi+1 w for each hi < hi+1. The element w is an arbitrary element of A so in
the proof of Proposition 3.2 there was (C A) choices for w. We shall now
show that w can be chosen as a non-trivial join-irreducible element of A
thereby reducing the number of choices to (RJC A). Calculations similar
to those in the proof of Proposition 3.2 will then give the required upper
bound on k, i.e. k ≤ (RJC A) · (H B).

The element w satisfies hi w < hi+1 w. By Lemma 3.7 we have

w =
⊔{ x | x v w, x is a join-irreducible and x 6= ⊥}

From the strictness and additivity of hi and hi+1 we get

hi w =
⊔{ hi x | x v w, x is join-irreducible and x 6= ⊥}

hi+1 w =
⊔{ hi+1 x | x v w, x is join-irreducible and x 6= ⊥}

It cannot be the case that hi x = hi+1 x for all non-bottom join-irreducible
elements x of A since then hi w = hi+1 w. So let x be a non-bottom join-
irreducible element where hi x < hi+1 x. Then there will only be (RJC A)
choices for x and this completes the proof. 2

We can now apply Proposition 3.8 to the special chains obtained when
computing fixed points:

42 Implementation of Analyses

Theorem 3.9 In the completely additive framework any continuous func-
tional

H : (A→sa B)→ (A→sa B)

satisfies FIX H = Hk⊥ for

k = (RJC A) · (H B)

When A = B = S → L we have k = p · (RJC L) · p · (H L) where p is the
cardinality of S.

Proof Analoguous to the proof of Theorem 3.4. 2

The equality test between the iterands H0⊥,H1⊥, · · · can be simplified in
this framework. To see this consider two functions h1, h2 ∈ A →sa B.
Then

h1 = h2

if and only if

h1 x = h2 x for all non-trivial join-irreducible elements x of A.

3.3 Iterative program schemes

The upper bounds expressed by Theorems 3.4 and 3.9 are obtained without
any assumptions about the functional H except that it is a continuous
function over the relevant lattices. In this section we shall restrict the form
of H.

For iterative programs as e.g. a while-loop the functional H will typically
have the form

H h = f t (h ◦ g)

Since our aim is to further improve the bound of the previous section we
shall assume that f and g are strict and additive functions. Then also the
iterands H i⊥ will be strict and additive.

3.3 Iterative program schemes 43

Exercise 3.3.1 The functionals obtained by analysing the while-loop in
the detection of signs analysis can be written in this form. To see this
define the auxiliary functions f-func and g-func by

f-func(f)ps =

init if f ps = none or f ps = tt

ps otherwise

g-func(f, g)ps =

init if f ps = none or f ps = ff

g ps otherwise

Show that the functional H obtained from while b do S can be written as
H h = f-func(SB[[b]])t h◦g-func(SB[[b]],SS[[S]]).

The first result is a refinement of Theorem 3.9:

Theorem 3.10 Let f ∈ A→sa B and g ∈ A→sa A be given and define

H h = f t (h ◦ g)

Then H : (A→sa B)→ (A→sa B) is a continuous functional and taking

k = (H A)

will ensure

FIX H = Hk⊥

When A = B = S → L we have k = p · (H L) where p is the cardinality of
S.

Writing H0 h = id t (h ◦ g) and taking k0 to satisfy

Hk0
0 ⊥ w = Hk0+1

0 ⊥ w

we have

FIX H w = Hk0⊥ w = f(Hk0
0 ⊥ w)

In other words, fixed points of H0 may be computed pointwise.

44 Implementation of Analyses

Basically this result says that in order to compute FIX H on a particular
value w it is sufficient to determine the values of the iterands H i

0⊥ at w and
then compare these values. So rather than having to test the extensional
equality of two functions on a set of arguments we only need to test the
equality of two function values. Furthermore, the theorem states that this
test has to be performed at most a linear number of times.

To prove the theorem we need a couple of lemmas:

Lemma 3.11 Let H h = f t (h ◦ g) for f ∈ A→sa B and g ∈ A→sa A.
Then for i ≥ 0 we have

H i+1⊥ =
⊔{ f ◦ gj | 0 ≤ j ≤ i}.

Proof We proceed by numerical induction on i. If i = 0 then the result is
immediate as H1⊥ = f t (⊥ ◦ g) = f =

⊔{ f ◦ gj | 0 ≤ j ≤ 0}. For the
induction step we calculate:

H i+2⊥ = f t (H i+1⊥) ◦ g
= f t (

⊔{ f ◦ gj | 0 ≤ j ≤ i}) ◦ g
=

⊔{ f ◦ gj | 0 ≤ j ≤ i+ 1}

where the last equality follows from the pointwise definition of
⊔

on A→sa

B. 2

Lemma 3.12 Let H h = f t (h ◦ g) for f ∈ A→sa B and g ∈ A→sa A.
Then

FIX H = f ◦ (FIX H0) and Hk⊥ = f ◦Hk
0⊥

where H0 h = id t (h ◦ g).

Proof We shall first prove that

H i⊥ = f ◦H i
0⊥ for i ≥ 0.

The case i = 0 is immediate because f is strict. So assume that i > 0. We
shall then apply Lemma 3.11 to H and H0 and get

3.3 Iterative program schemes 45

H i⊥ =
⊔{ f ◦ gj | 0 ≤ j ≤ i− 1}

H i
0⊥ =

⊔{ gj | 0 ≤ j ≤ i− 1}

Since f is additive we get

H i⊥ = f ◦ ⊔{ gj | 0 ≤ j ≤ i− 1} = f ◦H i
0⊥

as required.

We now have

FIX H =
⊔{ H i⊥ | i ≥ 0}

=
⊔{ f ◦H i

0⊥ | i ≥ 0}
= f ◦ ⊔{ H i

0⊥ | i ≥ 0}
= f ◦ (FIX H0)

where the third equality uses the complete additivity of f . 2

Proof of Theorem 3.10: We shall first prove that ifH k0
0 ⊥ w = Hk0+1

0 ⊥ w
then FIX H w = f(Hk0

0 ⊥ w). This is done in two stages.

First assume that k0 = 0. Then H0
0⊥ w = H1

0⊥ w amounts to ⊥ = w.
Using Lemma 3.11 and the strictness of g we get

H i+1
0 ⊥ ⊥ =

⊔{ gj⊥ | 0 ≤ j ≤ i} = ⊥

for i ≥ 0 and thereby FIX H0 ⊥ = ⊥. But then Lemma 3.12 gives

FIX H ⊥ = f(FIX H0 ⊥) = f⊥ = f(H0
0⊥ ⊥)

as required.

Secondly assume that k0 > 0. From Hk0
0 ⊥ w = Hk0+1

0 ⊥ w we get, using
Lemma 3.11, that

⊔{ gj w | 0 ≤ j < k0} =
⊔{ gj w | 0 ≤ j ≤ k0}

This means that

gk0 w v ⊔{ gj w | 0 ≤ j < k0}

We shall now prove that for all l ≥ 0

46 Implementation of Analyses

gk0+l w v ⊔{ gj w | 0 ≤ j < k0} (∗)

We have already established the basis l = 0. For the induction step we get

gk0+l+1 w = g(gk0+l w)

v g(
⊔{ gj w | 0 ≤ j < k0})

=
⊔{ gj w | 1 ≤ j ≤ k0}

v ⊔{ gj w | 0 ≤ j < k0}

where we have used the additivity of g. This proves (∗). Using Lemma
3.11 and (∗) we get

Hk0+l
0 ⊥ w =

⊔{ gj w | 0 ≤ j < k0 + l}
=

⊔{ gj w | 0 ≤ j < k0}
= Hk0

0 ⊥ w

for all l ≥ 0. This means that FIX H0 w = Hk0
0 ⊥ w and using Lemma

3.12 we get

FIX H w = f(Hk0
0 ⊥ w)

as required.

To complete the proof of the theorem we have to show that one may take
k = (H A). For this it suffices to show that one cannot have a chain

H0
0⊥ w < H1

0⊥ w < · · · < Hk
0⊥ w < Hk+1

0 ⊥ w

in A. But this is immediate since k + 1 > H(A). 2

Chapter 4

More Program Analyses

The detection of signs analysis is an example of a forward analysis: the
analysis of the program proceeds as the computation does, the only differ-
ence being that we compute with abstract properties rather than concrete
values. Actually, many forward program analyses can be seen as a slight
variation of the detection of signs analysis: the properties and the way we
compute with them may be different but the overall approach will be the
same. In this chapter we shall extract the overall approach and present it
as a general framework where only a few parameters need to be specified
in order to obtain the desired analysis.

4.1 The Framework

In general the specification of a program analysis falls into two parts. First
we introduce the properties that the analysis operates on and next we
specify the actual analysis for the three syntactic categories of While.

Properties and Property States

The basic properties are those of the numbers and the truth values. So the
first step in specifying an analysis will be to define

P1: a complete lattice of properties of Z: (PZ , vZ)

P2: a complete lattice of properties of T: (PT , vT)

Example 4.1.1 In the case of the detection of signs analysis we have PZ

= Sign and PT = TT.

47

48 More Program Analyses

FA[[n]]ps = FZ[[n]] ps

FA[[x]]ps = ps x

FA[[a1 + a2]]ps = addF (FA[[a1]]ps, FA[[a2]]ps)

FA[[a1 ? a2]]ps = multF (FA[[a1]]ps, FA[[a2]]ps)

FA[[a1 − a2]]ps = subF (FA[[a1]]ps, FA[[a2]]ps)

FB[[true]]ps = FT [[true]] ps

FB[[false]]ps = FT [[false]] ps

FB[[a1 = a2]]ps = eqF (FA[[a1]]ps, FA[[a2]]ps)

FB[[a1 ≤ a2]]ps = leqF (FA[[a1]]ps, FA[[a2]]ps)

FB[[¬ b]]ps = negF (FB[[b]]ps)

FB[[b1 ∧ b2]]ps = andF (FB[[b1]]ps, FB[[b2]]ps)

Table 4.1: Forward analysis of expressions

The property states will then be defined as

PState = Var → PZ

independently of the choice of PZ. The property states inherit the ordering
of PZ as indicated in Lemma 1.1 and will thus form a complete lattice. In
particular, PState will have a least element which we call init.

Forward Analysis

In a forward analysis the computation proceeds much as in the direct style
denotational semantics: given properties of the input the analysis will com-
pute properties of the output. Thus the idea will be to replace the semantic
functions

A: Aexp → State → Z

B: Bexp → State → T

Sds: Stm → State ↪→ State

with semantic functions that compute with properties rather than values:

FA: Aexp → PState → PZ

4.1 The Framework 49

FB: Bexp → PState → PT

FS: Stm → PState → PState

The semantic functions FA and FB are defined in Table 4.1. Whenever the
direct style semantics performs computations involving numbers or truth
values the analysis has to do something analogous depending on the actual
choice of properties. We shall therefore assume that we have functions

F1: addF : PZ × PZ → PZ

F2: multF : PZ × PZ → PZ

F3: subF : PZ × PZ → PZ

F4: eqF : PZ × PZ → PT

F5: leqF : PZ × PZ → PT

F6: negF : PT → PT

F7: andF : PT × PT → PT

describing how the analysis proceeds for the operators of arithmetic and
boolean operators. Furthermore, we need a way of turning numbers and
truth values into properties:

F8: FZ: Num → PState → PZ

F9: FT : {true, false} → PState → PT

Example 4.1.2 For the detection of signs analysis we have

addF (p1, p2) = p1 +S p2

multF (p1, p2) = p1 ?S p2

subF (p1, p2) = p1 −S p2

eqF (p1, p2) = p1 =S p2

leqF (p1, p2) = p1 ≤S p2

negF p = ¬T p
andF (p1, p2) = p1 ∧ T p2

where +S, ?S, −S, −S, =S , ≤S, ¬T and ∧ T are defined in Tables 2.4 and
2.6. Furthermore, we have

FZ[[n]] ps = absZ(N [[n]])

FT [[true]] ps = tt and FT [[false]] ps = ff

50 More Program Analyses

FS[[x := a]] ps = ps[x 7→FA[[a]]ps]

FS[[skip]] = id

FS[[S1;S2]] = FS[[S2]] ◦ FS[[S1]]

FS[[if b then S1 else Ss]] = condF (FB[[b]], FS[[S1]], FS[[S2]])

FS[[while b do S]] = FIX H

where H h = condF (FB[[b]], h ◦ FS[[S]], id)

Table 4.2: Forward analysis of statements

so the property states are ignored when determining the properties of num-
bers and truth values.

The forward analysis of a statement will be defined by a function FS of
functionality:

FS: Stm → PState → PState

The idea is that if ps is a property of the initial state of S then FS[[S]]
ps is a property of the final state obtained by executing S from the initial
state. The totality of FS[[S]] reflects that we shall be able to analyse all
statements of While including statements that loop in the direct style
semantics. The definition of FS is given by the clauses of Table 4.2 and
they are parameterised on the definition of condF :

F10: condF : ((PState → PT) × (PState → PState)

× (PState → PState)) → (PState → PState)

specifying how to analyse the conditional.

Example 4.1.3 For the detection of signs analysis we have

condF (f, h1, h2)ps

=

init if f ps = none
h1 ps if f ps = tt
h2 ps if f ps = ff
(h1 ps) tPS (h2 ps) if f ps = any

In summary, to specify a forward program analysis of While we only have
to provide definitions of the lattices of P1 and P2 and to define the func-
tions of F1 – F10.

4.1 The Framework 51

BA[[n]] p = BZ[[n]] p

BA[[x]] p = init[x 7→p]
BA[[a1 + a2]] p = join(BA[[a1]], BA[[a2]])(addB p)

BA[[a1 ? a2]] p = join(BA[[a1]], BA[[a2]])(multB p)

BA[[a1 − a2]] p = join(BA[[a1]], BA[[a2]])(subB p)

BB[[true]] p = BT [[true]] p

BB[[false]] p = BT [[false]] p

BB[[a1 = a2]] p = join(BA[[a1]], BA[[a2]])(eqB p)

BB[[a1 ≤ a2]] p = join(BA[[a1]], BA[[a2]])(leqB p)

BB[[¬ b]] p = BB[[b]](negB p)

BB[[b1 ∧ b2]] p = join(BB[[b1]], BB[[b2]])(andB p)

Table 4.3: Backward analysis of expressions

Backward Analysis

In a backward analysis the computation is performed in the opposite di-
rection of the direct style semantics: given properties of the output of the
computation the analysis will predict the properties the input should have.
Thus the idea will be to replace the semantics functions

A: Aexp → State → Z

B: Bexp → State → T

Sds: Stm → State ↪→ State

with semantic functions that not only compute with properties rather than
values but also “invert the function arrows”:

BA: Aexp → PZ → PState

BB: Bexp → PT → PState

BS: Stm → PState → PState

For an arithmetic expression a the idea is that given a property p of the
result of computing a, BA[[a]] p will be a property state telling which prop-
erties the variables of a should have in order for the result of computing
a to have property p. So for the result of evaluating a variable x to have

52 More Program Analyses

property p we simply assume that the variable has that property and we
have no assumptions about the other variables. As another example con-
sider the analysis of the expression a1 + a2 and assume that the result of
evaluating it should be p; we will then determine which properties the vari-
ables of a1 +a2 should have in order for this to be the case. The first step of
the analysis will be to determine which properties the result of evaluating
the subexpressions a1 and a2 should have in order for the result of a1 + a2

to be p. Let that be p1 and p2. We can now analyse the subexpressions:
the analysis of ai from pi will find out which properties the variables of ai
should have initially in order for the result of ai to have property pi. The
last step will be to combine the information from the two subexpressions
and this will often be a least upper bound operation. Thus the analysis
can be specified as

BA[[a1 + a2]] p = join(BA[[a1]], BA[[a2]]) (addB p)

where

join(h1, h2)(p1, p2) = (h1 p2) tPS (h2 p2)

and tPS is the least upper bound on property states.

Similar remarks hold for the backward analysis of booleans expressions.
The clauses are given in Table 4.3 and as was the case for the forward
analysis they are parameterised on the auxiliary functions specifying how
the arithmetic and boolean operators should be analysed:

B1: addB: PZ → PZ × PZ

B2: multB: PZ → PZ × PZ

B3: subB: PZ → PZ × PZ

B4: eqB: PT → PZ × PZ

B5: leqB: PT → PZ × PZ

B6: negB: PT → PT

B7: andB: PT → PT × PT

We need a way of turning numbers and truth values into property states.
Given a number n and a property p the analysis BA has to determine a
property state that will ensure that the result of evaluating n will have
property p. However, it might be the case that n cannot have the property
p at all and in this case the property state returned by BA[[n]] p should
differ from that returned if n can have the property p. Therefore we shall
assume that we have functions

4.2 Dependency Analysis 53

BS[[x := a]] ps = updateB(ps, x, BA[[a]])

BS[[skip]] = id

BS[[S1;S2]] = BS[[S1]] ◦ BS[[S2]]

BS[[if b then S1 else Ss]] = condB(BB[[b]], BS[[S1]], BS[[S2]])

BS[[while b do S]] = FIX H

where H h = condB(BB[[b]], BS[[S]] ◦ h, id)

Table 4.4: Backward analysis of statements

B8: BZ: Num → PZ → PState

B9: BT : {true, false} → PT → PState

that take the actual property into account when turning numbers and truth
values into property states.

Turning to statements we shall specify their analysis by a function BS of
functionality:

BS: Stm → PState → PState

Again the totality of BS[[S]] reflects that we shall be able to analyse all
statements including those that loop in the direct style semantics. Since
BS is a backward analysis the argument ps of BS[[S]] will be a property
state corresponding to the result of executing S and BS[[S]] ps will be the
property state corresponding to the initial state from which S is executed.
The definition of BS is given in Table 4.4. We shall assume that we have
a functions

B10: updateB: PState × Var × (PZ → PState)→ PState

B11: condB: ((PT → PState) × (PState → PState)

× (PState → PState)) → (PState → PState)

specifying how to analyse the assignment and the conditional.

4.2 Dependency Analysis

The detection of signs analysis is an example of a forward first order anal-
ysis: we are concerned with properties of the values arising during com-
putation. We shall now present a forward second order analysis: in a

54 More Program Analyses

dependency analysis we are concerned with properties of the relationship
between values. The properties we shall study are quite simple: eq for
when two values are equal and any for when two values might be unequal.

The goal of the dependency analysis will be to regard some program vari-
ables as input variables and some as output variables and the analysis will
then be used to determine whether or not the final values of the output
variables only depend on the initial values of the input variables. If so,
we shall say that there is a functional dependency between the input and
output variables of the program.

As an example, in the factorial program

y := 1; while ¬(x = 1) do (y := y ? x; x := x − 1)

we will think of x as an input variable and y as an output variable. We
may then ask whether the final values of the output variables only depend
upon the initial values of the input variables. This is clearly the case for
the program above but it is not the case for all programs. An example is

while ¬(x = 1) do (y := y ? x; x := x − 1)

where we still assume that x is the input variable and y is the output
variable. Here the variable y is uninitialized and therefore its value in the
final state does not only depend on the value of the input variable x but
also on the value of y in the initial state.

The specification of the analysis falls into two parts. First we introduce
the properties that the analysis operates on and next we specify the actual
analysis for the three syntactic categories.

Properties and property states

For the dependency analysis we shall be interested in two properties of the
relationship between values (numbers or truth values):

• eq meaning that the values definitely are equal, and

• any meaning that the values may not be equal.

We shall write

P = {eq, any}

4.2 Dependency Analysis 55

for this set of properties and we use p as a meta-variable ranging over P. It
is more informative to know that an expression has the property eq than
any. As a record of this we define a partial order vP on P:

eq vP any, eq vP eq, any vP any

which may be depicted as

• eq

• any

Thus the more informative property is at the bottom of the ordering.

Fact 4.1 (P, vP) is a complete lattice. If Y is a subset of P then
⊔
P Y = any if and only if any ∈ Y

Given two values we can associate a “best” property with them. In the
case of numbers we define the function

absZ: Z × Z → P

defined by

absZ (z1, z2) =
{

eq if z1 = z2

any otherwise

In the case of truth values we define

absT : T × T → P

defined by

absT (t1, t2) =
{

eq if t1 = t2
any otherwise

Following the approach of the previous analysis we introduce a property
state mapping variables to properties. The property states will express
properties of relationships between states. It turns out that it does not

56 More Program Analyses

make sense to compare states that are “too different”: they must have com-
parable “histories”. To capture this we introduce a special token history that
captures the “flow of control”; it acts like an “extended program counter”.
The set PState of property states ranged over by the meta-variable ps, is
then defined by

PState = (Var ∪ {history}) → P

The idea is that if history is mapped to eq then the two states have the
same “history”; if it is mapped to any this need not be the case. For a
property state ps ∈ PState we define the set

EQ(ps) = { x ∈ Var ∪ {history} | ps x = eq }

of “variables” mapped to eq and we say that

ps is proper if and only if ps(history) = eq.

If ps is not proper we shall sometimes say that it is improper .

The operation absZ may be lifted to states; for this we define

abs: State × State → PState

in a component-wise manner:

abs(s1, s2) x = absZ(s1 x, s2 x)

abs(s1, s2) history = eq.

Our next task will be to endow PState with some partially ordered struc-
ture: In Lemma 1.1 we instantiate S to be Var ∪ {history} and D to be
P and we get:

Corollary 4.2 Let vPS be the ordering on PState defined by

ps1 vPS ps2

if and only if

ps1 x vP ps2 x for all x ∈ Var ∪ {history}

4.2 Dependency Analysis 57

Then (PState, vPS) is a complete lattice. In particular, the least upper
bound

⊔
PS Y of a subset Y of PState is characterized by

(
⊔
PS Y) x =

⊔
PS { ps x | ps ∈ Y }

We shall write fail for the property state ps that maps all variables to
any and that maps history to any. Similarly, we shall write init for the
property state that maps all variables to eq and that maps history to eq.
Note that init is the least element of PState.

Example 4.3 To motivate the need for keeping track of the history, that
is the need for history, consider the following statement

S: if x = 1 then x := 1 else x := 2

Assume first that we do not keep track of the flow of control. The analysis
of each of the two branches will give rise to a function that maps ps to
ps[x7→eq] so it would be natural to expect the analysis of S to do the
same. However, this will not always be correct . To see this suppose that
ps, s1 and s2 are such that

ps x = any and ps y = eq otherwise

s1 x = 1 and s1 y = 0 otherwise

s2 x = 2 and s2 y = 0 otherwise

Then clearly

abs(s1, s2) vPS ps

so ps captures the relationship between the two initial states. But it is
not the case that abs(Sds[[S]]s1, Sds[[S]]s2) vPS ps[x7→eq] because Sds[[S]]s1

= s1 and Sds[[S]]s2 = s2 and s1 x 6= s2 x. Thus the result ps[x7→eq] of
the analysis does not capture the relationship between the final states –
a property we definitely want the analysis to have in order to express its
safety.

The token history is used to solve this dilemma. The key observation is
that if ps x = any then the outcome of the test x = 1 may differ for
different states described by ps. Thus the flow of control does not need to
be the same for the two states. This is captured by the token history: if
the analysis of the test gives any then history will be mapped to any in
the resulting property state and otherwise it is mapped to eq. We shall
return to this example in more detail when we have specified the analysis
for statements. 2

58 More Program Analyses

Exercise 4.4 Show that

ps1 vPS ps2 if and only if EQ(ps1) ⊇ EQ(ps2)

Next show that

EQ(
⊔
PS Y) =

⋂ { EQ(ps) | ps ∈ Y }

whenever Y is a non-empty subset of PState. 2

Analysis of expressions

The analysis of an arithmetic expression a will be specified by a (total)
function DA[[a]] from property states to properties:

DA: Aexp → PState → P

Similarly, the analysis of a boolean expression b will be defined by a (total)
function DB[[b]] from property states to properties:

DB: Bexp → PState → P

The defining clauses are given in Table 4.5.

The overall idea is that once ps history has the value any then all results
produced should be any. This is reflected directly in the clauses for the
basic constructs n, x, true and false. For the composite expression, as for
example a1 + a2, the idea is that it can only have the property eq if both
subexpressions have that property. This is ensured by the binary operation
tP .

The functions DA[[a]] and DB[[b]] are closely connected with the sets of free
variables defined in Chapter 1 of [NN]:

Exercise 4.5 Prove that for every arithmetic expression a we have

DA[[a]]ps = eq if and only if FV(a) ∪ {history} ⊆ EQ(ps)

Formulate and prove a similar result for boolean expressions. Deduce that
for all a of Aexp we get DA[[a]]ps = any if ps is improper, and that for
all b of Bexp we get DB[[b]]ps = any if ps is improper. 2

4.2 Dependency Analysis 59

DA[[n]]ps =

eq if ps history = eq

any otherwise

DA[[x]]ps =

ps x if ps history = eq

any otherwise

DA[[a1 + a2]]ps = (DA[[a1]]ps) tP (DA[[a2]]ps)

DA[[a1 ? a2]]ps = (DA[[a1]]ps) tP (DA[[a2]]ps)

DA[[a1 − a2]]ps = (DA[[a1]]ps) tP (DA[[a2]]ps)

DB[[true]]ps =

eq if ps history = eq

any otherwise

DB[[false]]ps =

eq if ps history = eq

any otherwise

DB[[a1 = a2]]ps = (DA[[a1]]ps) tP (DA[[a2]]ps)

DB[[a1 ≤ a2]]ps = (DA[[a1]]ps) tP (DA[[a2]]ps)

DB[[¬ b]]ps = DB[[b]]ps

DB[[b1 ∧ b2]]ps = (DB[[b1]]ps) tP (DB[[b2]]ps)

Table 4.5: Dependency analysis of expressions

Analysis of statements

Turning to statements we shall specify their analysis by a function DS of
functionality:

DS: Stm → PState → PState

The totality ofDS [[S]] reflects that we shall be able to analyse all statements
including a statement like while true do skip that loops. The definition
of DS is given in Table 4.6.

The clauses for assignment, skip and composition are much as in the direct
style denotational semantics of Chapter 4 of [NN]. In the clause for if b
then S1 else S2 we use the auxiliary function condD defined by

condD(f , h1, h2) ps =

(h1 ps) tPS (h2 ps) if f ps = eq

fail if f ps = any

60 More Program Analyses

DS [[x := a]] ps = ps[x7→DA[[a]]ps]

DS [[skip]] = id

DS [[S1;S2]] = DS [[S2]] ◦ DS[[S1]]

DS [[if b then S1 else Ss]] = condD(DB[[b]], DS [[S1]], DS [[S2]])

DS [[while b do S]] = FIX H

where H h = condD(DB[[b]], h ◦ DS[[S]], id)

Table 4.6: Dependency analysis of statements

First consider the case where we are successful in analysing the condition,
that is where f ps = eq. For each variable x we can determine the result
of analysing each of the branches, namely (h1 ps) x for the true branch and
(h2 ps) x for the false branch. The least upper bound of these two results
will be the new property bound to x, that is the new property state will
map x to

((h1 ps) x) tP ((h2 ps) x)

If the analysis of the condition is not successful, that is f ps= any, then the
analysis of the conditional will fail and we shall therefore use the property
state fail.

Example 4.6 Returning to Example 4.3 we see that if ps x = any then

DB[[x = 1]]ps = any

We therefore get

DS [[if x = 1 then x := 1 else x := 2]]ps = fail

using the above definition of condD. 2

Example 4.7 Consider now the statement

if x = x then x := 1 else x := y

First assume that ps x = eq, ps y = any and ps history = eq. Then
DA[[x = x]] ps = eq and we get

4.2 Dependency Analysis 61

DS[[if x = x then x := 1 else x := y]] ps x

= condD(DB[[x = x]], DS [[x := 1]], DS [[x := y]]) ps x

= (DS [[x := 1]] ps tPS DS [[x := y]] ps) x

= any

because DB[[x = x]]ps = eq, (DS [[x := 1]]ps) x = eq but (DS [[x := y]]ps)
x = any. So even though the false branch never will be executed it will
influence the result obtained by the analysis.

Next assume that ps x = any, ps y = eq and ps history = eq. Then DA[[x
= x]] ps = any and we get

DS[[if x = x then x := 1 else x := y]] ps

= condD(DB[[x = x]], DS [[x := 1]], DS [[x := y]]) ps

= fail

because DB[[x = x]]ps = any. So even though the test always evaluates
to true for all states, this is not captured by the analysis. More complex
analyses could do better (for example by trying to predict the outcome of
tests). 2

In the clause for the while-loop we also use the function condD and other-
wise the clause is as in the direct style denotational semantics of Chapter 4
of [NN]. In particular we use the fixed point operation FIX as it corresponds
to unfolding the while-loop any number of times. As in Chapter 4 of [NN]
the fixed point is defined by

FIX H =
⊔ { Hn ⊥ | n ≥ 0 }

where the functionality of H is

H: (PState → PState) → (PState → PState)

and where PState → PState is the set of total functions from PState to
PState. In order for this to make sense H must be a continuous function
on a ccpo with least element ⊥.

Example 4.8 We are now in a position where we can attempt the appli-
cation of the analysis to the factorial statement:

DS[[y:=1; while ¬(x=1) do (y:=y?x; x:=x−1)]]

62 More Program Analyses

We shall apply this function to the proper property state ps0 that maps x
to eq and all other variables (including y) to any as this corresponds to
viewing x as the only input variable of the statement.

To do so we use the clauses of Tables 4.5 and 4.6 and get

DS [[y:=1; while ¬(x=1) do (y:=y?x; x:=x−1)]] ps0

= (FIX H) (ps0[y7→eq])

where

H h = condD(DB[[¬(x=1)]], h ◦ DS[[y:=y?x; x:=x−1]], id)

We first simplify H and obtain

(H h) ps =

fail if ps history = any or ps x= any

(h ps) tPS ps if ps history = eq and ps x= eq

At this point we shall exploit the result of Exercise 2.7:

if Hn ⊥ = Hn+1 ⊥ for some n

then FIX H = Hn ⊥

where ⊥ is the function ⊥ ps = init for all ps. We can now calculate the
iterands H1 ⊥, H1 ⊥, · · ·. We obtain

(H0 ⊥) ps = init

(H1 ⊥) ps =

fail if ps x = any or ps not proper

ps if ps x = eq and ps proper

(H2 ⊥) ps =

fail if ps x = any or ps not proper

ps if ps x = eq and ps proper

where ps is an arbitrary property state. SinceH1 ⊥ =H2 ⊥ our assumption
above ensures that we have found the least fixed point for H:

(FIX H) ps =

fail if ps x = any or ps not proper

ps if ps x = eq and ps proper

It is now straightforward to verify that (FIX H) (ps0[y7→eq]) y = eq and
that (FIX H)(ps0[y7→eq]) is proper. We conclude that there is a functional
dependency between the input variable x and the output variable y. 2

4.2 Dependency Analysis 63

Exercise 4.9 Extend While with the statement repeat S until b and
give the new (compositional) clause for DS . Motivate your extension. 2

Exercise 4.10 Prove the existence of the dependency analysis as specified
by DA, DB and DS . 2

Exercise 4.11 Define the function

prop: PState → PState

by

prop ps x = (ps x) tP (ps history)

and note that prop ps = ps when ps is proper and prop ps = fail otherwise.
Define the safety predicate

g safeA h

by

abs(s1, s2) vPS prop ps
⇓
absZ(g s1, g s2) vP h ps

Prove that A[[a]] safeA DA[[a]] holds for all arithmetic expressions a ∈Aexp.

Perform a similar development for the analysis of boolean expressions. 2

Exercise 4.12 Define the safety predicate

g safeS h

by

abs(s1, s2) vPS prop ps
⇓
(g s1 6= undef ∧ g s2 6= undef) implies

abs(g s1, g s2) vPS prop (h ps), and
h ps proper implies

(g s1 6= undef if and only if g s2 6= undef)

64 More Program Analyses

Prove that Sds[[S]] safeS DS [[S]] holds for all statements S ∈ Stm. 2

Exercise 4.13 One may consider replacing the definition of condD by

cond′D(f, h1, h2)ps = (h1 ps) tPS (h2 ps)

Formally show that the resulting analysis cannot be correct in the sense of
Exercise 4.12. 2

Exercise 4.14 In the above exercise we saw that condD could not be sim-
plified so as to ignore the test. Now consider the following remedy

cond′D(f, h1, h2)ps

=

(h1 ps) tPS (h2 ps) if f ps = eq

((h1 ps′) tPS (h2 ps′))[history 7→ eq]

if f ps = any and ps′ = ps[history 7→ any]

Give an example statement where cond′D is preferable to condD. 2

Exercise 4.15 The results developed in Chapter 3 for computing fixed
points are applicable to the functional dependency analysis:

• show that the analysis is in the completely additive framework, that
is, that the functions DS [[S]] are strict and additive for all statements
S of While, and

• show that the functionals H obtained for while-loops can be written
in iterative form.

Conclude, using Theorem 3.10 that in a program with p variables at most
p + 1 iterations are needed to compute the fixed point. 2

