Containers for Effects and Contexts

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Oxford, 6-10 July 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

This course

- We will think about computational effects and contexts as modelled with monads, comonads and related machinery.
- We will primarily be interested in questions like: Where do they come from? How to generate them? How many are they?

And also: How to arrive at answers to such questions with as little work as possible?

- In other words, we will amuse ourselves with the combinatorics of monads etc.
- The main tool: Containers (possibly quotient containers). But not today.
- Today's ambition: Monads, monad maps and distributive laws.

Useful prior knowledge

- This is not strictly needed, but will help.
- Basics of functional programming and the use of monads (and perhaps idioms, comonads) in functional programming.
- From category theory:
 - functors, natural transformations
 - adjunctions
 - symmetric monoidal (closed) categories
 - Cartesian (closed) categories, coproducts
 - initial algebra, final coalgebra of a functor
 - . . . :-(
- All examples however will be for Set. :-)
- (But many generalize to any Cartesian (closed) or monoidal (closed) category.)

Monads

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Monads

- \bullet A monad on a category ${\mathcal C}$ is given by a
 - a functor $T : \mathcal{C} \to \mathcal{C}$,
 - a natural transformation $\eta : \mathsf{Id}_{\mathcal{C}} \to \mathcal{T}$ (the *unit*),
 - a natural transformation µ : T · T → T (the multiplication)

such that

 This definition says that monads are monoids in the monoidal category ([C, C], Id_C, ·).

An alternative formulation: Kleisli triples

- A more FP-friendly formulation is this.
- A Kleisli triple is given by
 - an object mapping $\mathcal{T}:|\mathcal{C}|
 ightarrow |\mathcal{C}|$,
 - for any object A, a map $\eta_A: A \to TA$,
 - for any map $k : A \rightarrow TB$, a map $k^* : TA \rightarrow TB$ (the *Kleisli extension* operation)

such that

- if $k: A \to TB$, then $k^* \circ \eta_A = k$,
- $\bullet \ \eta^\star_A = \operatorname{id}_{\mathit{T\!A}},$
- if $k : A \to TB$, $\ell : B \to TC$, then $(\ell^* \circ k)^* = \ell^* \circ k^* : TA \to TC$.
- (Notice there are no explicit functoriality and naturality conditions.)

Monads = Kleisli triples

- There is a bijection between monads and Kleisli triples.
- Given T, η , μ , one defines

• if $k : A \to TB$, then $k^* = TA \xrightarrow{Tk} T(TB) \xrightarrow{\mu_B} TB$.

• Given T (on objects only), η and $-^{\star}$, one defines

• if
$$f : A \to B$$
, then
 $Tf = \left(A \xrightarrow{f} B \xrightarrow{\eta_B} TB\right)^* : TA \to TB$,
• $\mu_A = \left(TA \xrightarrow{\text{id}_{TA}} TA\right)^* : T(TA) \to TA$.

Kleisli category of a monad

- A monad T on a category C induces a category KI(T) called the Kleisli category of T defined by
 - an object is an object of \mathcal{C} ,
 - a map of from A to B is a map of C from A to TB,

•
$$\operatorname{id}_{A}^{T} = A \xrightarrow{\eta_{A}} TA$$
,
• $\operatorname{if} k : A \to^{T} B, \ell : B \to^{T} C$, then
 $\ell \circ^{T} k = A \xrightarrow{k} TB \xrightarrow{T\ell} T(TC) \xrightarrow{\mu_{C}} TC$

From C there is an identity-on-objects *inclusion* functor J to KI(T), defined on maps by

• if
$$f : A \to B$$
, then
 $Jf = A \xrightarrow{f} B \xrightarrow{\eta_B} TB = A \xrightarrow{\eta_A} TA \xrightarrow{Tf} TB$.

Monad algebras

An algebra of a monad (T, η, μ) is an object A with a map a : TA → A such that

• A map between two algebras (A, a) and (B, b) is a map h such that

The algebras of the monad and maps between them form a category EM(T) with an obvious forgetful functor
 U: EM(T) → C.

Computational interpretation

- Think of C as the category of pure functions and of TA as the type of effectful computations of values of a type A.
- $\eta_A : A \to TA$ is the identity function on A viewed as trivially effectful.
- Jf : A → TB is a general pure function f : A → B viewed as trivially effectful.
- $\mu_A : T(TA) \to TA$ flattens an effectful computation of an effectful computation.
- k^{*}: TA → TB is an effectful function k : A → TB extended into one that can input an effectful computation.
- An algebra (A, a : TA → A) serves as a recipe for handling the effects in computations of values of type A.

Kleisli adjunction

- In the opposite direction of J : C → KI(T) there is a functor R : KI(T) → C defined by
 - RA = TA,
 - if $k : A \to^T B$, then $Rk = TA \xrightarrow{k^*} TB$.
- *R* is right adjoint to *J*.

• Importantly, $R \cdot J = T$. Indeed,

• R(JA) = TA,

- if $f: A \to B$, then $R(Jf) = (\eta_B \circ f)^* = Tf$.
- Moreover, the unit of the adjunction is η .
- $J \dashv R$ is the initial adjunction factorizing T in this way.

Eilenberg-Moore adjunction

In the opposite direction of U : EM(T) → C there is a functor L : C → EM(T) defined by

•
$$LA = (TA, \mu_A)$$
,

• if $f : A \to B$, then $Lf = Tf : (TA, \mu_A) \to (TB, \mu_B)$.

• L is left adjoint to U.

• $U \cdot L = T$. Indeed,

- $U(LA) = U(TA, \mu_A) = TA$,
- if $f: A \to B$, then U(Lf) = U(Tf) = Tf.
- The unit of the adjunction is η .
- $L \dashv U$ is the final adjunction factorizing T.

Exceptions monads

- The functor:
 - TA = E + A where E is some set (of exceptions)
- The monad structure:

•
$$\eta_A x = \operatorname{inr} x$$
,
• $\mu_A(\operatorname{inl} e) = \operatorname{inl} e$,
 $\mu_A(\operatorname{inr}(\operatorname{inl} e)) = \operatorname{inl} e$,
 $\mu_A(\operatorname{inr}(\operatorname{inr} x)) = \operatorname{inr} x$.

- This is the only monad structure on this functor.
- (This example generalizes to any coCartesian category, in fact to any monoidal category with a given monoid. In a coCartesian category, any object *E* carries exactly one monoid structure defined by $o = ?_E : 0 \rightarrow E$ and $\oplus = \nabla_E : E + E \rightarrow E$.)

Reader monads

- The functor:
 - $TA = S \Rightarrow A$ where S is a set (of readable states)
- The monad structure:

•
$$\eta_A x = \lambda s. x$$
,

- $\mu_A f = \lambda s. f s s.$
- This is the only monad structure on this functor.

• (This example generalizes to any monoidal closed category with a given comonoid. In a Cartesian closed category, any object S comes with a unique comonoid structure given by $!_S : S \to 1$, $\Delta_S : S \to S \times S$.)

Writer monads

- We are interested in this functor:
 - $TA = P \times A$ where P is a set (of updates)
- The possible monad structures are:

• Monad structures on this functor are in a bijection with monoid structures on *P*.

• (This example generalizes to any monoidal category with a given monoid.)

State monads

• The monad:

- $T A = S \Rightarrow S \times A$ where S is a set (of readable/overwritable states),
- $\eta_A x = \lambda s.(s, x)$
- $\mu_A f = \lambda s$. let (s', g) = f s in g(s', x)

• (This example works in any monoidal closed category.)

List monad and variations

- The list monad:
 - TA = List A,

•
$$\eta_A x = [x],$$

- $\mu_A xss = \text{concat} xss$.
- Some variations:
 - $TA = \{xs : A^* \mid xs \text{ is square-free}\}$
 - $TA = \{xs : A^* \mid xs \text{ is duplicate-free}\}$

•
$$TA = 1 + A \times A$$

•
$$TA = \mathcal{M}_{\mathrm{f}} A$$

- $TA = \mathcal{P}_{\mathrm{f}} A$
- non-empty versions of the above
- Can you characterize the algebras of these monads?

Monad maps

Monad maps

 A monad map between monads *T*, *T'* on a category *C* is a natural transformation *τ* : *T* → *T'* satisfying

- Monads on C and maps between them form a category Monad(C).
- Monad maps are monoid maps in the monoidal category $([\mathcal{C},\mathcal{C}], Id_{\mathcal{C}}, \cdot)$ and the category of monads is the category of monoids in $([\mathcal{C},\mathcal{C}], Id_{\mathcal{C}}, \cdot)$.

Kleisli triple maps

• A map between two Kleisli triples T, T' is, for any object A, a map $\tau_A : TA \to T'A$ such that

•
$$\tau_A \circ \eta_A = \eta'_A$$
,

- if $k : A \to TB$, then $\tau_B \circ k^* = (\tau_B \circ k)^{*'} \circ \tau_A$.
- (No explicit naturality condition on τ !)
- Kleisli triples on C and maps between them form a category that is isomorphic to **Monad**(C).

Monad maps vs. functors between Kleisli categories

There is a bijection between monad maps *τ* : *T* → *T'* and functors *V* : KI(*T*) → KI(*T'*) such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- This is defined by
 - *VA* = *A*,
 - if $k : A \to TB$, then $Vk = A \xrightarrow{k} TB \xrightarrow{\tau_B} T'B$.

and

•
$$\tau_A = V(TA \xrightarrow{\operatorname{id}_{TA}} {}^TA) : TA \to {}^{T'}A$$

Monad maps vs. functors between E-M categories

 There is a bijection between monad maps τ : T → T' and functors V : EM(T') → EM(T) such that

(Note the reversed direction.)

• This is defined by

and

•
$$\tau_A = \text{let} (T'A, a) \leftarrow V(T'A, \mu'_A) \text{ in } a \circ T\eta'_A.$$

Examples: Exceptions, reader, writer monads

- Monad maps between the exception monads for sets *E*, *E'* are in a bijection with pairs of an element of *E'* + 1 and a function between *E* and *E'*. (Why?)
- Monad maps between the reader monads for sets *S*, *S'* are in a bijection with maps between *S'*, *S*.
- Monad maps between the writer monads for monoids (P, o, ⊕) and (P', o', ⊕') are in a bijection with homomorphisms between these monoids.

Examples: From exceptions to writer or vice versa

There is no monad map τ from the exception monad for a set E and the writer monad for a monoid (P, o, ⊕) (unless E = 0).
 There is not even a natural transformation between the underlying functors: it is impossible to have a map

 $\tau_0: \mathbf{0} + E \rightarrow P \times \mathbf{0}.$

 Monad maps *τ* from the writer monad for (*P*, o, ⊕) to the exception monad for *E* are in a bijection between monoid homomorphisms between (*P*, o, ⊕) and the free monoid on the left zero semigroup on *E*. (Can you simplify this condition further?) They can be written as

$$\tau_{X} = P \times X \longrightarrow (E+1) \times X \longrightarrow E \times X + 1 \times X \longrightarrow E + X$$

Examples: Reader and state monads

- The monad maps between the state monads for S and C are in a bijection with *lenses*, i.e., pairs of functions *lkp* : C → S, *upd* : C × S → C such that
 - *lkp*(*upd*(*c*,*s*)) = *s*,
 - upd (c, lkp c)) = c,
 - upd(upd(c,s),s') = upd(c,s').

• Can you characterize the monad maps from the reader monad for S to the state monad for C? The other way around? (Be careful here!)

Examples: Nonempty lists and powerset

- How many monad maps are there from the nonempty list monad to itself?
- Answer: 4, viz. the identity map, reverse, take only the first element, take only the last element.
- Why does taking the 2nd element not qualify? Or taking the two first elements? (These are natural transformations, but...)

• How many monad maps are there from the nonempty list monad to the nonempty powerset monad? The other way around?

Compatible compositions of monads

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Compatible compositions of monads

 A compatible composition of two monads (T₀, η₀, μ₀), (T₁, η₁, μ₁) is a monad structure (η, μ) on T = T₀ · T₁ satisfying

Conditions 1-3 say just that T₀ · η₁ and η₀ · T₁ are monad morphisms between (T₀, η₀, μ₀) resp. (T₁, η₁, μ₁) and (T, η, μ).
 Condition 1 fixes that η = η₀ · η₁; so the only freedom is about μ.

Distributive laws of monads

A distributive law of a monad (T₁, η₁, μ₁) over (T₀, η₀, μ₀) is a natural transformation θ : T₁ · T₀ → T₀ · T₁ such that

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Compatible compositions = distributive laws

- Compatible compositions of (*T*₀, *η*₀, *μ*₀), (*T*₁, *η*₁, *μ*₁) are in a bijection with distributive laws of (*T*₁, *η*₁, *μ*₁) over (*T*₀, *η*₀, *μ*₀).
- Given $\mu,$ one recovers θ by

$$\theta = T_1 \cdot T_0 \xrightarrow{\eta_0 \cdot T_1 \cdot T_0 \cdot \eta_1} T_0 \cdot T_1 \cdot T_0 \cdot T_1 \xrightarrow{\mu} T_0 \cdot T_1$$

• Given θ , μ is defined by

$$\mu = T_0 \cdot T_1 \cdot T_0 \cdot T_1 \xrightarrow{T_0 \cdot \theta \cdot T_1} T_0 \cdot T_0 \cdot T_1 \cdot T_1 \xrightarrow{\mu_0 \cdot \mu_1} T_0 \cdot T_1$$

Algebras of compatible compositions

 Given a distributive law θ, a θ-pair of algebras is given by a set A with a (T₀, η₀, μ₀)-algebra structure (A, a₀) and a (T₁, η₁, μ₁)-algebra structure (A, a₁) such that

- Such pairs of algebras are in a bijection with (*T*, η, μ)-algebras.
- Given a_0, a_1 , one constructs a as

•
$$a = T_0(T_1A) \xrightarrow{T_0a_1} T_0A \xrightarrow{a_0} A.$$

• Given a, a_0 and a_1 are defined by

•
$$a_0 = T_0 A \xrightarrow{T_0 \eta_{1,A}} T_0(T_1 A) \xrightarrow{a} A$$
,
• $a_1 = T_1 A \xrightarrow{\eta_0 \tau_{1,A}} T_0(T_1 A) \xrightarrow{a} A$.

Any monad and an exceptions monad

 The exceptions monad for *E* distributes in a unique way over any monad (*T*₀, η₀, μ₀).

•
$$\theta: E + T_0 A \rightarrow T_0(E + A)$$

 $\theta_A (inl e) = \eta_0 (inl e),$
 $\theta_A (inr c) = T_0 inr$

• So we have a unique monad structure on $TA = T_0(E + A)$ that is compatible with (T_0, η_0, μ_0) .

• (This generalizes to any coCartesian category, also to any monoidal category with a comonoid.)

Any monad and a writer monad

 There is a unique distributive law of the writer monad for (P, o, ⊕) over any monad (T₀, η₀, μ₀).

•
$$\theta: P \times T_0 A \to T_0(P \times A)$$

 $\theta_A(p,c) = T_0(\lambda x. (p, x)) c.$
(θ is nothing but the unique strength of T_0 !)

 So monad structures on TA = T₀(P × A) compatible with (T₀, η₀, μ₀) are in a bijection with monoid structures on P.

• (This generalizes to any Cartesian category and any monoidal category in the form of a bijection between strengths and distributive laws.)

Monoid actions

A right action of a monoid (P, o, ⊕) on a set S is a map
 ↓: S × P → S satisfying

$$s \downarrow o = s$$

 $s \downarrow (p \oplus p') = (s \downarrow p) \downarrow p'$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Reader and writer monads

- Distributive laws of the writer monad for (P, o, ⊕) over the reader monad for S are in a bijective correspondence with right actions of (P, o, ⊕) on S.
- The compatible composition of the two monads determined by a right action ↓ is

$$TA = S \Rightarrow P \times A$$

$$\eta x = \lambda s. (o, x)$$

$$\mu f = \lambda s. \text{ let } (p,g) = f s$$

$$(p', x) = g (s \downarrow p)$$

in $(p \oplus p', x)$

—the update monad for S, (P, o, \oplus), \downarrow .

State logging

- Take S to be some set (of states).
- Take P = List S, $o = [], \oplus = ++$ (state logs).

•
$$s \downarrow [] = s$$

 $s \downarrow (s' :: ss) = s' \downarrow ss$

(so $s \downarrow ss$ is the last element of s :: ss)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reading a stack and popping

- Take *S* = List *E* (states of a stack of elements drawn from a set *E*).
- Take P = Nat, o = 0, ⊕ = + (possible numbers of elements to pop).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $es \downarrow n = removelast n es$.

Reading a stack and pushing

- Take again S = List E (states of a stack of elements drawn from a set E).
- Take P = List E, o = [], ⊕ = ++ (lists of elements to push on the stack).

- $es \downarrow es' = es + es'$.
- (So here we choose (S, ↓) to be the initial (P, o, ⊕)-set—which is always a possibility.)

Matching pairs of monoid actions

$$egin{aligned} & \mathsf{o}_1\searrow p_0=p_0\ & (p_1\oplus_1p_1')\searrow p_0=p_1\searrow (p_1'\searrow p_0)\ & p_1\searrow \mathsf{o}_0=\mathsf{o}_0\ & p_1\searrow (p_0\oplus_0p_0')=(p_1\searrow p_0)\oplus_0 ((p_1\swarrow p_0)\searrow p_0') \end{aligned}$$

$$p_1 \swarrow o_0 = p_1 \ p_1 \swarrow o_0 = p_1 \ p_1 \swarrow (p_0 \oplus_0 p_0') = (p_1 \swarrow p_0) \swarrow p_0' \ o_1 \swarrow p_0 = o_1 \ (p_1 \oplus_1 p_1') \swarrow p_0 = (p_1 \swarrow (p_1' \searrow p_0)) \oplus_1 (p_1' \swarrow p_0)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Zappa-Szép product of monoids

A Zappa-Szép product (aka knit product, bicrossed product, bilateral semidirect product) of two monoids (P₀, o₀, ⊕₀) and (P₁, o₁, ⊕₁) is a monoid structure (o, ⊕) on P = P₀ × P₁ such that

$$egin{aligned} \mathsf{o} &= (\mathsf{o}_0,\mathsf{o}_1) \ (p,\mathsf{o}_1) \oplus (p',\mathsf{o}_1) &= (p \oplus_0 p',\mathsf{o}_1) \ (\mathsf{o}_0,p) \oplus (\mathsf{o}_0,p') &= (\mathsf{o}_0,p \oplus_1 p') \ (p,\mathsf{o}_1) \oplus (\mathsf{o}_0,p') &= (p,p') \end{aligned}$$

- Zappa-Szép products of (P₀, o₀, ⊕₀) and (P₁, o₁, ⊕₁) are in a bijective correspondence with matching pairs of actions of (P₀, o₀, ⊕₀) and (P₁, o₁, ⊕₁).
- Given \oplus , one constructs \searrow and \swarrow by
 - $(p_1 \searrow p_0, p_1 \swarrow p_0) = (o_0, p_1) \oplus (p_0, o_1)$
- Given \searrow and \swarrow , \oplus is defined by
 - $(p_0, p_1) \oplus (p'_0, p'_1) = (p_0 \oplus_0 (p_1 \swarrow p'_0), (p_1 \searrow p'_0) \oplus_1 p'_1)$

Two writer monads

 Compatible compositions of writer monads for (P₀, o₀, ⊕₀) and (P₁, o₁, ⊕₁) are in a bijection with matching pairs of actions of the two monoids.

• They are isomorphic to writer monads for the corresponding Zappa-Szép products.

Combining popping and pushing

• Take $(P_0, o_0, \oplus_0) = (Nat, 0, +)$, $(P_1, o_1, \oplus_1) = (List E, [], ++)$ where E is some set.

• Pairs (*n*, *es*) represent net effects of sequences of pop, push instructions on a stack: some number of elements is removed from and some new specific elements are added to the stack.

Combining reading, popping, pushing

- How do I now show that
 - $TA = \text{List } E \Rightarrow \text{Nat} \times (\text{List } E \times A)$

is a monad?

- This is of the form $T_0 \cdot T_1 \cdot T_2$ where
 - $T_0A = \text{List } E \Rightarrow A$
 - $T_1A = \text{Nat} \times A$
 - $T_2A = \text{List } E \times A$
- We already know that
 - $T_{01} = T_0 \cdot T_1$
 - $T_{02} = T_0 \cdot T_2$
 - $T_{12} = T_1 \cdot T_2$

are compatible compositions of monads.

- We want to be sure that $(T_0 \cdot T_1) \cdot T_2$ and $T_0 \cdot (T_1 \cdot T_2)$ are compatible compositions of monads.
- Moreover they'd better be the same monad!

 In terms of distributive laws, this only requires checking the Yang-Baxter equation:

