Containers for Effects and Contexts

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Oxford, 6-10 July 2015

This course

- We will think about computational effects and contexts as modelled with monads, comonads and related machinery.
- We will primarily be interested in questions like: Where do they come from? How to generate them? How many are they?
And also: How to arrive at answers to such questions with as little work as possible?
- In other words, we will amuse ourselves with the combinatorics of monads etc.
- The main tool: Containers (possibly quotient containers). But not today.
- Today's ambition: Monads, monad maps and distributive laws.

Useful prior knowledge

- This is not strictly needed, but will help.
- Basics of functional programming and the use of monads (and perhaps idioms, comonads) in functional programming.
- From category theory:
- functors, natural transformations
- adjunctions
- symmetric monoidal (closed) categories
- Cartesian (closed) categories, coproducts
- initial algebra, final coalgebra of a functor
- ... :-(
- All examples however will be for Set. :-)
- (But many generalize to any Cartesian (closed) or monoidal (closed) category.)

Monads

Monads

- A monad on a category \mathcal{C} is given by a
- a functor $T: \mathcal{C} \rightarrow \mathcal{C}$,
- a natural transformation $\eta: \mathrm{Id}_{\mathcal{C}} \rightarrow T$ (the unit),
- a natural transformation $\mu: T \cdot T \rightarrow T$ (the multiplication)
such that

- This definition says that monads are monoids in the monoidal category $\left([\mathcal{C}, \mathcal{C}], \operatorname{ld}_{\mathcal{C}}, \cdot\right)$.

An alternative formulation: Kleisli triples

- A more FP-friendly formulation is this.
- A Kleisli triple is given by
- an object mapping $T:|\mathcal{C}| \rightarrow|\mathcal{C}|$,
- for any object A, a map $\eta_{A}: A \rightarrow T A$,
- for any map $k: A \rightarrow T B$, a map $k^{\star}: T A \rightarrow T B$ (the Kleisli extension operation)
such that
- if $k: A \rightarrow T B$, then $k^{\star} \circ \eta_{A}=k$,
- $\eta_{A}^{\star}=\mathrm{id}_{T A}$,
- if $k: A \rightarrow T B, \ell: B \rightarrow T C$, then $\left(\ell^{\star} \circ k\right)^{\star}=\ell^{\star} \circ k^{\star}: T A \rightarrow T C$.
- (Notice there are no explicit functoriality and naturality conditions.)

Monads $=$ Kleisli triples

- There is a bijection between monads and Kleisli triples.
- Given T, η, μ, one defines
- if $k: A \rightarrow T B$, then $k^{\star}=T A \xrightarrow{T k} T(T B) \xrightarrow{\mu_{B}} T B$.
- Given T (on objects only), η and $-^{\star}$, one defines
- if $f: A \rightarrow B$, then

$$
\begin{aligned}
T f & =\left(A \xrightarrow{f} B \xrightarrow{\eta_{B}} T B\right)^{\star}: T A \rightarrow T B, \\
\text { - } \mu_{A} & =\left(T A \xrightarrow{\mathrm{id}_{T A}} T A\right)^{\star}: T(T A) \rightarrow T A .
\end{aligned}
$$

Kleisli category of a monad

- A monad T on a category \mathcal{C} induces a category $\mathbf{K I}(T)$ called the Kleisli category of T defined by
- an object is an object of \mathcal{C},
- a map of from A to B is a map of \mathcal{C} from A to $T B$,
- $\mathrm{id}_{A}^{T}=A \xrightarrow{\eta_{A}} T A$,
- if $k: A \rightarrow^{T} B, \ell: B \rightarrow^{T} C$, then

$$
\ell \circ^{T} k=A \xrightarrow{k} T B \xrightarrow[\ell^{\star}]{\stackrel{T \ell}{\longrightarrow} T(T C) \xrightarrow{\mu_{C}}} T C
$$

- From \mathcal{C} there is an identity-on-objects inclusion functor J to $\mathrm{KI}(T)$, defined on maps by
- if $f: A \rightarrow B$, then

$$
J f=A \xrightarrow{f} B \xrightarrow{\eta_{B}} T B=A \xrightarrow{\eta_{A}} T A \xrightarrow{T f} T B .
$$

Monad algebras

- An algebra of a monad (T, η, μ) is an object A with a map $a: T A \rightarrow A$ such that

- A map between two algebras (A, a) and (B, b) is a map h such that

$$
\begin{aligned}
& T A \xrightarrow{T h} T B \\
& \begin{array}{cl}
a \downarrow \\
A \\
A & \\
& \\
& \downarrow^{b}
\end{array}
\end{aligned}
$$

- The algebras of the monad and maps between them form a category $\mathbf{E M}(T)$ with an obvious forgetful functor $U: \operatorname{EM}(T) \rightarrow \mathcal{C}$.

Computational interpretation

- Think of \mathcal{C} as the category of pure functions and of $T A$ as the type of effectful computations of values of a type A.
- $\eta_{A}: A \rightarrow T A$ is the identity function on A viewed as trivially effectful.
- Jf : $A \rightarrow T B$ is a general pure function $f: A \rightarrow B$ viewed as trivially effectful.
- $\mu_{A}: T(T A) \rightarrow T A$ flattens an effectful computation of an effectful computation.
- $k^{\star}: T A \rightarrow T B$ is an effectful function $k: A \rightarrow T B$ extended into one that can input an effectful computation.
- An algebra $(A, a: T A \rightarrow A)$ serves as a recipe for handling the effects in computations of values of type A.

Kleisli adjunction

- In the opposite direction of $J: \mathcal{C} \rightarrow \mathbf{K I}(T)$ there is a functor $R: \mathbf{K I}(T) \rightarrow \mathcal{C}$ defined by
- $R A=T A$,
- if $k: A \rightarrow^{T} B$, then $R k=T A \xrightarrow{k^{\star}} T B$.
- R is right adjoint to J.

$$
\overbrace{(-1}^{\mathbf{K I}(T)} \quad \overbrace{\mathcal{A}}^{J \rightarrow \underbrace{T B}_{R B}}
$$

- Importantly, $R \cdot J=T$. Indeed,
- $R(J A)=T A$,
- if $f: A \rightarrow B$, then $R(J f)=\left(\eta_{B} \circ f\right)^{\star}=T f$.
- Moreover, the unit of the adjunction is η.
- $J \dashv R$ is the initial adjunction factorizing T in this way.

Eilenberg-Moore adjunction

- In the opposite direction of $U: \mathbf{E M}(T) \rightarrow \mathcal{C}$ there is a functor $L: \mathcal{C} \rightarrow \mathbf{E M}(T)$ defined by
- $L A=\left(T A, \mu_{A}\right)$,
- if $f: A \rightarrow B$, then $L f=T f:\left(T A, \mu_{A}\right) \rightarrow\left(T B, \mu_{B}\right)$.
- L is left adjoint to U.

$$
\begin{array}{cl}
\mathbf{E M}(T) \\
\mathcal{C}^{-}
\end{array}
$$

- $U \cdot L=T$. Indeed,
- $U(L A)=U\left(T A, \mu_{A}\right)=T A$,
- if $f: A \rightarrow B$, then $U(L f)=U(T f)=T f$.
- The unit of the adjunction is η.
- $L \dashv U$ is the final adjunction factorizing T.

Exceptions monads

- The functor:
- $T A=E+A$ where E is some set (of exceptions)
- The monad structure:
- $\eta_{A} x=\operatorname{inr} x$,
- $\mu_{A}($ inle $)=$ inle, $\mu_{A}(\operatorname{inr}(\operatorname{inl} e))=\operatorname{inl} e$, $\mu_{A}(\operatorname{inr}(\operatorname{inr} x))=\operatorname{inr} x$.
- This is the only monad structure on this functor.
- (This example generalizes to any coCartesian category, in fact to any monoidal category with a given monoid. In a coCartesian category, any object E carries exactly one monoid structure defined by $o=?_{E}: 0 \rightarrow E$ and $\left.\oplus=\nabla_{E}: E+E \rightarrow E.\right)$

Reader monads

- The functor:
- $T A=S \Rightarrow A$ where S is a set (of readable states)
- The monad structure:
- $\eta_{A} x=\lambda s . x$,
- $\mu_{A} f=\lambda s . f s s$.
- This is the only monad structure on this functor.
- (This example generalizes to any monoidal closed category with a given comonoid. In a Cartesian closed category, any object S comes with a unique comonoid structure given by $!_{S}: S \rightarrow 1, \Delta_{S}: S \rightarrow S \times S$.)

Writer monads

- We are interested in this functor:
- $T A=P \times A$ where P is a set (of updates)
- The possible monad structures are:
- $\eta_{A} x=(o, x)$,
- $\mu_{A}\left(p,\left(p^{\prime}, x\right)\right)=\left(p \oplus p^{\prime}, x\right)$ where (o, \oplus) is a monoid structure on P (trivial update, composition of updates)
- Monad structures on this functor are in a bijection with monoid structures on P.
- (This example generalizes to any monoidal category with a given monoid.)

State monads

- The monad:
- $T A=S \Rightarrow S \times A$ where S is a set (of readable/overwritable states),
- $\eta_{A} x=\lambda s .(s, x)$
- $\mu_{A} f=\lambda s$. let $\left(s^{\prime}, g\right)=f s$ in $g\left(s^{\prime}, x\right)$
- (This example works in any monoidal closed category.)

List monad and variations

- The list monad:
- $T A=$ List A,
- $\eta_{A} x=[x]$,
- $\mu_{A} x s s=$ concat $x s s$.
- Some variations:
- $T A=\left\{x s: A^{*} \mid x s\right.$ is square-free $\}$
- $T A=\left\{x s: A^{*} \mid x s\right.$ is duplicate-free $\}$
- $T A=1+A \times A$
- $T A=\mathcal{M}_{\mathrm{f}} A$
- $T A=\mathcal{P}_{\mathrm{f}} A$
- non-empty versions of the above
- Can you characterize the algebras of these monads?

Monad maps

Monad maps

- A monad map between monads T, T^{\prime} on a category \mathcal{C} is a natural transformation $\tau: T \rightarrow T^{\prime}$ satisfying

- Monads on \mathcal{C} and maps between them form a category Monad (\mathcal{C}).
- Monad maps are monoid maps in the monoidal category $\left([\mathcal{C}, \mathcal{C}], \mathrm{Id}_{\mathcal{C}}, \cdot\right)$ and the category of monads is the category of monoids in $\left([\mathcal{C}, \mathcal{C}], \operatorname{ld}_{\mathcal{C}}, \cdot\right)$.

Kleisli triple maps

- A map between two Kleisli triples T, T^{\prime} is, for any object A, a map $\tau_{A}: T A \rightarrow T^{\prime} A$ such that
- $\tau_{A} \circ \eta_{A}=\eta_{A}^{\prime}$,
- if $k: A \rightarrow T B$, then $\tau_{B} \circ k^{\star}=\left(\tau_{B} \circ k\right)^{\star \prime} \circ \tau_{A}$.
- (No explicit naturality condition on τ !)
- Kleisli triples on \mathcal{C} and maps between them form a category that is isomorphic to $\operatorname{Monad}(\mathcal{C})$.

Monad maps vs. functors between Kleisli categories

- There is a bijection between monad maps $\tau: T \rightarrow T^{\prime}$ and functors $V: \mathbf{K I}(T) \rightarrow \mathbf{K I}\left(T^{\prime}\right)$ such that

- This is defined by
- $V A=A$,
- if $k: A \rightarrow T B$, then $V k=A \xrightarrow{k} T B \xrightarrow{\tau_{B}} T^{\prime} B$.
and
- $\tau_{A}=V\left(T A \xrightarrow{\mathrm{id}_{T A}}{ }^{T} A\right): T A \rightarrow^{T^{\prime}} A$.

Monad maps vs. functors between E-M categories

- There is a bijection between monad maps $\tau: T \rightarrow T^{\prime}$ and functors $V: \mathbf{E M}\left(T^{\prime}\right) \rightarrow \mathbf{E M}(T)$ such that

(Note the reversed direction.)
- This is defined by
- $V(A, a)=\left(A, a \circ \tau_{A}\right)$,
- if $h:(A, a) \rightarrow(B, b)$, then

$$
V h=h:\left(A, a \circ \tau_{A}\right) \rightarrow\left(B, b \circ \tau_{B}\right) .
$$

and

$$
\text { - } \tau_{A}=\operatorname{let}\left(T^{\prime} A, a\right) \leftarrow V\left(T^{\prime} A, \mu_{A}^{\prime}\right) \text { in } a \circ T \eta_{A}^{\prime} \text {. }
$$

Examples: Exceptions, reader, writer monads

- Monad maps between the exception monads for sets E, E^{\prime} are in a bijection with pairs of an element of $E^{\prime}+1$ and a function between E and E^{\prime}.
(Why?)
- Monad maps between the reader monads for sets S, S^{\prime} are in a bijection with maps between S^{\prime}, S.
- Monad maps between the writer monads for monoids (P, o, \oplus) and $\left(P^{\prime}, \mathrm{o}^{\prime}, \oplus^{\prime}\right)$ are in a bijection with homomorphisms between these monoids.

Examples: From exceptions to writer or vice versa

- There is no monad map τ from the exception monad for a set E and the writer monad for a monoid (P, o, \oplus) (unless $E=0$).
There is not even a natural transformation between the underlying functors: it is impossible to have a map $\tau_{0}: 0+E \rightarrow P \times 0$.
- Monad maps τ from the writer monad for $(P, 0, \oplus)$ to the exception monad for E are in a bijection between monoid homomorphisms between (P, o, \oplus) and the free monoid on the left zero semigroup on E. (Can you simplify this condition further?)
They can be written as

$$
\tau_{X}=P \times X \longrightarrow(E+1) \times X \longrightarrow E \times X+1 \times X \longrightarrow E+X
$$

Examples: Reader and state monads

- The monad maps between the state monads for S and C are in a bijection with lenses, i.e., pairs of functions Ikp : $C \rightarrow S$, upd : $C \times S \rightarrow C$ such that
- $\operatorname{lkp}(\operatorname{upd}(c, s))=s$,
- upd $(c, l k p c))=c$,
- upd $\left(\operatorname{upd}(c, s), s^{\prime}\right)=\operatorname{upd}\left(c, s^{\prime}\right)$.
- Can you characterize the monad maps from the reader monad for S to the state monad for C ? The other way around? (Be careful here!)

Examples: Nonempty lists and powerset

- How many monad maps are there from the nonempty list monad to itself?
- Answer: 4 , viz. the identity map, reverse, take only the first element, take only the last element.
- Why does taking the 2nd element not qualify? Or taking the two first elements? (These are natural transformations, but. . .)
- How many monad maps are there from the nonempty list monad to the nonempty powerset monad? The other way around?

Compatible compositions of monads

Compatible compositions of monads

- A compatible composition of two monads $\left(T_{0}, \eta_{0}, \mu_{0}\right)$, $\left(T_{1}, \eta_{1}, \mu_{1}\right)$ is a monad structure (η, μ) on $T=T_{0} \cdot T_{1}$ satisfying

$T_{0} \cdot T_{1} \cdot T_{0} \cdot T_{1} \longrightarrow T_{0} \cdot T_{1}$

- Conditions 1-3 say just that $T_{0} \cdot \eta_{1}$ and $\eta_{0} \cdot T_{1}$ are monad morphisms between $\left(T_{0}, \eta_{0}, \mu_{0}\right)$ resp. $\left(T_{1}, \eta_{1}, \mu_{1}\right)$ and (T, η, μ).
Condition 1 fixes that $\eta=\eta_{0} \cdot \eta_{1}$; so the only freedom is about μ.

Distributive laws of monads

- A distributive law of a monad $\left(T_{1}, \eta_{1}, \mu_{1}\right) \operatorname{over}\left(T_{0}, \eta_{0}, \mu_{0}\right)$ is a natural transformation $\theta: T_{1} \cdot T_{0} \rightarrow T_{0} \cdot T_{1}$ such that

Compatible compositions $=$ distributive laws

- Compatible compositions of $\left(T_{0}, \eta_{0}, \mu_{0}\right),\left(T_{1}, \eta_{1}, \mu_{1}\right)$ are in a bijection with distributive laws of $\left(T_{1}, \eta_{1}, \mu_{1}\right)$ over $\left(T_{0}, \eta_{0}, \mu_{0}\right)$.
- Given μ, one recovers θ by

$$
\theta=T_{1} \cdot T_{0} \xrightarrow{\eta_{0} \cdot T_{1} \cdot T_{0} \cdot \eta_{1}} T_{0} \cdot T_{1} \cdot T_{0} \cdot T_{1} \xrightarrow{\mu} T_{0} \cdot T_{1}
$$

- Given θ, μ is defined by

$$
\mu=T_{0} \cdot T_{1} \cdot T_{0} \cdot T_{1} \xrightarrow{T_{0} \cdot \theta \cdot T_{1}} T_{0} \cdot T_{0} \cdot T_{1} \cdot T_{1} \xrightarrow{\mu_{0} \cdot \mu_{1}} T_{0} \cdot T_{1}
$$

Algebras of compatible compositions

- Given a distributive law θ, a θ-pair of algebras is given by a set A with a $\left(T_{0}, \eta_{0}, \mu_{0}\right)$-algebra structure $\left(A, a_{0}\right)$ and a (T_{1}, η_{1}, μ_{1})-algebra structure $\left(A, a_{1}\right)$ such that

- Such pairs of algebras are in a bijection with (T, η, μ)-algebras.
- Given a_{0}, a_{1}, one constructs a as

$$
\text { - } a=T_{0}\left(T_{1} A\right) \xrightarrow{T_{0} a_{1}} T_{0} A \xrightarrow{a_{0}} A .
$$

- Given a, a_{0} and a_{1} are defined by

$$
\begin{aligned}
& \text { - } a_{0}=T_{0} A \xrightarrow{T_{0} \eta_{1} A} T_{0}\left(T_{1} A\right) \xrightarrow{a} A, \\
& \text { - } a_{1}=T_{1} A \xrightarrow{\eta_{0} A} T_{0}\left(T_{1} A\right) \xrightarrow{a} A .
\end{aligned}
$$

Any monad and an exceptions monad

- The exceptions monad for E distributes in a unique way over any monad $\left(T_{0}, \eta_{0}, \mu_{0}\right)$.
- $\theta: E+T_{0} A \rightarrow T_{0}(E+A)$
$\theta_{A}(\mathrm{inl} e)=\eta_{0}(\mathrm{inl} e)$,
$\theta_{A}(\mathrm{inr} c)=T_{0} \mathrm{inr}$
- So we have a unique monad structure on
$T A=T_{0}(E+A)$ that is compatible with $\left(T_{0}, \eta_{0}, \mu_{0}\right)$.
- (This generalizes to any coCartesian category, also to any monoidal category with a comonoid.)

Any monad and a writer monad

- There is a unique distributive law of the writer monad for (P, o, \oplus) over any monad $\left(T_{0}, \eta_{0}, \mu_{0}\right)$.
- $\theta: P \times T_{0} A \rightarrow T_{0}(P \times A)$
$\theta_{A}(p, c)=T_{0}(\lambda x .(p, x)) c$.
(θ is nothing but the unique strength of $T_{0}!$)
- So monad structures on $T A=T_{0}(P \times A)$ compatible with $\left(T_{0}, \eta_{0}, \mu_{0}\right)$ are in a bijection with monoid structures on P.
- (This generalizes to any Cartesian category and any monoidal category in the form of a bijection between strengths and distributive laws.)

Monoid actions

- A right action of a monoid (P, o, \oplus) on a set S is a map $\downarrow: S \times P \rightarrow S$ satisfying

$$
\begin{gathered}
s \downarrow 0=s \\
s \downarrow\left(p \oplus p^{\prime}\right)=(s \downarrow p) \downarrow p^{\prime}
\end{gathered}
$$

Reader and writer monads

- Distributive laws of the writer monad for (P, o, \oplus) over the reader monad for S are in a bijective correspondence with right actions of (P, o, \oplus) on S.
- The compatible composition of the two monads determined by a right action \downarrow is

$$
\begin{gathered}
T A=S \Rightarrow P \times A \\
\eta x=\lambda s .(0, x) \\
\mu f=\lambda s . \text { let }(p, g)=f s \\
\left(p^{\prime}, x\right)=g(s \downarrow p) \\
\text { in }\left(p \oplus p^{\prime}, x\right)
\end{gathered}
$$

-the update monad for $S,(P, \mathrm{o}, \oplus), \downarrow$.

State logging

- Take S to be some set (of states).
- Take $P=$ List $S, \mathrm{o}=[], \oplus=+$ (state logs).
- $s \downarrow[]=s$
$s \downarrow\left(s^{\prime}:: s s\right)=s^{\prime} \downarrow s s$
(so $s \downarrow s s$ is the last element of $s:: s s$)

Reading a stack and popping

- Take $S=$ List E (states of a stack of elements drawn from a set E).
- Take $P=$ Nat, o $=0, \oplus=+$ (possible numbers of elements to pop).
- es $\downarrow n=$ removelast n es.

Reading a stack and pushing

- Take again $S=$ List E (states of a stack of elements drawn from a set E).
- Take $P=$ List E, o $=[], \oplus=+$ (lists of elements to push on the stack).
- es $\downarrow e s^{\prime}=e s+e s^{\prime}$.
- (So here we choose (S, \downarrow) to be the initial (P, o, \oplus)-set-which is always a possibility.)

Matching pairs of monoid actions

- A matching pair of actions of two monoids $\left(P_{0}, \mathrm{o}_{0}, \oplus_{0}\right)$ and $\left(P_{1}, o_{1}, \oplus_{1}\right)$ on each other is pair of maps $\searrow: P_{1} \times P_{0} \rightarrow P_{0}$ and $\swarrow: P_{1} \times P_{0} \rightarrow P_{1}$ such that

$$
\begin{gathered}
\circ_{1} \searrow p_{0}=p_{0} \\
\left(p_{1} \oplus_{1} p_{1}^{\prime}\right) \searrow p_{0}=p_{1} \searrow\left(p_{1}^{\prime} \searrow p_{0}\right) \\
p_{1} \searrow o_{0}=o_{0} \\
p_{1} \searrow\left(p_{0} \oplus_{0} p_{0}^{\prime}\right)=\left(p_{1} \searrow p_{0}\right) \oplus_{0}\left(\left(p_{1} \swarrow p_{0}\right) \searrow p_{0}^{\prime}\right) \\
p_{1} \swarrow \circ_{0}=p_{1} \\
p_{1} \swarrow\left(p_{0} \oplus_{0} p_{0}^{\prime}\right)=\left(p_{1} \swarrow p_{0}\right) \swarrow p_{0}^{\prime} \\
\circ_{1} \swarrow p_{0}=\circ_{1} \\
\left(p_{1} \oplus_{1} p_{1}^{\prime}\right) \swarrow p_{0}=\left(p_{1} \swarrow\left(p_{1}^{\prime} \searrow p_{0}\right)\right) \oplus_{1}\left(p_{1}^{\prime} \swarrow p_{0}\right)
\end{gathered}
$$

Zappa-Szép product of monoids

- A Zappa-Szép product (aka knit product, bicrossed product, bilateral semidirect product) of two monoids $\left(P_{0}, \mathrm{o}_{0}, \oplus_{0}\right)$ and $\left(P_{1}, \mathrm{o}_{1}, \oplus_{1}\right)$ is a monoid structure (o, \oplus) on $P=P_{0} \times P_{1}$ such that

$$
\begin{gathered}
\mathrm{o}=\left(\mathrm{o}_{0}, \mathrm{o}_{1}\right) \\
\left(p, \mathrm{o}_{1}\right) \oplus\left(p^{\prime}, \mathrm{o}_{1}\right)=\left(p \oplus_{0} p^{\prime}, \mathrm{o}_{1}\right) \\
\left(\mathrm{o}_{0}, p\right) \oplus\left(\mathrm{o}_{0}, p^{\prime}\right)=\left(\mathrm{o}_{0}, p \oplus_{1} p^{\prime}\right) \\
\left(p, \mathrm{o}_{1}\right) \oplus\left(\mathrm{o}_{0}, p^{\prime}\right)=\left(p, p^{\prime}\right)
\end{gathered}
$$

- Zappa-Szép products of $\left(P_{0}, \mathrm{o}_{0}, \oplus_{0}\right)$ and $\left(P_{1}, \mathrm{o}_{1}, \oplus_{1}\right)$ are in a bijective correspondence with matching pairs of actions of $\left(P_{0}, \mathrm{o}_{0}, \oplus_{0}\right)$ and $\left(P_{1}, \mathrm{o}_{1}, \oplus_{1}\right)$.
- Given \oplus, one constructs \searrow and \swarrow by
- $\left(p_{1} \searrow p_{0}, p_{1} \swarrow p_{0}\right)=\left(\mathrm{o}_{0}, p_{1}\right) \oplus\left(p_{0}, \mathrm{o}_{1}\right)$
- Given \searrow and \swarrow, \oplus is defined by
- $\left(p_{0}, p_{1}\right) \oplus\left(p_{0}^{\prime}, p_{1}^{\prime}\right)=\left(p_{0} \oplus_{0}\left(p_{1} \swarrow p_{0}^{\prime}\right),\left(p_{1} \searrow p_{0}^{\prime}\right) \oplus_{1} p_{1}^{\prime}\right)$

Two writer monads

- Compatible compositions of writer monads for ($P_{0}, \mathrm{o}_{0}, \oplus_{0}$) and ($P_{1}, \mathrm{o}_{1}, \oplus_{1}$) are in a bijection with matching pairs of actions of the two monoids.
- They are isomorphic to writer monads for the corresponding Zappa-Szép products.

Combining popping and pushing

- Take $\left(P_{0}, \mathrm{o}_{0}, \oplus_{0}\right)=($ Nat, $0,+)$, $\left(P_{1}, \mathrm{o}_{1}, \oplus_{1}\right)=($ List $E,[],+)$ where E is some set.
- es $\searrow n=n$ - length es, es $\swarrow n=$ removelast n es.
- $(n, e s) \oplus\left(n^{\prime}, e s^{\prime}\right)$

$$
=\left(n+\left(n^{\prime}-\text { length es }\right),\left(\text { removelast } n^{\prime} \text { es }\right)++e s^{\prime}\right)
$$

- Pairs (n, es) represent net effects of sequences of pop, push instructions on a stack: some number of elements is removed from and some new specific elements are added to the stack.

Combining reading, popping, pushing

- How do I now show that
- TA $=$ List $E \Rightarrow$ Nat $\times($ List $E \times A)$
is a monad?
- This is of the form $T_{0} \cdot T_{1} \cdot T_{2}$ where
- $T_{0} A=$ List $E \Rightarrow A$
- $T_{1} A=$ Nat $\times A$
- $T_{2} A=\operatorname{List} E \times A$
- We already know that
- $T_{01}=T_{0} \cdot T_{1}$
- $T_{02}=T_{0} \cdot T_{2}$
- $T_{12}=T_{1} \cdot T_{2}$
are compatible compositions of monads.
- We want to be sure that $\left(T_{0} \cdot T_{1}\right) \cdot T_{2}$ and $T_{0} \cdot\left(T_{1} \cdot T_{2}\right)$ are compatible compositions of monads.
- Moreover they'd better be the same monad!
- In terms of distributive laws, this only requires checking the Yang-Baxter equation:

