
Containers for Effects and Contexts

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Oxford, 6–10 July 2015

This course

We will think about computational effects and contexts as
modelled with monads, comonads and related machinery.

We will primarily be interested in questions like: Where
do they come from? How to generate them? How many
are they?
And also: How to arrive at answers to such questions
with as little work as possible?

In other words, we will amuse ourselves with the
combinatorics of monads etc.

The main tool: Containers (possibly quotient containers).
But not today.

Today’s ambition: Monads, monad maps and distributive
laws.

Useful prior knowledge

This is not strictly needed, but will help.

Basics of functional programming and the use of monads
(and perhaps idioms, comonads) in functional
programming.

From category theory:

functors, natural transformations
adjunctions
symmetric monoidal (closed) categories
Cartesian (closed) categories, coproducts
initial algebra, final coalgebra of a functor
. . . :-(

All examples however will be for Set. :-)

(But many generalize to any Cartesian (closed) or
monoidal (closed) category.)

Monads

Monads

A monad on a category C is given by a

a functor T : C → C,
a natural transformation η : IdC

.→ T (the unit),
a natural transformation µ : T · T .→ T (the
multiplication)

such that

TA
TηA //

ηTA
��

T (TA)

µA

��
T (TA) µA

// TA

T (T (TA))
TµA //

µTA
��

T (TA)

µA

��
T (TA) µA

// TA

This definition says that monads are monoids in the
monoidal category ([C, C], IdC, ·).

An alternative formulation: Kleisli triples

A more FP-friendly formulation is this.

A Kleisli triple is given by

an object mapping T : |C| → |C|,
for any object A, a map ηA : A→ TA,
for any map k : A→ TB, a map k? : TA→ TB (the
Kleisli extension operation)

such that

if k : A→ TB, then k? ◦ ηA = k ,
η?A = idTA,
if k : A→ TB, ` : B → TC , then
(`? ◦ k)? = `? ◦ k? : TA→ TC .

(Notice there are no explicit functoriality and naturality
conditions.)

Monads = Kleisli triples

There is a bijection between monads and Kleisli triples.

Given T , η, µ, one defines

if k : A→ TB, then k? = TA
Tk // T (TB)

µB // TB .

Given T (on objects only), η and −?, one defines

if f : A→ B, then

Tf =

(
A

f // B
ηB // TB

)?
: TA→ TB,

µA =

(
TA

idTA // TA

)?
: T (TA)→ TA.

Kleisli category of a monad

A monad T on a category C induces a category Kl(T)
called the Kleisli category of T defined by

an object is an object of C,
a map of from A to B is a map of C from A to TB,

idT
A = A

ηA // TA ,
if k : A→T B, ` : B →T C , then

` ◦T k = A
k // TB

T ` //

`?

55T (TC)
µC // TC

From C there is an identity-on-objects inclusion functor J
to Kl(T), defined on maps by

if f : A→ B, then

Jf = A
f // B

ηB // TB = A
ηA // TA

Tf // TB .

Monad algebras

An algebra of a monad (T , η, µ) is an object A with a
map a : TA→ A such that

A

ηA
��

TA
a // A

T (TA)
Ta //

µA
��

TA

a

��
TA

a // A

A map between two algebras (A, a) and (B , b) is a map h
such that

TA
Th //

a
��

TB

b
��

A
h // B

The algebras of the monad and maps between them form
a category EM(T) with an obvious forgetful functor
U : EM(T)→ C.

Computational interpretation

Think of C as the category of pure functions and of TA as
the type of effectful computations of values of a type A.

ηA : A→ TA is the identity function on A viewed as
trivially effectful.

Jf : A→ TB is a general pure function f : A→ B viewed
as trivially effectful.

µA : T (TA)→ TA flattens an effectful computation of an
effectful computation.

k? : TA→ TB is an effectful function k : A→ TB
extended into one that can input an effectful
computation.

An algebra (A, a : TA→ A) serves as a recipe for
handling the effects in computations of values of type A.

Kleisli adjunction

In the opposite direction of J : C → Kl(T) there is a
functor R : Kl(T)→ C defined by

RA = TA,

if k : A→T B, then Rk = TA
k? // TB .

R is right adjoint to J .

Kl(T)

R

��
a

C
J

DD
JA︷︸︸︷
A →T B
A→ TB︸︷︷︸

RB

Importantly, R · J = T . Indeed,
R(JA) = TA,
if f : A→ B, then R(Jf) = (ηB ◦ f)? = Tf .

Moreover, the unit of the adjunction is η.

J a R is the initial adjunction factorizing T in this way.

Eilenberg-Moore adjunction

In the opposite direction of U : EM(T)→ C there is a
functor L : C → EM(T) defined by

LA = (TA, µA),
if f : A→ B, then Lf = Tf : (TA, µA)→ (TB, µB).

L is left adjoint to U .

EM(T)

U

��
a

C
L

DD

LA︷ ︸︸ ︷
(TA, µA)→ (B , b)

A→ B︸︷︷︸
U(B,b)

U · L = T . Indeed,
U(LA) = U(TA, µA) = TA,
if f : A→ B, then U(Lf) = U(Tf) = Tf .

The unit of the adjunction is η.

L a U is the final adjunction factorizing T .

Exceptions monads

The functor:

TA = E + A where E is some set (of exceptions)

The monad structure:

ηA x = inr x ,
µA (inl e) = inl e,
µA (inr (inl e)) = inl e,
µA (inr (inr x)) = inr x .

This is the only monad structure on this functor.

(This example generalizes to any coCartesian category, in
fact to any monoidal category with a given monoid.
In a coCartesian category, any object E carries exactly
one monoid structure defined by o =?E : 0→ E and
⊕ = ∇E : E + E → E .)

Reader monads

The functor:

TA = S ⇒ A where S is a set (of readable states)

The monad structure:

ηA x = λs. x ,
µA f = λs. f s s.

This is the only monad structure on this functor.

(This example generalizes to any monoidal closed
category with a given comonoid. In a Cartesian closed
category, any object S comes with a unique comonoid
structure given by !S : S → 1, ∆S : S → S × S .)

Writer monads

We are interested in this functor:

TA = P × A where P is a set (of updates)

The possible monad structures are:

ηA x = (o, x),
µA (p, (p′, x)) = (p ⊕ p′, x)
where (o,⊕) is a monoid structure on P (trivial update,
composition of updates)

Monad structures on this functor are in a bijection with
monoid structures on P .

(This example generalizes to any monoidal category with
a given monoid.)

State monads

The monad:

T A = S ⇒ S × A where S is a set (of
readable/overwritable states),
ηA x = λs. (s, x)
µA f = λs. let (s ′, g) = f s in g (s ′, x)

(This example works in any monoidal closed category.)

List monad and variations

The list monad:

TA = ListA,
ηA x = [x],
µA xss = concat xss.

Some variations:

TA = {xs : A∗ | xs is square-free}
TA = {xs : A∗ | xs is duplicate-free}
TA = 1 + A× A
TA =Mf A
TA = Pf A
non-empty versions of the above

Can you characterize the algebras of these monads?

Monad maps

Monad maps

A monad map between monads T , T ′ on a category C is
a natural transformation τ : T

.→ T ′ satisfying

A

ηA
��

A

η′A
��

TA τA
// T ′A

T (TA)
τTA //

µA
��

T ′(TA)
T ′τA // T ′(T ′A)

µ′A
��

TA τA
// T ′A

Monads on C and maps between them form a category
Monad(C).

Monad maps are monoid maps in the monoidal category
([C, C], IdC, ·) and the category of monads is the category
of monoids in ([C, C], IdC, ·).

Kleisli triple maps

A map between two Kleisli triples T , T ′ is, for any object
A, a map τA : TA→ T ′A such that

τA ◦ ηA = η′A,
if k : A→ TB, then τB ◦ k? = (τB ◦ k)?′ ◦ τA.

(No explicit naturality condition on τ !)

Kleisli triples on C and maps between them form a
category that is isomorphic to Monad(C).

Monad maps vs. functors between Kleisli categories

There is a bijection between monad maps τ : T
.→ T ′

and functors V : Kl(T)→ Kl(T ′) such that

Kl(T)
V // Kl(T ′)

C
J

bb

J′

<<

This is defined by

VA = A,

if k : A→ TB, then Vk = A
k−→ TB

τB−→ T ′B.

and

τA = V (TA
idTA−→ TA) : TA→T ′ A.

Monad maps vs. functors between E-M categories

There is a bijection between monad maps τ : T
.→ T ′

and functors V : EM(T ′)→ EM(T) such that

EM(T ′)
V //

U′
##

EM(T)

U
{{
C

(Note the reversed direction.)

This is defined by

V (A, a) = (A, a ◦ τA),
if h : (A, a)→ (B, b), then
Vh = h : (A, a ◦ τA)→ (B, b ◦ τB).

and

τA = let (T ′A, a)← V (T ′A, µ′A) in a ◦ Tη′A.

Examples: Exceptions, reader, writer monads

Monad maps between the exception monads for sets E ,
E ′ are in a bijection with pairs of an element of E ′ + 1
and a function between E and E ′.
(Why?)

Monad maps between the reader monads for sets S , S ′

are in a bijection with maps between S ′, S .

Monad maps between the writer monads for monoids
(P , o,⊕) and (P ′, o′,⊕′) are in a bijection with
homomorphisms between these monoids.

Examples: From exceptions to writer or vice versa

There is no monad map τ from the exception monad for
a set E and the writer monad for a monoid (P , o,⊕)
(unless E = 0).
There is not even a natural transformation between the
underlying functors: it is impossible to have a map
τ0 : 0 + E → P × 0.

Monad maps τ from the writer monad for (P , o,⊕) to
the exception monad for E are in a bijection between
monoid homomorphisms between (P , o,⊕) and the free
monoid on the left zero semigroup on E . (Can you
simplify this condition further?)
They can be written as

τX = P×X −→ (E +1)×X −→ E×X +1×X −→ E +X

Examples: Reader and state monads

The monad maps between the state monads for S and C
are in a bijection with lenses, i.e., pairs of functions
lkp : C → S , upd : C × S → C such that

lkp (upd (c , s)) = s,
upd (c, lkp c)) = c ,
upd (upd (c , s), s ′) = upd (c , s ′).

Can you characterize the monad maps from the reader
monad for S to the state monad for C? The other way
around? (Be careful here!)

Examples: Nonempty lists and powerset

How many monad maps are there from the nonempty list
monad to itself?

Answer: 4, viz. the identity map, reverse, take only the
first element, take only the last element.

Why does taking the 2nd element not qualify? Or taking
the two first elements? (These are natural
transformations, but. . .)

How many monad maps are there from the nonempty list
monad to the nonempty powerset monad? The other way
around?

Compatible compositions of monads

Compatible compositions of monads

A compatible composition of two monads (T0, η0, µ0),
(T1, η1, µ1) is a monad structure (η, µ) on T = T0 · T1

satisfying

Id
η

//

η0·η1

��
T0 · T1

T0 · T0
µ0 //

T0·η1·T0·η1
��

T0

T0·η1
��

T0 · T1 · T0 · T1 µ
// T0 · T1

T1 · T1
µ1 //

η0·T1·η0·T1

��

T1

η0·T1

��
T0 · T1 · T0 · T1 µ

// T0 · T1

T0 · T1

T0·η1·η0·T1

ww
T0 · T1 · T0 · T1 µ

// T0 · T1

Conditions 1-3 say just that T0 · η1 and η0 · T1 are monad
morphisms between (T0, η0, µ0) resp. (T1, η1, µ1) and
(T , η, µ).
Condition 1 fixes that η = η0 · η1; so the only freedom is
about µ.

Distributive laws of monads

A distributive law of a monad (T1, η1, µ1) over (T0, η0, µ0)
is a natural transformation θ : T1 ·T0 → T0 ·T1 such that

T1

T1·η0

{{

η0·T1

##
T1 · T0

θ
// T0 · T1

T1 · T0 · T0

T1·µ0

��

θ·T0 // T0 · T1 · T0
T0·θ // T0 · T0 · T1

µ0·T1

��
T1 · T0

θ
// T0 · T1

T0

η1·T0

{{

T0·η1

##
T1 · T0

θ
// T0 · T1

T1 · T1 · T0

µ1·T0

��

T1·θ // T1 · T0 · T1
θ·T1 // T0 · T1 · T1

T0·µ1

��
T1 · T0

θ
// T0 · T1

Compatible compositions = distributive laws

Compatible compositions of (T0, η0, µ0), (T1, η1, µ1) are
in a bijection with distributive laws of (T1, η1, µ1) over
(T0, η0, µ0).

Given µ, one recovers θ by

θ = T1 · T0
η0·T1·T0·η1 // T0 · T1 · T0 · T1

µ // T0 · T1

Given θ, µ is defined by

µ = T0 · T1 · T0 · T1
T0·θ·T1// T0 · T0 · T1 · T1

µ0·µ1 // T0 · T1

Algebras of compatible compositions

Given a distributive law θ, a θ-pair of algebras is given by
a set A with a (T0, η0, µ0)-algebra structure (A, a0) and a
(T1, η1, µ1)-algebra structure (A, a1) such that

T1A

T1a0
��

A
a1oo a0 // T0A

T0a1
��

T1(T0A)
θA // T0(T1A)

Such pairs of algebras are in a bijection with
(T , η, µ)-algebras.
Given a0, a1, one constructs a as

a = T0(T1A)
T0a1−→ T0A

a0−→ A.

Given a, a0 and a1 are defined by

a0 = T0A
T0η1A−→ T0(T1A)

a−→ A,

a1 = T1A
η0T1A−→ T0(T1A)

a−→ A.

Any monad and an exceptions monad

The exceptions monad for E distributes in a unique way
over any monad (T0, η0, µ0).

θ : E + T0A→ T0(E + A)
θA (inl e) = η0 (inl e),
θA (inr c) = T0 inr

So we have a unique monad structure on
TA = T0(E + A) that is compatible with (T0, η0, µ0).

(This generalizes to any coCartesian category, also to any
monoidal category with a comonoid.)

Any monad and a writer monad

There is a unique distributive law of the writer monad for
(P , o,⊕) over any monad (T0, η0, µ0).

θ : P × T0A→ T0(P × A)
θA (p, c) = T0(λx . (p, x)) c .
(θ is nothing but the unique strength of T0!)

So monad structures on TA = T0(P × A) compatible
with (T0, η0, µ0) are in a bijection with monoid structures
on P .

(This generalizes to any Cartesian category and any
monoidal category in the form of a bijection between
strengths and distributive laws.)

Monoid actions

A right action of a monoid (P , o,⊕) on a set S is a map
↓ : S × P → S satisfying

s ↓ o = s
s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′

Reader and writer monads

Distributive laws of the writer monad for (P , o,⊕) over
the reader monad for S are in a bijective correspondence
with right actions of (P , o,⊕) on S .

The compatible composition of the two monads
determined by a right action ↓ is

T A = S ⇒ P × A
η x = λs. (o, x)

µ f = λs. let (p, g) = f s
(p′, x) = g (s ↓ p)

in (p ⊕ p′, x)

—the update monad for S , (P , o,⊕), ↓.

State logging

Take S to be some set (of states).

Take P = List S , o = [], ⊕ = ++ (state logs).

s ↓ [] = s
s ↓ (s ′ :: ss) = s ′ ↓ ss

(so s ↓ ss is the last element of s :: ss)

Reading a stack and popping

Take S = ListE (states of a stack of elements drawn
from a set E).

Take P = Nat, o = 0, ⊕ = + (possible numbers of
elements to pop).

es ↓ n = removelast n es.

Reading a stack and pushing

Take again S = ListE (states of a stack of elements
drawn from a set E).

Take P = ListE , o = [], ⊕ = ++ (lists of elements to
push on the stack).

es ↓ es ′ = es++es ′.

(So here we choose (S , ↓) to be the initial
(P , o,⊕)-set—which is always a possibility.)

Matching pairs of monoid actions

A matching pair of actions of two monoids (P0, o0,⊕0)
and (P1, o1,⊕1) on each other is pair of maps
↘ : P1 × P0 → P0 and ↙ : P1 × P0 → P1 such that

o1 ↘ p0 = p0
(p1 ⊕1 p

′
1)↘ p0 = p1 ↘ (p′1 ↘ p0)

p1 ↘ o0 = o0

p1 ↘ (p0 ⊕0 p
′
0) = (p1 ↘ p0)⊕0 ((p1 ↙ p0)↘ p′0)

p1 ↙ o0 = p1
p1 ↙ (p0 ⊕0 p

′
0) = (p1 ↙ p0)↙ p′0

o1 ↙ p0 = o1

(p1 ⊕1 p
′
1)↙ p0 = (p1 ↙ (p′1 ↘ p0))⊕1 (p′1 ↙ p0)

Zappa-Szép product of monoids

A Zappa-Szép product (aka knit product, bicrossed
product, bilateral semidirect product) of two monoids
(P0, o0,⊕0) and (P1, o1,⊕1) is a monoid structure (o,⊕)
on P = P0 × P1 such that

o = (o0, o1)
(p, o1)⊕ (p′, o1) = (p ⊕0 p

′, o1)
(o0, p)⊕ (o0, p

′) = (o0, p ⊕1 p
′)

(p, o1)⊕ (o0, p
′) = (p, p′)

Zappa-Szép products of (P0, o0,⊕0) and (P1, o1,⊕1) are
in a bijective correspondence with matching pairs of
actions of (P0, o0,⊕0) and (P1, o1,⊕1).
Given ⊕, one constructs ↘ and ↙ by

(p1 ↘ p0, p1 ↙ p0) = (o0, p1)⊕ (p0, o1)

Given ↘ and ↙, ⊕ is defined by
(p0, p1)⊕ (p′0, p

′
1) = (p0 ⊕0 (p1 ↙ p′0), (p1 ↘ p′0)⊕1 p

′
1)

Two writer monads

Compatible compositions of writer monads for
(P0, o0,⊕0) and (P1, o1,⊕1) are in a bijection with
matching pairs of actions of the two monoids.

They are isomorphic to writer monads for the
corresponding Zappa-Szép products.

Combining popping and pushing

Take (P0, o0,⊕0) = (Nat, 0,+),
(P1, o1,⊕1) = (ListE , [],++) where E is some set.

es ↘ n = n
.
− length es,

es ↙ n = removelast n es.

(n, es)⊕ (n′, es ′)
= (n + (n′

.
− length es), (removelast n′ es)++es ′)

Pairs (n, es) represent net effects of sequences of pop,
push instructions on a stack: some number of elements is
removed from and some new specific elements are added
to the stack.

Combining reading, popping, pushing

How do I now show that
TA = ListE ⇒ Nat× (ListE × A)

is a monad?

This is of the form T0 · T1 · T2 where
T0A = ListE ⇒ A
T1A = Nat× A
T2A = ListE × A

We already know that
T01 = T0 · T1

T02 = T0 · T2

T12 = T1 · T2

are compatible compositions of monads.

We want to be sure that (T0 · T1) · T2 and T0 · (T1 · T2)
are compatible compositions of monads.

Moreover they’d better be the same monad!

In terms of distributive laws, this only requires checking
the Yang-Baxter equation:

T1 · T2 · T0
T1·θ02 //

θ0(12) ++

T1 · T0 · T2

θ01·T2

''
T2 · T1 · T0

θ12·T0

77

T2·θ01 ''

θ(10)2

33

θ0(21)

++

T0 · T1 · T2

T2 · T0 · T1 θ02·T1

//

θ(01)2
33

T0 · T2 · T1

T0·θ12

77

