Monoidal functors (aka idioms!)

[Symmetric] monoidal functors

- A lax monoidal functor between monoidal categories $(\mathcal{C}, I, \otimes)$ and $\left(\mathcal{C}, I^{\prime}, \otimes^{\prime}\right)$ is
- a functor F from \mathcal{C} to \mathcal{C}^{\prime}
- with natural transformations e $: I^{\prime} \rightarrow F I$ and $\mathrm{m}_{A, B}: F A \otimes^{\prime} F B \rightarrow F(A \otimes B)$
such that

$\left(F A \otimes^{\prime} F B\right) \otimes^{\prime} F C \xrightarrow{m_{A, B} \otimes^{\prime} F C} F(A \otimes B) \otimes^{\prime} F C \xrightarrow{m_{A \otimes B, C}} F\left((A \otimes B) \otimes^{\prime} C\right)$
$\alpha_{F A, F B, F C}^{\prime} \downarrow_{\downarrow} \| \alpha_{A, B, C}$
$F A \otimes^{\prime}\left(F B \otimes^{\prime} F C\right)_{F A \otimes^{\prime} \mathrm{m}_{B, C}} F A \otimes^{\prime} F(B \otimes C)_{\underset{\mathrm{m}_{A, B \otimes C}}{ }} F(A \otimes(B \otimes C))$
- A lax monoidal functors between symmetric monoidal categories is lax symmetric monoidal, if also

- An oplax [symmetric] monoidal functor is like a lax [symmetric] monoidal functor, but e, m go in the opposite direction.
- A monoidal [symmetric] functor is like a lax [symmetric] monoidal functor, but e, m are required to be natural isomorphisms.
- A lax [symmetric] monoidal natural transformation between two lax [symmetric] monoidal functors $(F, \mathrm{e}, \mathrm{m})$, ($G, \mathrm{e}^{\prime}, \mathrm{m}^{\prime}$) is a natural transformation $\tau: F \rightarrow G$ satisfying
- Oplax [symmetric] monoidal and [symmetric] monoidal natural transformations are defined similarly.
- Any functor F between Cartesian categories is canonically oplax symmetric monoidal via
- $\mathrm{e}=F 1 \xrightarrow{!} 1$,
- $\mathrm{m}_{A, B}=F(A \times B) \xrightarrow{\langle F \mathrm{fst}, F \text { snd }\rangle} F A \times F B$.
- Any natural transformation between functors F, G between Cartesian categories is oplax symmetric monoidal for the canonical oplax symmetric monoidalities on F and G.

Lax monoidal functors \cap containers

- Containers whose interpretation carries a lax monoidality are given by a container (S, P) with
- e:S
- • : $S \rightarrow S \rightarrow S$
- $q_{0}: \Pi\left\{s_{0}: S\right\} . \Pi s_{1}: S . P\left(s_{0} \bullet s_{1}\right) \rightarrow P s_{0}$
- $q_{1}: \Pi s_{0}: S . \Pi\left\{s_{1}: S\right\} . P\left(s_{0} \bullet s_{1}\right) \rightarrow P s_{1}$
where we write
- $q_{0}\left\{s_{0}\right\} s_{1} p$ as $s_{1} \bigcap_{s_{0}} p$
- $q_{1} s_{0}\left\{s_{1}\right\} p$ as $p / s_{1} s_{0}$
such that
- $e \cdot s=s$
- $s=s \bullet e$
- $\left(s \bullet s^{\prime}\right) \bullet s^{\prime \prime}=s \bullet\left(s^{\prime} \bullet s^{\prime \prime}\right)$
and ...
- ... and
- $\mathrm{e} \uparrow_{s} p=p$
- $p \prod_{s} \mathrm{e}=p$
- $s^{\prime} \uparrow_{s}\left(s^{\prime \prime} \uparrow_{s \bullet s^{\prime}} p\right)=\left(s^{\prime} \bullet s^{\prime \prime}\right) \uparrow_{s} p$
- $\left.\left(s^{\prime \prime} \uparrow_{s \bullet s^{\prime}} p\right) \uparrow_{s^{\prime}} s=s^{\prime \prime} \uparrow_{s^{\prime}}(p\rceil_{s^{\prime} \bullet s^{\prime \prime}} s\right)$
- $p \nmid s^{\prime \prime}\left(s \bullet s^{\prime}\right)=\left(p \varlimsup_{s^{\prime} \bullet s^{\prime \prime}} s\right) \not s^{\prime \prime} s^{\prime}$
- (S, e, \bullet) make a monoid.
- (\uparrow, \uparrow) resemble a biaction of (S, e, \bullet).
- Those containers whose interpretation carries a lax symmetric monoidality satisfy also
- $s \bullet s^{\prime}=s^{\prime} \bullet s$,
- $s^{\prime} \uparrow_{s} p=p \uparrow_{s^{\prime}} s$
i.e., the monoid (S, e, \bullet) is commutative and one action determines the other.

Monoidal monads

[Symmetric] monoidal monads

- A lax [symmetric] monoidal monad on a [symmetric] monoidal category $(\mathcal{C}, I, \otimes)$ is a monad (T, η, μ) with a lax [symmetric] monoidality (e, m) of T for which η and μ are lax [symmetric] monoidal, i.e., satisfy

(Note that Id is lax [symmetric] monoidal and, if F, G are lax [symmetric] monoidal, then so is $G \cdot F$.)
- The 1st law forces that $\mathrm{e}=\eta_{\text {I }}$ and the 2nd law follows from one of the monad laws, so we only need m and the 3rd and 4th laws.
- On a Cartesian category, every monad is canonically oplax symmetric monoidal.

Lax monoidal monads $=$ Comm. bistrong monads

- There is a bijection of lax [symmetric] monoidalities m on a monad (T, η, μ) on a [symmetric] monoidal category $(\mathcal{C}, I, \otimes)$ and commutative [symmetric] bistrengths (θ, ϑ).
- It is defined by
$\bullet \mathrm{m}_{A, B}=\mathrm{m}_{A, B}^{\prime r}=\mathrm{m}_{A, B}^{r \prime}$
and

$$
\begin{aligned}
& \text { - } \theta_{A, B}=A \otimes T B \xrightarrow{\eta_{A} \otimes T B} T A \otimes T B \xrightarrow{\mathrm{~m}_{A, B}} T(A \otimes B), \\
& \text { - } \vartheta_{A, B}=T A \otimes B \xrightarrow{T A \otimes \eta_{B}} T A \otimes T B \xrightarrow{\mathrm{~m}_{A, B}} T(A \otimes B) .
\end{aligned}
$$

- On (Set, $1, \times$), as any monad has a unique left strength and [symmetric] bistrength, it is lax [symmetric] monoidal in at most one way.

Exception idioms

- Lax [symmetric] monoidalities (e, m) on the exception functor for E
- $T A=E+A$
are in a bijection with [commutative] semigroup structures \otimes on E via
- $\mathrm{e} *=\mathrm{inr} *$,

$$
\mathrm{m}_{A, B}\left(\text { inl } e_{0}, \operatorname{inl} e_{1}\right)=\operatorname{inl}\left(e_{0} \otimes e_{1}\right)
$$

$$
\mathrm{m}_{A, B}(\operatorname{inl} e, \operatorname{inr} b)=\operatorname{inl} e
$$

$$
\mathrm{m}_{A, B}(\mathrm{inr} a, \operatorname{inl} e)=\mathrm{inl} e
$$

$$
\mathrm{m}_{A, B}(\operatorname{inr} a, \operatorname{inr} b)=\operatorname{inr}(a, b)
$$

- $e_{0} \otimes e_{1}=$ case $m_{0,0}$ of inle $\mapsto e$.
- Two special cases are $e_{0} \otimes e_{1}=e_{0}$ (the left zero semigroup) and $e_{0} \otimes e_{1}=e_{1}$ (the right zero semigroup).
- The exception monad for E is not lax [symmetric] monoidal except for the special case $E=1$.

Writer idioms

- Lax [symmetric] monoidalities (e, m) on the writer functor for a set P
- $T A=P \times A$
are in a bijection with [commutative] monoid structures (i, \otimes) on P.
- Lax [symmetric] monoidalities m on the writer monad for a monoid (P, o, \oplus) are in a bijection with those [commutative] monoid structures (i, \otimes) on P that satisfy
- $\mathrm{i}=0$
- $\left(e_{0} \oplus e_{1}\right) \otimes\left(e_{2} \oplus e_{3}\right)=\left(e_{0} \otimes e_{2}\right) \oplus\left(e_{1} \otimes e_{3}\right)$ (middle-four interchange)
- Under the 1 st condition, the 2 nd condition implies
$e_{0} \otimes e_{1}=\left(e_{0} \oplus \mathrm{o}\right) \otimes\left(\mathrm{o} \oplus e_{1}\right)=\left(e_{0} \otimes \mathrm{i}\right) \oplus\left(\mathrm{i} \otimes e_{1}\right)=e_{0} \oplus e_{1}$
and further
$e_{0} \oplus e_{1}=\left(o \oplus e_{0}\right) \oplus\left(e_{1} \oplus \mathrm{o}\right)=\left(\mathrm{o} \oplus e_{1}\right) \oplus\left(e_{0} \oplus \mathrm{o}\right)=e_{1} \oplus e_{0}$
as well as follows from these conditions.
- Hence the writer monad is lax [symmetric] monoidal if and only if \oplus is commutative.

