
Types and Analysis for Scripting Languages

Exercises

Peter Thiemann

25.-27.2.2008

Here are some suggestions for projects relating to the topic of the lectures.

1 Soft Type Inference

This project is suitable if you have previous experience in implementing ML
type inference.

Implement the soft-type inference engine for Mini-Scheme as defined in the
Wright/Cartwright paper[WC97]. The following guidelines may be helpful.

• Define the required types

– a type_variable is a pair of a list of type constructors (indicating the
type constructors that may not be substituted for this type variable)
and a reference to a (sum_type option)

– a sum_type is either empty or a pair of a type_component and a
type_variable

– a type_component consists of a type_constructor, a flag_variable,
and a list of type_variable

– a flag_variable is a reference to a (flag option)

– a flag is either plus or minus

– a type_scheme contains a list of type_variable, a list of flag_variable,
and a type_variable (with an empty list of type constructors)

– a datatype expr for the expression syntax (var, lam, app, chk_app,
let)

• Implement unification of two type variables (you may want to change the
representation of type_variable to improve efficiency later on, but that’s
not strictly necessary).

• Implement type inference for the type system analogously to Milner’s al-
gorithm W.

1



• Implement the soft typing translation as a second pass after type inference
proper. First find out, what to do with the remaining free variables in the
typing. Which of them can safely be instantiated to empty?

2 Flow Analysis and Abstract Interpretation

The idea of abstract interpretation is to run an interpreter on a non-standard,
finite domain of values, the abstract domain. The abstract domain is constructed
so that each abstract value corresponds to a set of values of the original domain.
The operations on the abstract domain are approximations of the corresponding
real operations, in the sense that the abstract value they produce always contains
any possible real value.

Consider the following mini language with dynamic types. The base types
are boolean, number, and string. There is a type constructor for vector t for
vectors with elements of type t.

Expressions
e ::= x variables
| c constants
| o(e, . . . , e) primitive operations

Statements
s ::= x = e assignment
| s;s sequence
| if e then s else s conditional
| while e do s

Types
t ::= boolean
| number
| string
| vector t

The constants include numbers, true, false, and string constants. Among the
primitive operations, there are the typical arithmetic, logic, and string opera-
tions, as well as

make-vector n v creates vector of size n initialized with value v
vector-ref v i vector access at position i (0-based)
vector-set v i w overwrite position i in vector v with new value w

Each of the operations first attempts a dynamic conversion of its arguments to
their expected types. If that fails, the operation raises a run-time error.

• Define the data types necessary to represent values in this language.

• Define suitable conversion operations between the data types. All of them
should accept an arbitrary value and either return a value of the expected
type or signal a conversion error.

2



• Write a standard interpreter for the language. Model the store as a map-
ping from variable names to values.

• Define a suitable notion of abstract values and implement a representation
for abstract values. For simplification you may choose to omit arrays or
just track the potential presence or absence of a value of a particular type.
For technical reasons, the set of abstract values must be a finite complete
lattice, for instance, a finite boolean algebra like a powerset of a finite
set would work. The operations “get smallest element” and “least upper
bound” are needed on a lattice.

• Define abstract versions of the primitive operations using the guideline
given at the beginning of this project. Try to find the best possible ab-
stractions that return the smallest possible abstract value.

What are the correct abstractions of the conversion functions and where
do they apply?

• Write an abstract interpreter. Model the store as a mapping from vari-
able names to abstract values. Initialize each variable to ⊥, the minimal
element of the lattice of abstract values.

Abstract evaluation of expressions proceeds in the obvious way. An assign-
ment x = e updates the store with the least upper bound of the abstract
value of e and the previous abstract value stored for x. Abstract evalua-
tion of a conditional visits both branches, unless the sublattice for boolean
values can distinguish between true and false. Abstract evaluation of a
while loop visits the body once unless e is proved to be false.

The abstract evaluation of the whole program is repeated (iterated) until
a fixpoint is reached. That is, until the mapping of variables to abstract
values stabilizes.

• Run-time errors of a program can now be predicted by examining the uses
of the conversion functions for failures. What exactly has to be tested?

References

[WC97] Andrew K. Wright and Robert Cartwright. A practical soft type sys-
tem for Scheme. ACM Transactions on Programming Languages and
Systems, 19(1):87–152, January 1997.

3


