
Types and Analysis for Scripting Languages

Peter Thiemann

Universität Freiburg, Germany

Mini Lecture, Tallinn, Estland, 25.-27.2.2008

Introduction

Ultra-Brief JavaScript Tutorial

Dynamic Typing and Soft Typing

Scripting Languages

I Lightweight programming languages
evolved from command languages

I Lightweight data structures
hashmap (object), strings

I Lightweight syntax
familiar, no semicolon, (often not well specified), . . .

I Lightweight typing
dynamic, weak, duck typing

I Lightweight metaprogramming
I Lightweight implementation

interpreted, few tools

Uses of Scripting Languages

I Glue language for components
I Configuration and automation of complex software

graphics, visualization, office software, web frameworks
I Embedded languages
I Web scripting

I server-side
I client-side

I Examples: php, perl, ruby, lua, python, javascript, vb-script,
scheme, emacs-lisp, awk, sh, tcl/tk, groovy . . .

JavaScript, a Typical Scripting Language

I Initially developed by Netscape’s Brendan Eich
I Standardized as ECMAScript (ECMA-262 Edition 3)
I Application areas (scripting targets)

I client-side web scripting (dynamic HTML, SVG, XUL)
I server-side scripting (Whitebeam, Helma, Cocoon, iPlanet)
I animation scripting (diablo, dim3, k3d)
I and many more

JavaScript, Technically

I Java-style syntax
I Object-based imperative

language
I no classes, but prototype

concept
I objects are hashtables

I First-class functions
I a functional language

I Weak, dynamic type system
Slogan: Any type can be

converted to any other
reasonable type

node.onmouseout =
function (ev) {

init();
state++;
node.className =

"highlight-"
+ state;

ev.stopPropagation();
};

Problems with JavaScript

Symptomatic for other scripting languages

I No module system
I No namespace management
I No interface descriptions

I No application specific datatypes
primitive datatypes, strings, hashtables

I Type conversions are sometimes surprising
“A scripting language should never throw an exception [the
script should just continue]” (Rob Pike, Google)

I Few development tools (debugger)
⇒ Limited to small applications

Specific Problems with JavaScript

I Most popular applications
I client-side scripting
I AJAX

I Dynamic modification of page content via DOM interface
I DOM = document object model
I W3C standard interface for accessing and modifying XML
I Mainly used in web browers

I Incompatible DOM implementations in Web browsers
⇒ programming recipes instead of techniques

Specific Problems with JavaScript

I Most popular applications
I client-side scripting
I AJAX

I Dynamic modification of page content via DOM interface
I DOM = document object model
I W3C standard interface for accessing and modifying XML
I Mainly used in web browers

I Incompatible DOM implementations in Web browsers
⇒ programming recipes instead of techniques

Can You Write Reliable Programs in JavaScript?

I Struggle with the lack of e.g. a module system
I Ad-hoc structuring of large programs
I Naming conventions
I Working in a team

I Work around DOM incompatibilities
I Use existing JavaScript frameworks (widgets, networking)
I Frameworks are also incompatible

I Wonder about unexpected results
I Instance of Dick Gabriel’s “Worse is Better” Claim

Excursion: MIT/Stanford Style of Design
MIT Approach (Dick Gabriel)

Simplicity the design must be simple, both in implementation
and interface. It is more important for the interface
to be simple than the implementation.

Correctness the design must be correct in all observable
aspects. Incorrectness is simply not allowed.

Consistency the design must not be inconsistent. A design is
allowed to be slightly less simple and less
complete to avoid inconsistency. Consistency is as
important as correctness.

Completeness the design must cover as many important
situations as is practical. All reasonably expected
cases must be covered. Simplicity is not allowed
to overly reduce completeness.

Excursion: Worse-Is-Better Design Philosophy
New Jersey Approach (Dick Gabriel)

Simplicity the design must be simple, both in implementation
and interface. It is more important for the
implementation to be simple than the interface.
Simplicity is the most important consideration in a
design.

Correctness the design must be correct in all observable
aspects. It is slightly better to be simple than
correct.

Consistency the design must not be overly inconsistent.
Consistency can be sacrificed for simplicity in
some cases, but it is better to drop those parts of
the design that deal with less common
circumstances than to introduce either
implementational complexity or inconsistency.

Completeness the design must cover as many important
situations as is practical. All reasonably expected
cases should be covered. Completeness can be
sacrificed in favor of any other quality. In fact,
completeness must be sacrificed whenever
implementation simplicity is jeopardized.
Consistency can be sacrificed to achieve
completeness if simplicity is retained; especially
worthless is consistency of interface.

Introduction

Ultra-Brief JavaScript Tutorial

Dynamic Typing and Soft Typing

An Ultra-Brief JavaScript Tutorial

Rule 1:
JavaScript is object-based. An object is a hash table that maps
named properties to values.

Rule 2:
Every value has a type. For most reasonable combinations,
values can be converted from one type to another type.

Rule 3:
Types include null, boolean, number, string, object,
and function.

Rule 4:
‘Undefined’ is a value (and a type).

An Ultra-Brief JavaScript Tutorial

Rule 1:
JavaScript is object-based. An object is a hash table that maps
named properties to values.

Rule 2:
Every value has a type. For most reasonable combinations,
values can be converted from one type to another type.

Rule 3:
Types include null, boolean, number, string, object,
and function.

Rule 4:
‘Undefined’ is a value (and a type).

An Ultra-Brief JavaScript Tutorial

Rule 1:
JavaScript is object-based. An object is a hash table that maps
named properties to values.

Rule 2:
Every value has a type. For most reasonable combinations,
values can be converted from one type to another type.

Rule 3:
Types include null, boolean, number, string, object,
and function.

Rule 4:
‘Undefined’ is a value (and a type).

An Ultra-Brief JavaScript Tutorial

Rule 1:
JavaScript is object-based. An object is a hash table that maps
named properties to values.

Rule 2:
Every value has a type. For most reasonable combinations,
values can be converted from one type to another type.

Rule 3:
Types include null, boolean, number, string, object,
and function.

Rule 4:
‘Undefined’ is a value (and a type).

Some Quick Questions

Let’s define an object obj:

js> var obj = { x: 1 }

What are the values/outputs of
I obj.x

I obj.y

I print(obj.y)

I obj.y.z

Answers

js> var obj = {x:1}
js> obj.x
1
js> obj.y
js> print(obj.y)
undefined
js> obj.y.z
js: "<stdin>", line 12: uncaught JavaScript exception:
ConversionError: The undefined value has no properties.
(<stdin>; line 12)

Weak, Dynamic Types in JavaScript II

Rule 5:
An object is really a dynamic mapping from strings to values.

js> var x = "x"
js> obj[x]
1
js> obj.undefined = "gotcha"
gotcha
js> obj[obj.y]

What is the effect/result of the last expression?

== "gotcha"

Weak, Dynamic Types in JavaScript II

Rule 5:
An object is really a dynamic mapping from strings to values.

js> var x = "x"
js> obj[x]
1
js> obj.undefined = "gotcha"
gotcha
js> obj[obj.y]

== obj[undefined]
== obj["undefined"]
== obj.undefined
== "gotcha"

Weak, Dynamic Types in JavaScript III

Recall Rule 2:
Every value has a type. For most reasonable combinations,
values can be converted from one type to another type.

js> var a = 17
js> a.x = 42
42
js> a.x

What is the effect/result of the last expression?

Weak, Dynamic Types in JavaScript III

Wrapper objects for numbers

js> m = new Number (17); n = new Number (4)
js> m+n
21

Wrapper objects for booleans

js> flag = new Bool(false);
js> result = flag ? true : false;

What is the value of result?

Weak, Dynamic Types in JavaScript III

Wrapper objects for numbers

js> m = new Number (17); n = new Number (4)
js> m+n
21

Wrapper objects for booleans

js> flag = new Bool(false);
js> result = flag ? true : false;

What is the value of result?

Weak, Dynamic Types in JavaScript IV

Rule 6:
Functions are first-class, but behave differently when used as
methods or as constructors.

js> function f () { return this.x }
js> f()
x
js> obj.f = f
function f() { return this.x; }
js> obj.f()
1
js> new f()
[object Object]

Distinguishing Absence and Undefinedness I

js> obju = { u : {}.xx }
[object Object]
js> objv = { v : {}.xx }
[object Object]
js> print(obju.u)
undefined
js> print(objv.u)
undefined

Distinguishing Absence and Undefinedness II

Rule 7:
The with construct puts its argument object on top of the
current environment stack.

js> u = "defined"
defined
js> with (obju) print(u)
undefined
js> with (objv) print(v)
defined

Distinguishing Absence and Undefinedness III

Rule 8:
The for construct has an in operator to range over all defined
indexes.

js> for (i in obju) print(i)
u
js> for (i in objv) print(i)
v
js> delete objv.v
true
js> for (i in objv) print(i)
js> delete objv.v
true

Strings as Data Structures

“Semantics buried in strings is
the ultimate evil”

(Erik Meijer, 2004)

Strings as Data Structures I
HTML+XML

elements[i].innerHTML =
’<div nowrap="nowrap">’+
elements[i].innerHTML+
’</div>’;

...
area = document.getElementById("waitMsg");
area.innerHTML =
"Please wait while
the submission is being uploaded.
";

...
var tT=’+++ some text +++’;
t=document.getElementById(’ticker’);
t.innerHTML=’<div>’+tT+’</div><div>’+tT+’</div>’;
...

Strings as Data Structures II
HTML+XML

I Typical pattern in JavaScript, Php, Servlets, . . . :
I Create HTML by concatenating and printing strings
I Problems

I well-formedness of HTML/XML not guaranteed
(i.e., the document may not be a tree)

I validity of HTML/XML not guaranteed
(i.e., the document may not adhere to a DTD or
XMLScheme specification)

I Consequence: browsers and XML processors may choke

Strings as Data Structures III
Solutions for HTML+XML

I Partial approach: E4X
I JavaScript dialect
I XML literals and XPath processing
I but implemented in terms of strings

I Full solution: DOM
I Fairly clumsy to use

I Wait for Meijer’s law:
“Any sufficiently heavily used API or common programming
pattern will eventually evolve into a first-class language
feature or construct”

Strings as Data Structures IV
Further string-embedded languages

I XPath
I SQL

I not just in scripting languages!
I in JDBC:

ResultSet rs =
stmt.executeQuery("SELECT a, b FROM TABLE2");

I Also addressed by language extenders and grammar
systems

I (not that widely used)

State of Affairs

Theses
I SLs are used in ad-hoc ways by choice
I SL programmers want the freedom given by data

structures encoded in strings
I SL programmers want dynamic typing and conversions
I SL programmers write large programs (and need

assurance for them)

State of Affairs II

I Goal
I Keep today’s usage patterns of SLs
I Enable maintenance
I Improve assurance if needed

I Means: Typing and static analysis
I to detect problems with dynamic typing

(errors, unwanted conversions)
I to detect malformed strings
I to address problems with incompletely specified APIs

I Inspiration
I Soft typing
I Flow analysis
I Work on grammars and parsing

Introduction

Ultra-Brief JavaScript Tutorial

Dynamic Typing and Soft Typing

Soft Typing

I Example: Andrew K. Wright and Robert Cartwright. A
Practical Soft Type System for Scheme. Toplas
19:1(87-152), 1997.

I Problem statement
I Static type checking for a dynamically typed language

(Scheme)
I Untyped programs should not be rejected
I Typings results should be easy to interpret
I Type inference should be efficient

Example of Soft Typing

(define flatten
(lambda (l)
(cond
((null? l)
’())
((pair? l)
(append (flatten (car l))

(flatten (cdr l))))
(else
(list l)))))

(define a ’(1 (2) 3))
(define b (flatten a))

Example of Soft Typing
Results

flatten
(rec ((Y1 (+ nil (cons Y1 Y1) X1)))
(Y1 -> (list (+ (not nil) (not cons) X1))))

a
(cons num (cons (cons num nil) (cons num nil)))

b
(list num)

Example of Soft Typing
Explanation

I num type of numbers
I nil type of empty list
I (cons X Y) type of a pair
I (+ X Y) union type
I (not nil) type which does not include the empty list
I (not cons) type which does not include a pair
I (list Z) stands for the recursive type
(rec ((Y (+ nil (cons Z Y)))) Y)

Type Language

T ::= (+ P1 . . . Pn) | (+ P1 . . . Pn X)
P ::= num | nil | (cons T T) | (T1 . . . Tn -> T) | N
N ::= (not num) | (not nil) | (not cons) | (not ->)
R ::= (rec ((X1 T1) . . . (Xn Tn)) T) | T

I Restrictions
I Each tag must be used at most once in each union.

(discriminative sum type, see Henglein and Rehof)
I The same set of tags must always precede a particular type

variable.
I The N serve as place holders for absent tags.

I Recursive Types R via first-order recursive equations.

Types of Well-known Scheme Functions

map:
((X1 -> X2) (list X1) -> (list X2))

member:
(X1 (list X2) -> (+ false (cons X2 (list X2))))

read:
(rec ((Y1 (+ num nil \dots (cons Y1 Y1))))
(-> (+ eof num nil \dots (cons Y1 Y1))))

lastpair:
(rec ((Y1 (+ (cons X1 Y1) X2)))
((cons X1 Y1) -> (cons X1 (+ (not cons) X2))))

Core Calculus

(Exp) e ::= v | (ap e e) | (CHECK-ap e e) | (let ([x e]) e)
(Val) v ::= c | x | (lambda (x) e)

where
I x ∈Id identifiers
I c ∈Const constants (basic constants and primitive

operations)
I checked and unchecked primitives

Types for the Core Calculus

Inspired by domain equation for data

D = Dnum ⊕Dtrue ⊕Dfalse ⊕Dnil ⊕ (D ⊗D)⊕ [D◦→ D]⊥
Dnum = {. . . ,−1,0,1,2, . . . }⊥
Dtrue = {#t}⊥
Dfalse = {#f}⊥
Dnil = {nil}⊥

Types for the Core Calculus II

Type language

σ, τ ::= κf1
1 ~σ1 ∪ . . . κfn

n ~σn ∪ (α | ∅)
κ ∈ Tag = {num,true,false,nil,cons,->}
f ::= + | − | ϕ

I Types must be tidy: each tag must not occur more than
once in a union (cf. Rémy’s and Wand’s row types)

I Types may be recursive (using µ notation)

Types for the Core Calculus III
Examples

num+ ∪ ∅

num+ ∪ nil+ ∪ ∅

num+ ∪ nil− ∪ α

(α->+(true+ ∪ false+ ∪ ∅)) ∪ ∅

I (types get big quickly)

Types for the Core Calculus IV
Type Schemes

I At the top level, types can be abstracted over
I type variables
I flag variables

I Type schemes
∀~α~ϕ.τ

I Stands for a set of substitution instances
I a substitution for α must not destroy tidyness
I a substitution for ϕ must be in {+,−, ϕ′}

Types for the Core Calculus V
Polymorphism for Encoding Subtyping

I ∀α.num+ ∪ α can be instantiated to any type that includes
num

num+ ∪ ∅
num+ ∪ true+ ∪ ∅
num+ ∪ true+ ∪ false+ ∪ ∅

I ∀ϕ1ϕ2.num
ϕ1 ∪ nilϕ2 ∪ ∅ can be instantiated to any type

that is contained in num+ ∪ nil+ ∪ ∅

num+ ∪ nil+ ∪ ∅
num+ ∪ nil− ∪ ∅
num− ∪ nil+ ∪ ∅
num− ∪ nil− ∪ ∅

Types for the Core Calculus VI
Types of Checked and Unchecked Primitives

TypeOf(0) = ∀α.
num+ ∪ α

TypeOf(add1) = ∀α1α2ϕ.
((numϕ ∪ ∅)->+(num+ ∪ α1)) ∪ α2

TypeOf(number?) = ∀α1α2α3.
(α1->

+(true+ ∪ false+ ∪ α2)) ∪ α3

TypeOf(CK-add1) = ∀α1α2α3ϕ.
((numϕ ∪ α3)->+(num+ ∪ α1)) ∪ α2

Typing Rules

(const)
τ ≺ TypeOf(c)

A ` c : τ
(var)

τ ≺ A(x)

A ` x : τ

(ap)
A ` e1 : (τ2->

f τ1) ∪ ∅ A ` e2 : τ2
A ` (ap e1 e2) : τ1

(Cap)
A ` e1 : (τ2->

f τ1) ∪ τ3 A ` e2 : τ2
A ` (CHECK-ap e1 e2) : τ1

(lam)
A, x : τ2 ` e : τ1

A ` (lambda (x) e) : (τ2->
+τ1) ∪ τ3

(let)
A ` e1 : τ1 A, x : ∀~α~ϕτ1 ` e2 : τ2 ~α~ϕ = fv(τ1) \ fv(A)

A ` (let ([x e1]) e2) : τ2

Type Soundness

I The operational semantics is standard (small-step).
I Checked applications reduce to an error term
I Unchecked applications get stuck

Theorem (Type Soundness)
If ∅ ` e : τ then either e diverges or e→∗ error or
e→∗ v with ∅ ` v : τ .

Stepping up to Soft Typing

I The type system for the core calculus is type sound
I But it rejects some meaningful programs
I Against the intention of soft typing!

I Soft typing should accept all programs
I Insert run-time checks if static type safety cannot be shown

Stepping up to Soft Typing

I The type system for the core calculus is type sound
I But it rejects some meaningful programs
I Against the intention of soft typing!
I Soft typing should accept all programs
I Insert run-time checks if static type safety cannot be shown

Absent Variables

I Function SoftTypeOf is identical to TypeOf for checked
primitives

I For unchecked primitives it converts the TypeOf type by
replacing - flags and ∅ types to absent flag and type
variables (ν̃ in the rules).

I Typing rules check absent variables for emptiness and
chose checked or unchecked versions as appropriate.

I Example

TypeOf(add1) = ∀α1α2ϕ.
((numϕ ∪ ∅)->+(num+ ∪ α1)) ∪ α2

SoftTypeOf(add1) = ∀α1α2ᾱ3ϕ.
((numϕ ∪ ᾱ3)->+(num+ ∪ α1)) ∪ α2

Soft Typing Transformation Rules

(const)
τ ≺S TypeOf(c)

A `s c ⇒ (empty{Sν̃ | ν̃ ∈ dom(S)} → c,CHECK-c) : τ

(var)
τ ≺ A(x)

A `s x ⇒ x : τ

(ap)
A `s e1 ⇒ e′

1 : (τ2->f τ1) ∪ τ̃3 A `s e2 ⇒ e′
2 : τ2

A `s (ap e1 e2)⇒ (empty{τ̃3} → (ap e′
1 e′

2), (CHECK-ap e′
1 e′

2)) : τ1

(Cap)
A `s e1 ⇒ e′

1 : (τ2->f τ1) ∪ τ3 A `s e2 ⇒ e′
2 : τ2

A `s (CHECK-ap e1 e2)⇒ (CHECK-ap e′
1 e′

2) : τ1

(lam)
A, x : τ2 `s e⇒ e′ : τ1

A `s (lambda (x) e)⇒ (lambda (x) e′) : (τ2->+τ1) ∪ τ3

(let)
A `s e1 ⇒ e′

1 : τ1 A, x : ∀~α~ϕτ1 `s e2 ⇒ e′
2 : τ2

~α~ϕ = (fv(τ1) \ fv(A)) \ AbsentVar
A `s (let ([x e1]) e2)⇒ (let ([x e′

1]) e′
2) : τ2

Related Work

I Robert Cartwright and Mike Fagan. Soft Typing. PLDI
1991.

I Fritz Henglein and Jakob Rehof. Safe Polymorphic Type
Inference for a Dynamically Typed Language: Translating
Scheme to ML. FPCA 1995.

I Didier Rémy’s work on row types (further developed by
Pottier).

I Carsten K. Gomard. Partial Type Inference for Untyped
Functional Programs. LFP 1990.

	Introduction
	Ultra-Brief JavaScript Tutorial
	Dynamic Typing and Soft Typing

