
Types and Analysis for Scripting Languages
(Part 4: A Type-Safe DOM API)

Peter Thiemann

Universität Freiburg, Germany

Mini Course, Tallinn, Estland, 25.-27.2.2008

Introduction

Programming Model

Invariants

Formal model

Conclusion

Introduction
What is DOM?

I Document Object Model
I W3C recommendation: DOM Level 3
http://www.w3.org/TR/2004/
REC-DOM-Level-3-Core-20040407/

I Statement of purpose

. . . a platform- and language-neutral interface that
allows programs and scripts to dynamically access
and update the content, structure and style of [XML]
documents.

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/

Introduction
Where is DOM?

I Implementations for Java, JavaScript, Python, Perl, C#,
Fortran, Ada, . . .

I Every Web browser (through JavaScript)
I Other applications: Mozilla-based, OpenOffice, XMetaL
I Other specifications: SVG

Introduction
The DOM programming model

I XML document represented by graph

I Node types characterized by hierarchy of IDL interfaces
I Node with subtypes

Node
Document
Element
Attr
DocumentType
Notation
Entity
EntityReference
ProcessingInstruction
CharacterData

CDATASection

Comment
Text

I Manipulation not straightforward
I Node creation using factory pattern
I Methods to maintain the graph

Introduction
The DOM programming model

I XML document represented by graph
I Node types characterized by hierarchy of IDL interfaces
I Node with subtypes

Node
Document
Element
Attr
DocumentType
Notation
Entity
EntityReference
ProcessingInstruction
CharacterData

CDATASection

Comment
Text

I Manipulation not straightforward
I Node creation using factory pattern
I Methods to maintain the graph

Introduction
The DOM programming model

I XML document represented by graph
I Node types characterized by hierarchy of IDL interfaces
I Node with subtypes

Node
Document
Element
Attr
DocumentType
Notation
Entity
EntityReference
ProcessingInstruction
CharacterData

CDATASection

Comment
Text

I Manipulation not straightforward
I Node creation using factory pattern
I Methods to maintain the graph

Introduction
What does a typical structure look like?

Document

Element

Element

root element

child element child element

href="..."textual content

Text

Element

Attr

document root

Introduction
What does DOM code look like?

int nr = ...;
Document doc = ...;
Element result = doc.createElement("span");
Attr at = doc.createAttribute("id");
at.value = "draw" + nr;
result.setAttributeNode (at);

Introduction
What happens underneath?

type= Attr

nodeValue= "draw42"
ownerElement=
name= "id"

type= Element
name= "span"
parent= null

ownerDocument=

ownerDocument=

type= Document

DOM’s invariants

I DOM maintains more than the obvious structure

I Additional pointers must obey invariants
I Linked nodes must not belong to different documents
I Some combinations of parent and child nodes types are

rejected
I Nodes must form a tree structure:

I A node must not have more than one parent/owner
I The graph must not be cyclic

I Violations give rise to run-time errors

DOM’s invariants

I DOM maintains more than the obvious structure
I Additional pointers must obey invariants

I Linked nodes must not belong to different documents
I Some combinations of parent and child nodes types are

rejected
I Nodes must form a tree structure:

I A node must not have more than one parent/owner
I The graph must not be cyclic

I Violations give rise to run-time errors

DOM’s invariants

I DOM maintains more than the obvious structure
I Additional pointers must obey invariants

I Linked nodes must not belong to different documents
I Some combinations of parent and child nodes types are

rejected
I Nodes must form a tree structure:

I A node must not have more than one parent/owner
I The graph must not be cyclic

I Violations give rise to run-time errors

Goal of this work

I Reflect invariants in the type structure of the DOM interface

I Guarantee absence of run-time errors by type soundness

Illegal DOM manipulation
Attribute ownership

void highlight (Document doc,
Element el1,
Element el2) {

Attr attr = doc.createAttribute ("class");
attr.value = "highlight";
el1.setAttributeNode (attr);
el2.setAttributeNode (attr); // run-time error

}

I illegal to share an attribute node

Refined types for DOM nodes

Node〈di ,d , k , f 〉

I di ::= γ | DOM interface name
detecting parent/child mismatches

I d ::= δ
owner document
detecting owner mismatches

I k ::= κ | A | D
kinship status (attached A or detached D)
detecting multiple owners/parents

I f ::= φ | R | F(f) | f + f
kinship degree (abstraction of path to document root)
detecting potential cycles

Refined types for DOM nodes

Node〈di ,d , k , f 〉

I di ::= γ | DOM interface name
detecting parent/child mismatches

I d ::= δ
owner document
detecting owner mismatches

I k ::= κ | A | D
kinship status (attached A or detached D)
detecting multiple owners/parents

I f ::= φ | R | F(f) | f + f
kinship degree (abstraction of path to document root)
detecting potential cycles

Refined types for DOM nodes

Node〈di ,d , k , f 〉

I di ::= γ | DOM interface name
detecting parent/child mismatches

I d ::= δ
owner document
detecting owner mismatches

I k ::= κ | A | D
kinship status (attached A or detached D)
detecting multiple owners/parents

I f ::= φ | R | F(f) | f + f
kinship degree (abstraction of path to document root)
detecting potential cycles

Refined types for DOM nodes

Node〈di ,d , k , f 〉

I di ::= γ | DOM interface name
detecting parent/child mismatches

I d ::= δ
owner document
detecting owner mismatches

I k ::= κ | A | D
kinship status (attached A or detached D)
detecting multiple owners/parents

I f ::= φ | R | F(f) | f + f
kinship degree (abstraction of path to document root)
detecting potential cycles

Towards typed attribute ownership
The method createAttribute

∀δ, κ, φ. (Node〈Attr, δ,D, φ〉)
[Node〈Document, δ, κ,R〉]
createAttribute(String name)

I abstracting over type modifiers
I return type

creates detached attribute node
I type of receiver object

method of a root document node
I belonging to the receiving document object

Towards typed attribute ownership
The method setAttributeNode

∀δ, κ, φ, φ′. (Node〈Attr, δ,D, φ′〉)
[Node〈Element, δ, κ, φ〉]
setAttributeNode(Node〈Attr, δ,D, F(φ)〉)

I takes a detached attribute
I attaches it to an element
I returns previous (now detached) attribute of same name
I essential:

affine propagation of D property

Towards typed attribute ownership
The method setAttributeNode

∀δ, κ, φ, φ′. (Node〈Attr, δ,D, φ′〉)
[Node〈Element, δ, κ, φ〉]
setAttributeNode(Node〈Attr, δ,D, F(φ)〉)

I takes a detached attribute

I attaches it to an element
I returns previous (now detached) attribute of same name
I essential:

affine propagation of D property

Towards typed attribute ownership
The method setAttributeNode

∀δ, κ, φ, φ′. (Node〈Attr, δ,D, φ′〉)
[Node〈Element, δ, κ, φ〉]
setAttributeNode(Node〈Attr, δ,D, F(φ)〉)

I takes a detached attribute
I attaches it to an element

I returns previous (now detached) attribute of same name
I essential:

affine propagation of D property

Towards typed attribute ownership
The method setAttributeNode

∀δ, κ, φ, φ′. (Node〈Attr, δ,D, φ′〉)
[Node〈Element, δ, κ, φ〉]
setAttributeNode(Node〈Attr, δ,D, F(φ)〉)

I takes a detached attribute
I attaches it to an element
I returns previous (now detached) attribute of same name

I essential:
affine propagation of D property

Towards typed attribute ownership
The method setAttributeNode

∀δ, κ, φ, φ′. (Node〈Attr, δ,D, φ′〉)
[Node〈Element, δ, κ, φ〉]
setAttributeNode(Node〈Attr, δ,D, F(φ)〉)

I takes a detached attribute
I attaches it to an element
I returns previous (now detached) attribute of same name
I essential:

affine propagation of D property

Towards typed attribute ownership
Untypable DOM manipulation

void highlight (Document doc, Element el1,
Element el2) {

Attr attr = doc.createAttribute ("class");
attr.value = "highlight";
// attr : Node〈Attr,d ,D, f 〉
// split D into D and A
el1.setAttributeNode (attr); // needs D property
// attr : Node〈Attr,d ,A, f 〉
el2.setAttributeNode (attr); // type error

}

More illegal DOM manipulation
Parent-child relations

Document doc = ...
Element el = doc.createElement("center");

I Only certain combinations of parent-child nodes are
allowed:
Attr attr = doc.createAttribute("class");
el.appendChild (attr); // run-time error
Despite the typing Node appendChild (Node), an
attribute node cannot become child of an element node

I The underlying graph must remain cycle free:
el.appendChild (el); // run-time error

More illegal DOM manipulation
Parent-child relations

Document doc = ...
Element el = doc.createElement("center");

I Only certain combinations of parent-child nodes are
allowed:
Attr attr = doc.createAttribute("class");
el.appendChild (attr); // run-time error
Despite the typing Node appendChild (Node), an
attribute node cannot become child of an element node

I The underlying graph must remain cycle free:
el.appendChild (el); // run-time error

More illegal DOM manipulation
Parent-child relations

Document doc = ...
Element el = doc.createElement("center");

I Only certain combinations of parent-child nodes are
allowed:
Attr attr = doc.createAttribute("class");
el.appendChild (attr); // run-time error
Despite the typing Node appendChild (Node), an
attribute node cannot become child of an element node

I The underlying graph must remain cycle free:
el.appendChild (el); // run-time error

Captured by typing of appendChild

∀δ, κ, φ, γ, γ′. ((γ, γ′) ∈ PARENTCHILD)⇒
(Node〈γ′, δ,A, F(φ)〉)
[Node〈γ, δ, κ, φ〉]
appendChild(Node〈γ′, δ,D, F(φ)〉)

I Refined type for appendChild

I Parent-child relation
I abstraction over types γ and γ′

I pair of types must be in PARENTCHILD relation
I Cylcle freedom

I if parent has kinship degree φ,
then child has kinship degree F(φ)

I object level cycle causes type level cycle φ = F(φ)
I rejected by occurs check at compile time

Captured by typing of appendChild

∀δ, κ, φ, γ, γ′. ((γ, γ′) ∈ PARENTCHILD)⇒
(Node〈γ′, δ,A, F(φ)〉)
[Node〈γ, δ, κ, φ〉]
appendChild(Node〈γ′, δ,D, F(φ)〉)

I Refined type for appendChild
I Parent-child relation

I abstraction over types γ and γ′

I pair of types must be in PARENTCHILD relation

I Cylcle freedom
I if parent has kinship degree φ,

then child has kinship degree F(φ)
I object level cycle causes type level cycle φ = F(φ)
I rejected by occurs check at compile time

Captured by typing of appendChild

∀δ, κ, φ, γ, γ′. ((γ, γ′) ∈ PARENTCHILD)⇒
(Node〈γ′, δ,A, F(φ)〉)
[Node〈γ, δ, κ, φ〉]
appendChild(Node〈γ′, δ,D, F(φ)〉)

I Refined type for appendChild

I Parent-child relation
I abstraction over types γ and γ′

I pair of types must be in PARENTCHILD relation

I Cylcle freedom
I if parent has kinship degree φ,

then child has kinship degree F(φ)
I object level cycle causes type level cycle φ = F(φ)
I rejected by occurs check at compile time

Method types

class HiddenAttr {
Attr anAttr;
HiddenAttr (Document d, String n, String v) {

anAttr = d.createAttribute (n);
anAttr.value = v;

}
void attach (Element el) {

el.setAttributeNode (anAttr);
}

}

I call to attach uses up D property of the attribute

I attach should only be called once

I class type must track kinship state of anAttr

I method type must check kinship state for fields of this

Method types

class HiddenAttr {
Attr anAttr;
HiddenAttr (Document d, String n, String v) {

anAttr = d.createAttribute (n);
anAttr.value = v;

}
void attach (Element el) {

el.setAttributeNode (anAttr);
}

}

I call to attach uses up D property of the attribute

I attach should only be called once

I class type must track kinship state of anAttr

I method type must check kinship state for fields of this

Method types

class HiddenAttr {
Attr anAttr;
HiddenAttr (Document d, String n, String v) {

anAttr = d.createAttribute (n);
anAttr.value = v;

}
void attach (Element el) {

el.setAttributeNode (anAttr);
}

}

I call to attach uses up D property of the attribute

I attach should only be called once

I class type must track kinship state of anAttr

I method type must check kinship state for fields of this

Method types

class HiddenAttr {
Attr anAttr;
HiddenAttr (Document d, String n, String v) {

anAttr = d.createAttribute (n);
anAttr.value = v;

}
void attach (Element el) {

el.setAttributeNode (anAttr);
}

}

I call to attach uses up D property of the attribute

I attach should only be called once

I class type must track kinship state of anAttr

I method type must check kinship state for fields of this

Type of attach

∀δ, κ, φ. void
[A {anAttr : Node〈Attr, δ,D, F(φ)〉}]
attach(Node〈Element, δ, κ, φ〉 el)

Type expresses that
I D property is used up
I an Attr node may be attached to the argument element
I explicit mention of fields requires recursive types

for classes, not for annotations

DOMJAVA

I variation of CLASSICJAVA [Flatt, Krishnamurthi, Felleisen]
I additions

I class types extended with records (and recursion)
I DOM interface types with annotations
I method types include the receiver object
I abstraction over annotations
I constraints over annotations

I omissions
I inheritance (has been added)

Kinship Property
Affinity

I kinship k ::= D | A is affine property
I implemented by rules for splitting environments and types
I only one use of an D-annotated variable remains D

C ` ∅ ≺ ∅; ∅ C ` A ≺ A1; A2 C ` t ≺ t1; t2
C ` A, x : t ≺ A1, x : t1; A2, x : t2

C (k1 = D ⇒ k = D ∧ k2 = A) ∧ (k2 = D ⇒ k = D ∧ k1 = A)
C (k = A ⇔ k1 = A ∧ k2 = A)

C ` Node〈di ,d , k , f 〉 ≺ Node〈di ,d , k1, f 〉;Node〈di ,d , k2, f 〉

(∀j) C ` tj ≺ t1
j ; t2

j
C ` c {. . . fd j : tj . . . } ≺ c {. . . fd j : t1

j . . . }; c {. . . fd j : t2
j . . . }

Kinship Property
Subtyping

I an D thing may be used as A, not vice versa
I writing only allowed at declared type (avoids invariance)

C ` X ≤ X C ∧ A ≤ B ` A ≤ B C ` D ≤ k

C ` f1 ≤ f2
C ` F(f1) ≤ F(f2)

C ` f ≤ f1
C ` f ≤ f1 + f2

C ` f1 ≤ f C ` f2 ≤ f
C ` f1 + f2 ≤ f

C ` di1 ≤ di2 d1 = d2 C ` k1 ≤ k2 C ` f1 ≤ f2
C ` Node〈di1,d1, k1, f1〉 ≤ Node〈di2,d2, k2, f2〉

C ` c ≤ c′ (∀j) C ` tj ≤ t ′
j

C ` c {fd j : tj} ≤ c′ {fd ′
j : t ′

j }

Technical results

I annotated version of Java’s type system
I with polymorphism over annotations
I with annotation subtyping
I with constraints

I small-step semantics
I inspired by CLASSICJAVA
I extended with DOM operations

I type soundness proof that guarantees
I no shared nodes in DOM graph
I no cycles in DOM graph
I no owner mismatches
I no bad parent-child relationship

Conclusion

I type-based specification on top of Java
I with polymorphic recursion
I based on constrained type system with affine annotations
I extensible to cover almost all DOM runtime errors

Further work
I generalize A/D to other affine properties

(done: Java(X) @ ECOOP’07)
I improve treatment of container classes
I analysis and implementation (done: Degen’s PhD)

Affine properties
File access

I Permissible operation sequences on file by regular
language

I Annotations are regular sublanguages of (r|w)*c
I Splitting: R ≺ R1; R2 if R1 · R2 ⊆ R
I Example
/*1*/ File f = fopen("passwd");
>>>>> f : File< (r|w)*c >
>>>>> f’s type is split into File< r > and File< (r|w)*c >
/*2*/ File g = f; // What is g’s type now?
>>>>> g : File< r >; f : File< (r|w)*c >
>>>>> at this point, the system should enforce that all uses of g
>>>>> precede the uses of f, as lined out above
/*3*/ int i = g.read(); // must not use g after f; not enforced
/*4*/ int j = f.write(); // (r|w)*c >> w | (r|w)*c
/*5*/ int r = f.close(); // (r|w)*c >> c | eps

// cannot use f or g anymore

Coverage of DOM runtime errors
I HIERARCHY_REQUEST_ERR is covered except for the case where “the

DOM application attempts to append a second DocumentType or
Element node [to a Document node]”. Detecting this error would be
possible with a machinery similar to the one detecting nodes that
already have parents.

I WRONG_DOCUMENT_ERR is covered.
I NO_MODIFICATION_ALLOWED_ERR concerns changes to read-only

nodes. However, the specification is not quite clear on how read-only
nodes may be created and/or recognized in the model. Hence, this
property has not be modeled.

I NOT_SUPPORTED_ERR deals with removal of nodes from the
Document node. This error is not mandatory for all implementations
and its treatment would have to be combined with the extended
detection of the HIERARCHY_REQUEST_ERR.

I INUSE_ATTRIBUTE_ERR is covered via parent detection.
I Indexing and bounds check errors are not covered

(DOMSTRING_SIZE_ERR and INDEX_SIZE_ERR).
I INVALID_CHARACTER_ERR not covered.
I NOT_FOUND_ERR signals that a specific node is not found among the

children of a node. This error is not covered because the system would
have to retain definite parent information with each child.

I NO_DATA_ALLOWED_ERR no occurrence specified in the standard.

Recursion
forall d0, f0.
Node<d0,O,f0> nest (Document<d0,O,R> d, int n) {
Node v;
if (n==0)

v = d.createTextNode ("The end");
// rhs : Text<d0,O,f0>
// Text <: Node
// v : Node<d0,O,f0>

else {
v = d.createElement ("nest");
// rhs : Element<d0,O,f0>
// Element <: Node
// v : Node<d0,O,f0>
v.appendChild (nest (d, n-1));
// need polymorphic recursion in annotation:
// nest : Node<d0,O,F(f0)>

}
return v;

}

	Introduction
	Programming Model
	Invariants
	Formal model
	Conclusion

