
Partiality is an Effect

Venanzio C

Thorsten A

Tarmo U

Dependently Typed Programming, Dagstuhl, 12–17 Sept. 2004



P   

Outline

• Is partiality pure or not?

Motivating example

• Partiality by finite failure vs non-termination

• Lie management

• Capretta’s (or Adámek et al.’s?) monad for iteration

• Recursion in Capretta’s monad

• A quotient

• Adding iteration to other effects

• Signals and comonads

T U 2



P   

Example: Toy languages

• We think this is a pure implementation of an imperative language:
semS :: Stm -> State -> State

semS (x ::= a) st = upd x (semA a st) st

semS Skip st = st

semS (s1 :\ s2) st = semS s2 (semS s1 st)

semS (If b s1 s2) st = if semB b st then semS s1 st else semS s2 st

semS (While b s) st = if semB b st then semS (While b s) (semS s st)

else st

• This is a pure implementation as well:
semS :: Stm -> State -> [State]

semS (x ::= a) st = return (upd x (semA a st) st)

semS Skip st = return st

semS (s1 :\ s2) st = do st’ <- semS s1 st

st’’ <- semS s2 st’

return st’’

semS (If b s1 s2) st = if semB b st then semS s1 st else semS s2 st

semS (While b s) st = semS (If b (s :\ While b s) Skip) st

semS (s1 :| s2) st = semS s1 st ++ semS s2 st

T U 3



P   

• This is pure too, they say:
semS :: Stm -> State -> IO State

semS (x ::= a) st = return (upd x (semA a st) st)

semS Skip st = return st

semS (s1 :\ s2) st = do st’ <- semS s1 st

st’’ <- semS s2 st’

return st’’

semS (If b s1 s2) st = if semB b st then semS s1 st else semS s2 st

semS (While b s) st = semS (If b (s :\ While b s) Skip) st

semS (Print a) st = do { print (semA a st) ; return st }

• And everybody says this is not:
unsafePerformIO :: IO a -> a

semS :: Stm -> State -> State

semS (x ::= a) st = upd x (semA a st) st

semS Skip st = st

semS (s1 :\ s2) st = semS s2 (semS s1 st)

semS (If b s1 s2) st = if semB b st then semS s1 st else semS s2 st

semS (While b s) st = semS (If b (s :\ While b s) Skip) st

semS (Print a) st = case unsafePerformIO (print (semA a st)) of

() -> st

T U 4



P   

• This biased and unfair. Because of While we can loop! Loops may not

terminate. What’s pure about non-termination?

So our real situation is:
unsafeRepeat :: (a -> Either b a) -> a -> b

unsafeRepeat f a = case f a of

Left b -> b

Right a’ -> unsafeRepeat f a’

semS :: Stm -> State -> State

semS (x ::= a) st = upd x (semA a st) st

semS Skip st = st

semS (s1 :\ s2) st = semS s2 (semS s1 st)

semS (If b s1 s2) st = if semB b st then semS s1 st else semS s2 st

semS (While b s) st = if semB b st then semS unsafeRepeat k st else st

where k st = let st’ = semS s st

in case semB b st’ of

True -> Right st’

False -> Left st’

T U 5



P   

Problem

• We have an impure combinator

unsafeRepeat :: (a -> Either b a) -> a -> b

unsafeRepeat f a = case f a of

Left b -> b

Right a’ -> unsafeRepeat f a’

• We would like to have a pure combinator

repeat :: (a -> M (Either b a)) -> a -> M b

for some monad encapsulating the impurity.

T U 6



P   

Finite failure vs. non-termination

• The error monad is perfect for partiality from finite failure (e.g., because of a

pattern-match failure), but useless for non-termination.

• Or shall we try?

data Eugenio a = Eventually a | Never

RepeatE0 :: (a -> Eugenio (Either b a)) -> a -> Eugenio b

RepeatE0 f a = case f a of

Eventually (Left b ) -> Eventually b

Eventually (Right a’) -> RepeatE0 f a’

Never -> Never

This has not captured the possibility for non-termination.

T U 7



P   

• How do we improve??

repeatE :: (a -> Eugenio (Either b a)) -> a -> Eugenio b

repeatE f a = let

c = RepeatE0 f a

in if halting c then c else Never

This can’t be serious!. . .

• More seriously, instead of the error monad one needs a “lifting” monad. . .

T U 8



P   

Conor’s story from Monday

• Idea: Use the reader monad and you can be clean. . . until you consult your

environment.

• The general parameterized reader monad:

newtype Reader r a = Reader { runReader :: r -> a }

instance Functor (Reader r) where

fmap f c = Reader (\ r -> f (runReader c r))

instance Monad (Reader r) where

return a = Reader (\ _ -> a)

c >>= k = Reader (\ r -> runReader (k (runReader c r)) r)

T U 9



P   

• The specific instance for iteration-like combinators from the environment:

newtype URT = URT { unURT :: forall a b.

(a -> Either b a) -> a -> b }

type Conor a = Reader URT a

repeatC :: (a -> Conor (Either b a)) -> a -> Conor b

repeatC k a = Reader (\ ur ->

unURT ur (\ a’ -> runReader (k a’) ur) a)

• Your environment tells you a big lie:

trustBigLie :: Conor a -> a

trustBigLie c = runReader c (URT unsafeRepeat)

T U 10



P   

Capretta’s monad

• Idea: Take waiting seriously, charge a unit cost for every iteration cycle.

• The parameterized delay datatype:

data Venanzio a = Now a | Later (Venanzio a) -- coinductive

outV :: Venanzio a -> Either a (Venanzio a)

outV (Now a) = Left a

outV (Later c) = Right c

T U 11



P   

• It’s ok to use coiteration and primitive corecursion:

unfoldV :: (x -> Either a x) -> x -> Venanzio a

unfoldV p x = case p x of

Left a -> Now a

Right x’ -> Later (unfoldV p x’)

corecV :: (x -> Either a (Either (Venanzio a) x)) -> x -> Venanzio a

corecV p x = case p x of

Left a -> Now a

Right (Left c) -> Later c

Right (Right x’) -> Later (corecV p x’)

• Or one may use general guarded-by-constructions corecursion.

T U 12



P   

• First example: infinite waiting:

never :: Venanzio a

never = Later never -- coiterative

• The delay monad:

instance Functor Venanzio where

fmap f (Now a) = Now (f a) -- coiterative

fmap f (Later c) = Later (fmap f c)

instance Monad Venanzio where

return a = Now a

Now a >>= k = k a -- primitive corecursive

Later c >>= k = Later (c >>= k)

T U 13



P   

• Iteration (not obviously structurally corecursive):

repeatV :: (a -> Venanzio (Either b a)) -> a -> Venanzio b

repeatV f a = f a >>= \ c -> case c of

Left b -> Now b

Right a’ -> Later (repeatV f a’)

• An alternative definition (obviously coiterative, but non-trivially equivalent to

the previous one):

repeatV :: (a -> Venanzio (Either b a)) -> a -> Venanzio b

repeatV f a = whileV f (Now (Right a))

whileV :: (a -> Venanzio (Either b a)) ->

Venanzio (Either b a) -> Venanzio b

whileV f (Now (Left b)) = Now b

whileV f (Now (Right a)) = Later (whileV f (f a))

whileV f (Later c) = Later (whileV f c)

T U 14



P   

Capretta vs Adámek, Milius et al.

• The Capretta monad A 7→ νX.A + X has been discussed extensively in

category theory.

• It is the free completely iterative monad over the identity functor.

• In general, the free completely iterative monad over a functor H is

A 7→ νX.A + HX.

• Complete iterativeness: Unique existence of a combinator satisfying the

equation of repeat.

• Freeness: the “smallest” such monad.

• In a good mathematical sense, Capretta’s monad is the universal one among

the monads suitable for capturing iteration.

T U 15



P   

Recursion in Capretta’s monad

• Idea: Arrange for a race between all finite approximations of the fixedpoint.

generalV :: ((a -> Venanzio b) -> a -> Venanzio b)

-> a -> Venanzio b

generalV phi a = aux (\ _ -> never)

where aux k = race (k a) (Later (aux (phi k)))

race :: Venanzio b -> Venanzio b -> Venanzio b

race (Now b0) _ = Now b0

race (Later _) (Now b1 ) = Now b1

race (Later c0) (Later c1) = Later (race c0 c1)

T U 16



P   

A quotient

• Idea: Forget about the cost bookkeeping and get half-way back to the error

monad.

• First identify all bisimilar elements in the coinductive type.

• Define an equivalence relation ∼ inductively by

c ∼ c
c ∼ d

later c ∼ d
c ∼ d

c ∼ later d

• Define also a consistency relation ∧ coinductively by the rules

c∧ c
c∧ d

later c∧ d
c∧ d

c∧ later d

This is not transitive, but it is closed under ∼.

T U 17



P   

• Now the quotient of Capretta’s monad wrt. ∼ is a monad too.

• One has to verify that all operations are still welldefined.

For race, one has to require that the two arguments are consistent.

This is met in the calls to race in generalV.

T U 18



P   

Adding iteration to other monads

• For any monad, there is a monad supporting iteration.

newtype Iter r a = It { unIt :: r (Either a (Iter r a)) }

-- coinductive

instance Functor r => Functor (Iter r) where

fmap f (It c) = It (fmap (either (Left . f) (Right . fmap f)) c)

instance Monad r => Monad (Iter r) where

return a = It (return (Left a))

It c >>= k = It (c >>= either (unIt . k) (return . Right . (>>= k)))

mrepeat :: Monad r => (a -> Iter r (Either b a)) -> a -> Iter r b

mrepeat f a = f a >>= either return (It . return . Right . repeatI f)

• The original monad can be embedded in the derived one.

lift :: Functor r => r a -> Iter r a

lift c = It (fmap Left c)

T U 19



P   

• In a more concise notation, instead of the monad A 7→ νX. A + X, we are now

considering the monad A 7→ νX. R(A + X) induced by a monad R.

Quite importantly, this is not the same as A 7→ νX. A + RX, which is the free

completely iterative monad on R as a functor.

T U 20


