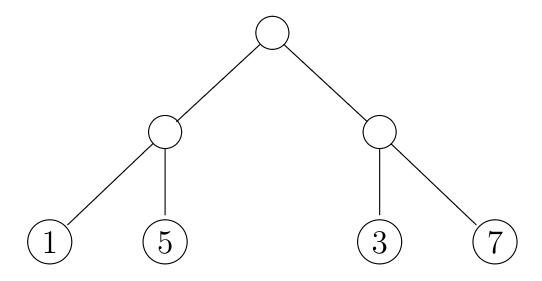
Dynamic programming using histomorphisms

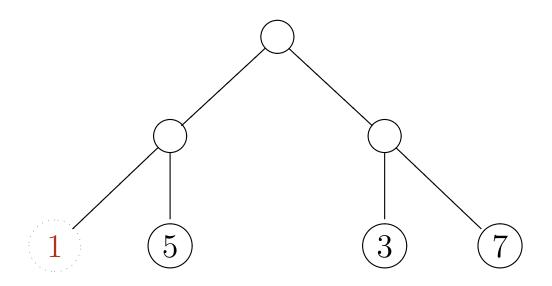
Jevgeni Kabanov Viinistu, 2005

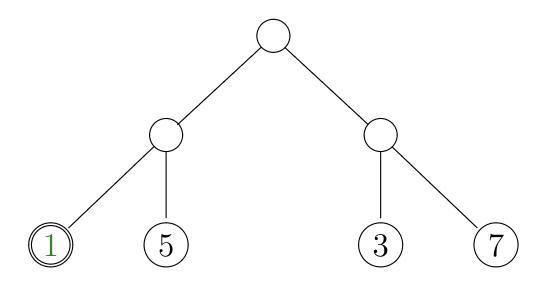
CATAMORPHISM (FOLD)

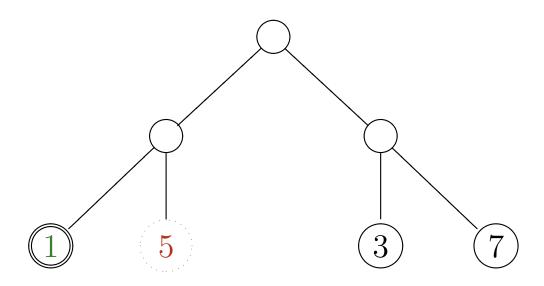
- Structural recursion combinator
- Generic foldr (Haskell)
- Eats (folds) trees from bottom-up, producing combined result
- Similar to Visitor pattern in OOP, but doesn't update structures

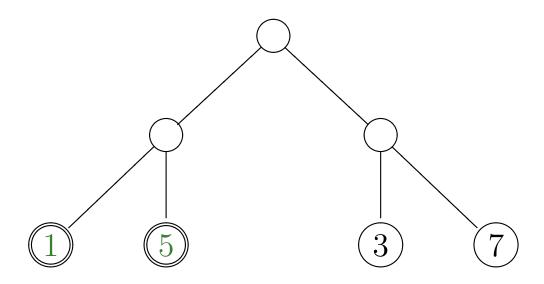


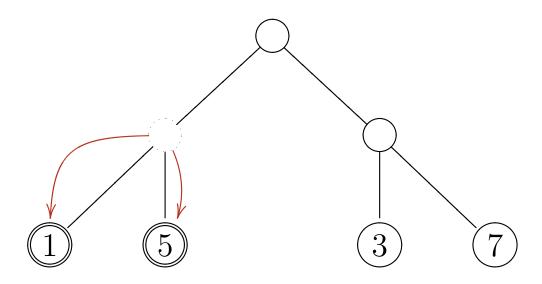
Let's count this tree sum...

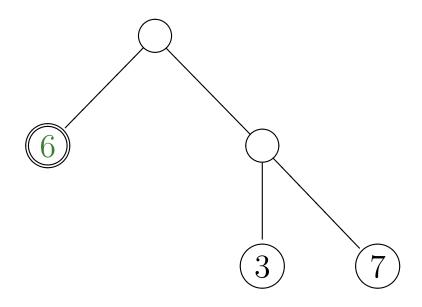


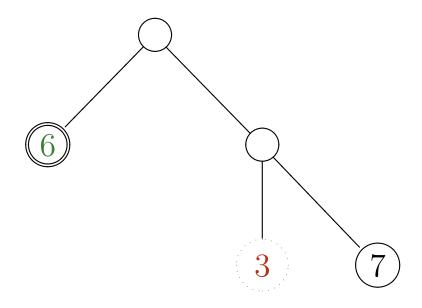


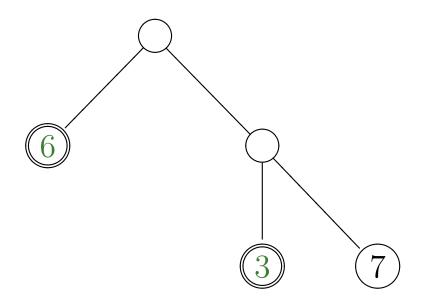


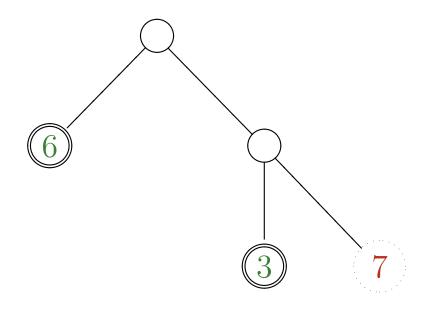


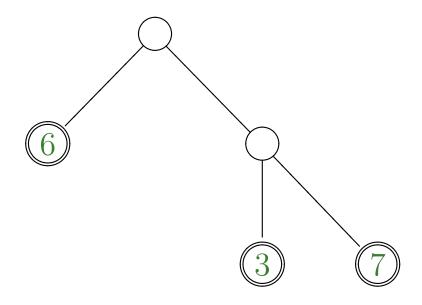


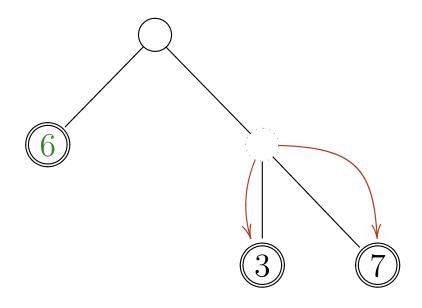


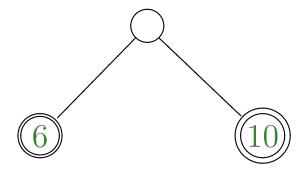


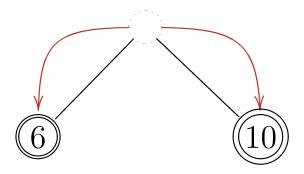








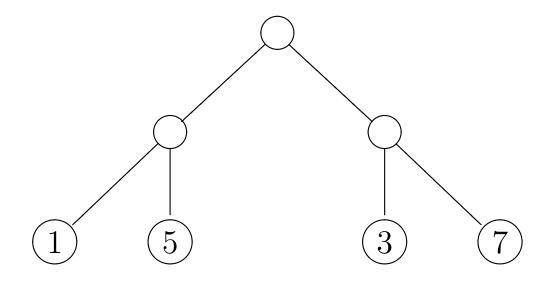




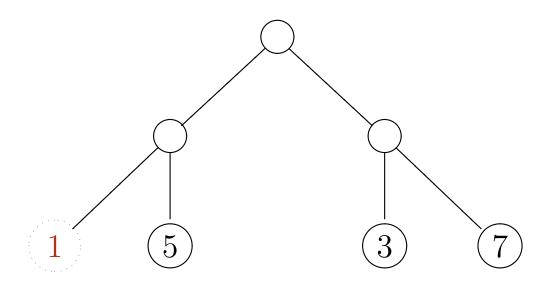
And the result is 16 = 1 + 5 + 3 + 7

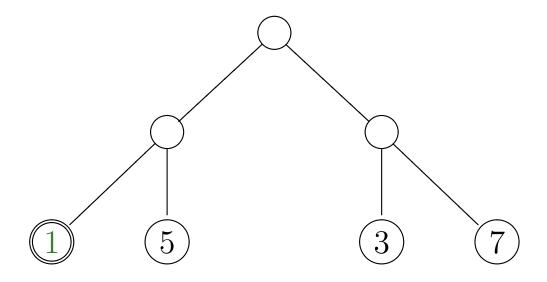
HISTOMORPHISM

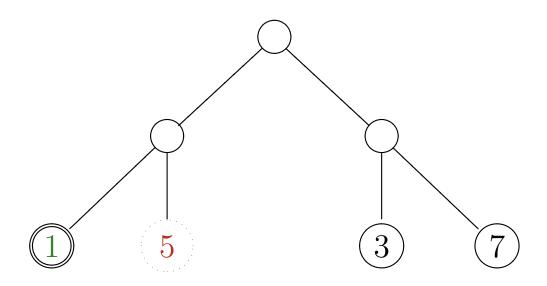
- Introduced by Varmo & Tarmo in 1999
- Course-of-value structural recursion combinator
- Inspired by dynamic programming technique
- Moves bottom-up annotating the tree with results
- Allows to reuse sub(-sub)* node results
- Finally collapses the tree producing the end result

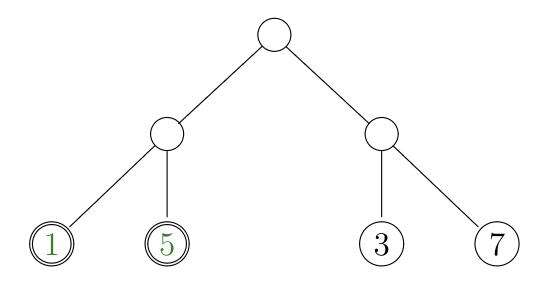


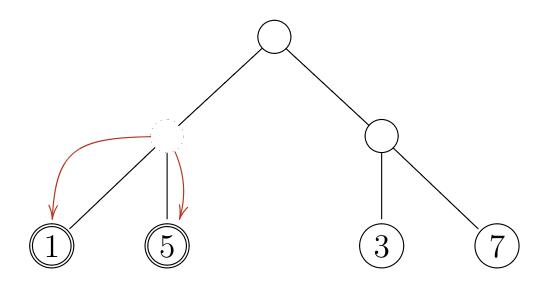
Let's count this tree (funny) sum...

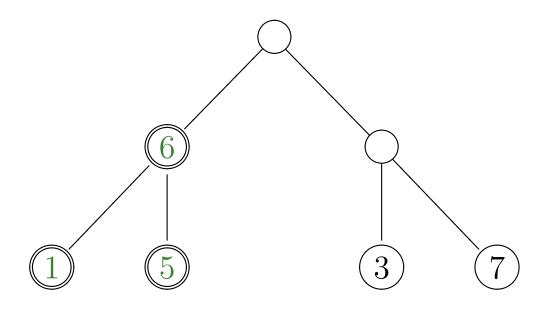


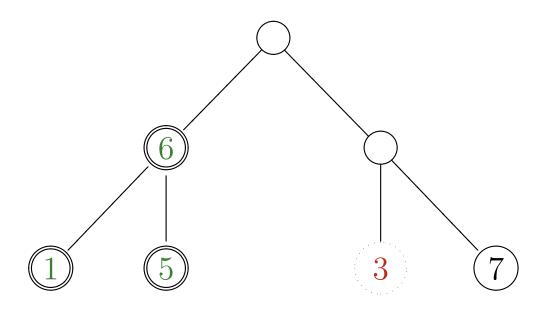


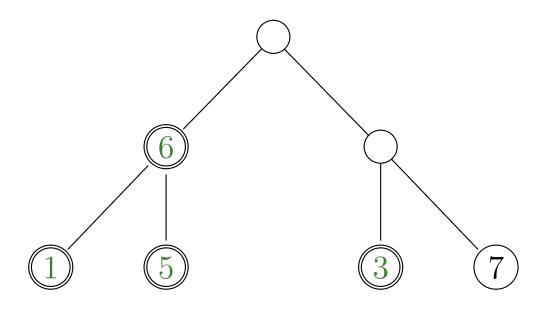


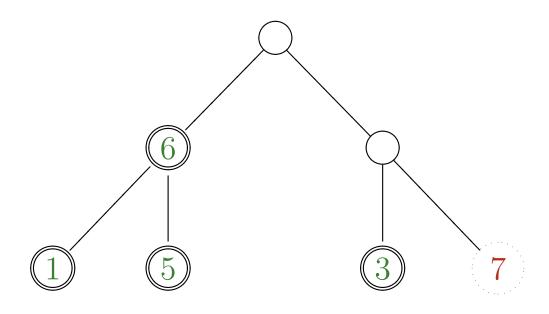


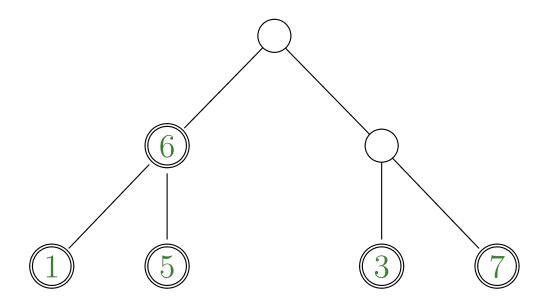


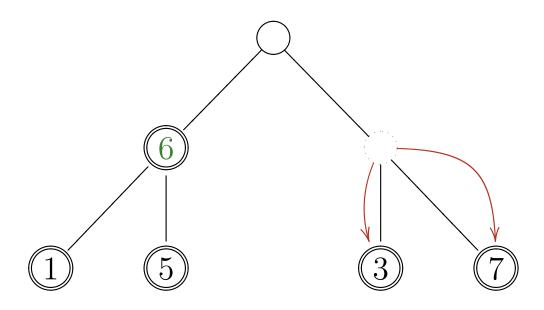


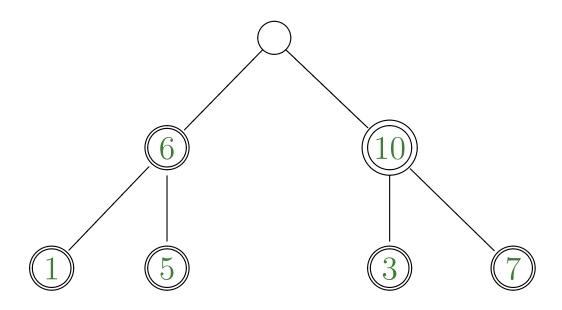


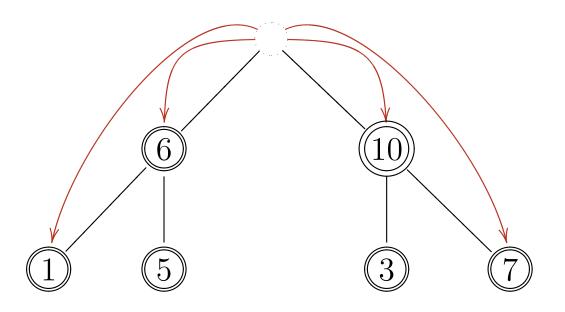


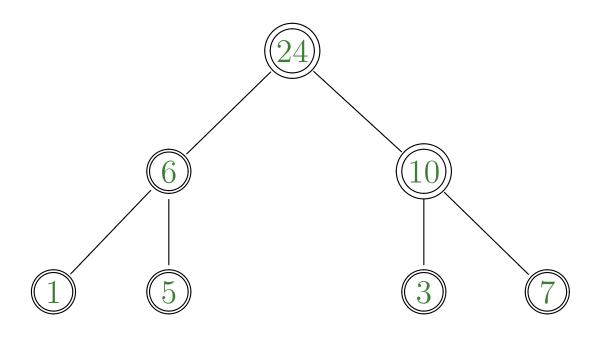












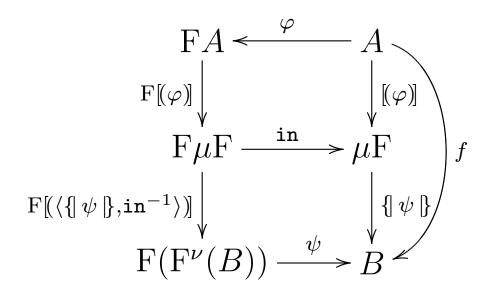
And the result is $24 = 1 \times 2 + 5 + 3 + 7 \times 2$

GENERIC HYLOMORPHISM

- General recursion combinator
- 2 stages:
 - 1. Build an intermediate structure using unfold
 - 2. Collapse the intermediate structure using fold
- The intermediate structure corresponds to the implicit call tree
- The intermediate structure does not really have to be built

Dynamic Hylomorphism

- Dynamic recursion combinator
- The *fold* is replaced by the histomorphism



CHALLENGES

- Histomorphism expressive power
- Dynamic hylomorphism expressive power
- Properties of transformation to dynamic recursion
- Deriving dynamic definition

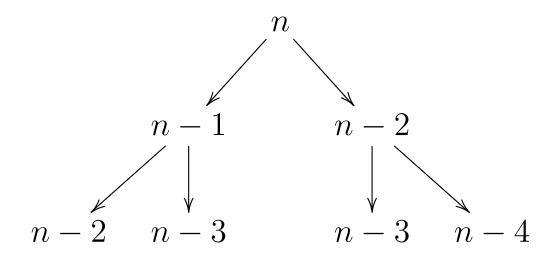
Case Study

- Fibonacci numbers
- Binary partition number
- Levenshtein (Edit) distance
- Longest common subsequence

- Only first two can be defined as pure histomorphisms
- General recursion is needed

Inspiration

Fibonacci dependency tree

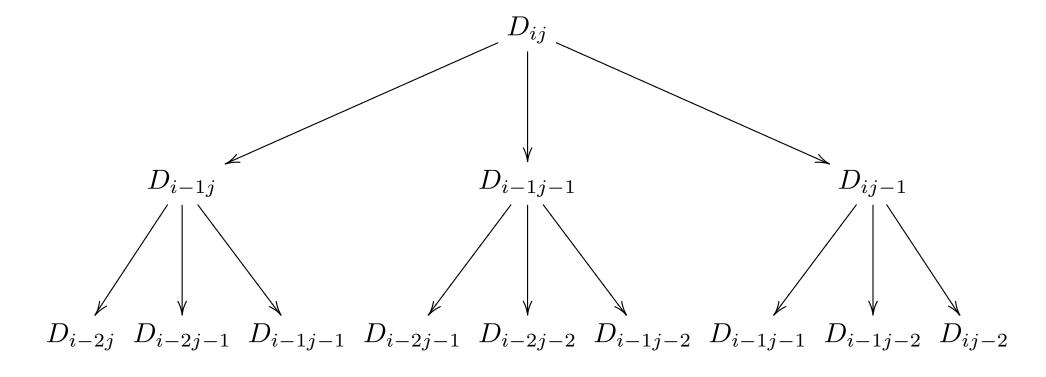


Collapsed dependency graph

$$n \rightarrow n-1 \rightarrow n-2 \rightarrow n-3 \rightarrow \cdots$$

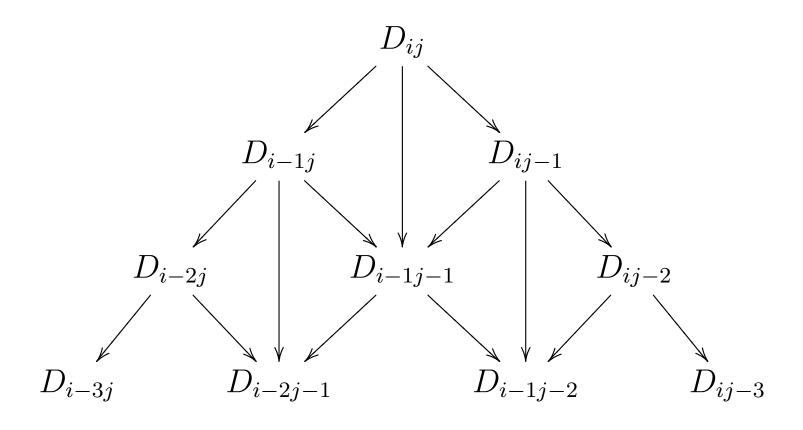
Inspiration (2)

Levenshtein (Edit) distance dependency tree



Inspiration (3)

Levenshtein (Edit) distance collapsed dependency graph



Transformation

- Original definition: $f = \psi \circ Tf \circ \varphi$
- Dynamic definition: $f = \psi \circ \sigma \circ T'[(\langle f, in^{-1} \rangle)] \circ \varphi'$
 - $-\varphi'$ generates more compact intermediate structure
 - T' defines the structure recursive pattern
 - $-\sigma$ restores one level of the old structure
 - $-\sigma$ and T' are uniquely determined by φ'
- The consumer (algebra) part is preserved
- The producer (coalgebra) part is consistently updated

DEPENDENCY ALGEBRA

Let

- Original dependency producers: $h_i: A \to A$
- Dynamic dependency producers: $h'_j: A \to A$
- Projections: $\pi_i : T^{\nu}(C) \to T^{\nu}(C)$, $\pi_i = [\operatorname{in}, \operatorname{out}_i \circ \operatorname{outr}] \circ \operatorname{in}^{-1}$
- Deep projections: $\pi_i^* = \operatorname{outl} \circ \pi'_{k_l} \circ \pi'_{k_{l-1}} \circ \cdots \circ \pi'_{k_2} \circ \operatorname{out}_{k_1}$
- Induction indicator: $p:A \to Bool$

DEPENDENCY ALGEBRA (2)

Then

•
$$\varphi = (id + \langle id, h_1, h_2, \dots, h_n \rangle) \circ p?$$

•
$$\varphi' = (id + \langle id, h'_1, h'_2, \dots, h'_m \rangle) \circ p'$$
?

•
$$\sigma = [\operatorname{inl}, (\operatorname{out}_0 + \langle \operatorname{out}_0, \pi_1^*, \pi_2^*, \dots, \pi_n^* \rangle) \circ (p \circ \operatorname{out}_0)?]$$

And φ' has to satisfy following for each $i \in I$, each $s \in S$:

$$P(s,i) = \langle k_1, k_2, \dots, k_l \rangle \in J^*$$
outl $\circ \pi_i \circ [(\langle id, \varphi \rangle)] = \text{outl} \circ \pi'_{k_l} \circ \pi'_{k_{l-1}} \circ \dots \circ \pi'_{k_1} \circ [(\langle id, \varphi' \rangle)]$

$$h_i(s) = h'_{k_l} \circ h'_{k_{l-1}} \circ \dots \circ h'_{k_1}(s)$$

FUTURE WORK

- More categorical approach to transformation
- A solid proof for dependency algebra
- (Semi)-automatical derivation for restricted cases