Dynamic programming using

histomorphisms

Jevgeni Kabanov
Viinistu, 2005



CATAMORPHISM (FOLD)
Structural recursion combinator

Generic foldr (Haskell)

Eats (folds) trees from bottom-up, producing

combined result

Similar to Visitor pattern in OOP, but doesn’t

update structures



SUM FOLD ANIMATION

O ® ® @

Let’s count this tree sum...



SUM FOLD ANIMATION

D



SUM FOLD ANIMATION

D



SUM FOLD ANIMATION




SUM FOLD ANIMATION

D



SUM FOLD ANIMATION



SUM FOLD ANIMATION



SUM FOLD ANIMATION



SUM FOLD ANIMATION



SUM FOLD ANIMATION



SUM FOLD ANIMATION



SUM FOLD ANIMATION



SUM FOLD ANIMATION



SUM FOLD ANIMATION



SUM FOLD ANIMATION

And the resultis 16 =1+5+3+7



HISTOMORPHISM
Introduced by Varmo & Tarmo in 1999
Course-of-value structural recursion combinator
Inspired by dynamic programming technique
Moves bottom-up annotating the tree with results
Allows to reuse sub(-sub)* node results

Finally collapses the tree producing the end result



FUNNY SUM HISTO ANIMATION

O ® ® @

Let’s count this tree (funny) sum...



FUNNY SUM HISTO ANIMATION



FUNNY SUM HISTO ANIMATION



FUNNY SUM HISTO ANIMATION




FUNNY SUM HISTO ANIMATION



FUNNY SUM HISTO ANIMATION



FUNNY SUM HISTO ANIMATION

® @



FUNNY SUM HISTO ANIMATION




FUNNY SUM HISTO ANIMATION

® @



FUNNY SUM HISTO ANIMATION



FUNNY SUM HISTO ANIMATION



FUNNY SUM HISTO ANIMATION



FUNNY SUM HISTO ANIMATION



FUNNY SUM HISTO ANIMATION



FUNNY SUM HISTO ANIMATION



FUNNY SUM HISTO ANIMATION

And theresultis 24 =1 x2+5+34+7x 2



(GENERIC HYLOMORPHISM
(General recursion combinator

2 stages:
1. Build an intermediate structure using unfold
2. Collapse the intermediate structure using fold

The intermediate structure corresponds to the

implicit call tree

The intermediate structure does not really have to be
built



DYNAMIC HYLOMORPHISM
e Dynamic recursion combinator

e The fold is replaced by the histomorphism

FuF —2 > uF |7
Fl({ v |},in—1>>1l vl
F(F*(B)) —— B



CHALLENGES
Histomorphism expressive power
Dynamic hylomorphism expressive power
Properties of transformation to dynamic recursion

Deriving dynamic definition



CASE STUDY
Fibonacci numbers
Binary partition number
Levenshtein (Edit) distance

Longest common subsequence

Only first two can be defined as pure histomorphisms

(General recursion is needed



INSPIRATION

Fibonacci dependency tree

VAN

n—1 n— 2
n—2 n-—3 n—3 n-—4

Collapsed dependency graph

n=n—1-n—-2-n—-3—=---



INSPIRATION (2)
Levenshtein (Edit) distance dependency tree

D;_2; Di_2j_1 Di_1;-1 Di—2j-1 Dij—2j_2 D;_1j_20 D11 Di_1j_2 D;j_o



INSPIRATION (3)

Levenshtein (Edit) distance collapsed dependency graph




TRANSFORMATION
Original definition: f =¥ oTf o
Dynamic definition: f =t oo o T'[{f, in™!)) o ¢’
— gp’ generates more compact intermediate structure
— T’ defines the structure recursive pattern

— o restores one level of the old structure

— ¢ and T’ are uniquely determined by ¢’
The consumer (algebra) part is preserved

The producer (coalgebra) part is consistently

updated



DEPENDENCY ALGEBRA
Let
e Original dependency producers: h; : A — A

e Dynamic dependency producers: A : A — A

e Projections: m; : T(C) — T*(C),

m; = [in, out,; o outr] o in~*

e Deep projections:

* _ / / L /
77 = outl Oy, O Ty, . O O 71, © Outy,

e Induction indicator: p : A — Bool



DEPENDENCY ALGEBRA (2)
Then
o v = (id+ (id,hy,ha,... h,))op?
o o = (id+ (id,hi,hY, ... h! })op'?
e 0 = [inl, (outy +{outy, 75,75, ..., 7)) o (p o outy)?]
And ¢’ has to satisty following for each ¢ € I, each s € S
P(s,1) = (k1, ko, ... . k) € J"

outlor; o [((id, p))] = outlom, om, o---om of(id,¢"))
huls) = iy o by, 0+ 0 B (5



FUTURE WORK
e More categorical approach to transformation
e A solid proof for dependency algebra

e (Semi)-automatical derivation for restricted cases



