
Guarantees for Resource-Bounded
Computations
MRG team, incl. Olha Shkaravska

Institut of Informatics, LMU

Munich, Germany

Guarantees for Resource-Bounded Computations – p.1/33

Motivation

1st of September: MOBIUS,
“Mobility, Ubiquity and Security”

15 participants, incl. IoC, Tallinn

Aim of MOBIUS: to develop the technology for establishing trust and
security of global computers, using Proof-Carrying Code (PCC) paradigm

Mobile Resource Guarantees (MRG) is one of the
predecessors of MOBIUS.
It develops a PCC paradigm for resource bounded computations.

Guarantees for Resource-Bounded Computations – p.2/33

Structure of this talk

What is this talk about:
MRG and what from its experience may be used in future.

MRG - a framework for ensuring heap space
safety of programs

Break?

Specifications of programs and their proofs
in more detail

Guarantees for Resource-Bounded Computations – p.3/33

Security of Mobile Code

Examples of mobile code: Java-applets on the Internet,
applications for smart cards, ...

Alarm: alien on the device!!!

We download the code if it is secure

What do we mean by security in MRG?
A program runs inside (quantitatively) restricted
memory

How to ensure security?
Sandboxing - too restrictive
Signed applets - too bureaucratic: many questions
and permissions
PCC: mobile code is supported with the proof of its
safety

Guarantees for Resource-Bounded Computations – p.4/33

PCC framework for MRG

JVM
Program

P r o d u c e r
Camelot

N e t w o r k C o n s u m e r

(Isabelle)

(Grail)

Proof Grail

Program

JVM

Program

Grail
Program

Proof

Checker

JVM

Ok?

GFGDF

(with space inference)

Compiler

Camelot

Certifying

Certificate
Code

Proof
Script

Guarantees for Resource-Bounded Computations – p.5/33

High-level Analysis for Heap Consumption

We can infer linear heap-consumption bounds
for Camelot programs:

Given
f : List(Int) −→ List(Int)

Obtain a notated, with numbers, signature

f : List(Int, k), n −→ List(Int, k′), n′

For example
copy : List(Int, 1), 0 −→ List(Int, 0), 0

or

cons : Int, List(Int, 0), 1 −→ List(Int, 0), 0

Guarantees for Resource-Bounded Computations – p.6/33

High-level Analysis for Heap Consumption

f : List(Int, k), n −→ List(Int, k′), n′

with |x| be the length of an input list x

with (at least) k|x| + n of free heap units available

the body of f terminates with a value v

then there will be (at least) k′|v| + n′ free heap units
available after evaluation.

append : List(Int, 0), List(Int, 0), 0 −→ List(Int, 0), 0

append_cp : List(Int, 1), List(Int, 0), 0 −→ List(Int, 0), 0

where append_cp appends 2nd arg. to the copy of the 1st one.

Guarantees for Resource-Bounded Computations – p.7/33

A derived assertion for Grail

Bounds for a given program are to be proved
on the level of compiled code, i. e. Grail

To prove a statement about a code one needs

to formalise semantics of its basic operations
and structured expressions via a partial correctness assertion
of the form E, h ` e h′, v

to formalise the meaning of the statement itself
to define the region occupied by a list, a tree

to define virtual cost number, which is for List(Int, 3) of length k

is equal to 3k.

... lots of work

Guarantees for Resource-Bounded Computations – p.8/33

A derived assertion for Grail

A resource statement for a compiled code =
The soundness for a for a high-level typing judgment (mod. compilation)

e : JU, n, Γ I T, mK.
If e terminates on a given environment E and a heap h,
then when

E satisfies the context Γ;

the used by e variables are in U ;

n extra free heap units (+ the virtual costs of U

defined by Γ) are available before evaluation

the expression e terminates with

an output value of type T ;

m extra free heap units
(+ the virtual cost of a value) are after evaluation.

Guarantees for Resource-Bounded Computations – p.9/33

Derived rules for Grail

How to prove such assertions?
We have a basic logic, that is a set of weakest conditions for Grail
constructions, mirroring operational semantics

straightforward proofs, i.e. syntactically driven
application of the rules of the basic logic
Naive! Eventually we obtain a huge HOL-predicate
over heaps and environments with right-hand-side existensials!

proofs with derived rules mirroring high-level typing
rules

Guarantees for Resource-Bounded Computations – p.10/33

Derived rules for Grail

Example: the let-rules

Γ, n ` e1 : T0, l

(Γ, x : T0), l ` e2 : T, m
Camelot− Let

Γ, n ` let x =e1 in e2 : T, m

⇓

e1 : JU1, n, Γ I T0, lK

e2 : JU2, l, (Γ, x : T0) I T, mK
Grail− Let

let x =e1 in e2 : JU1] (U2 \ {x}), n, Γ I T, mK

Guarantees for Resource-Bounded Computations – p.11/33

Derived rules for Grail

Restriction:
current judgments are designed
for linear usage of variables:

soundness is proved for a linear let-rule

for that one has to prohibit sharing of arguments

although the high-level analysis is sound for a weaker
(semantical) condition of benign sharing.
We cannot prove that

let h = length x in cons(h, x) :

J{x}, 1, List(0) I List(0), 0K

Guarantees for Resource-Bounded Computations – p.12/33

Derived rules for Grail

correctness of the analyser assumes
benign sharing of variables in let-rule,
i.e. no reachable from e2 cells get deallocated
by e1

to get derived assertions for proving bounds
one needs to approximate benign sharing statically

one way of approximation is linear let-rule,
which is rather restrictive

the other way is to involve usage aspects

there is even more deep analysis,
involving layered sharing...

Guarantees for Resource-Bounded Computations – p.13/33

How to prove derived assertions in a smart way?

Observations:

numerical part of a resource aware assertion may be
separated from sharing-managing assertion

a pure resource aware assertion and various
sharing-managing assertions have similar structure, so
do their proofs!

It does make sense to design generic rules!

we find a condition, say LET, that implies a rule Let

to prove Let for a given assertion show that it satisfies LET and then
instantiate the generic Let with the given assertion

LET must have a special property allowing to combine assertions
without duplicating work (later ...)

Guarantees for Resource-Bounded Computations – p.14/33

Tired?

Break ...

Guarantees for Resource-Bounded Computations – p.15/33

Typing judgment + Semantics = Derived Assertion

Does our type system work as we mean?
Derived assertions help to answer this question

Γ ` e : T Γ may be decorated

e : λ E hh′ v. Spec(E, h, h′, v)

meaning
�

w
w
w
w
w
w
w
w
w
w

where e satisfies a partial correctness assertion of the form

E, h ` e h′, v

Guarantees for Resource-Bounded Computations – p.16/33

Example

Γ ` e : List(Bool)

Let Γ(x) = List(Bool) for all x ∈ Dom(Γ),
an inductive data structure list is defined in a heap.
If

E(x) |=h
Γ(x) l, i.e. “l is a well-formed list”

Extra-property holds: l is acyclic

then there exists a well-formed list l′, s.t.

v |=h′

List(Bool) l′

l′ is acyclic

Guarantees for Resource-Bounded Computations – p.17/33

A Generic Assertion

A precondition is a model relation and some property

Pre
E, h

Γ
(X) ≡ Γ |=E, h X1 ∧

Property (X)

A postcondition states an existence of a model for the output
with some property

Post
h′, v

T (X) ≡ ∃Y. v |=h′

T Y1 ∧

PropertyT (X, Y)

Guarantees for Resource-Bounded Computations – p.18/33

A Generic Assertion

Γ ` e : T Γ may be decorated

e : λE hh′ v. ∀ X.

meaning
�

w
w
w
w
w
w
w
w
w
w

Pre
E, h
Γ (X) −→ Post

h′, v
T (X)

Definition

Pre ⇒ Post ≡ λE hh′ v. ∀ X. PreE, h(X) −→ Posth′, v(X)

Guarantees for Resource-Bounded Computations – p.19/33

A Generic Assertion

We will consider inference rules for assertions of the form

e : Pre ⇒ Post

regardless if they mirror some type judgment or not.

A semantic mapping of a typing judgment onto an assertion of this form
motivates our interest to such assertions, but they give just a partial case
of inference systems for e : Pre ⇒ Post .

In the case of a typing judgment like Γ ` e : T one defines
corresponding parametric pre- and postconditions, PreΓ and PostT , and
instantiate with them a generic assertion e : PreΓ ⇒ PostT

Guarantees for Resource-Bounded Computations – p.20/33

We are looking for Higher-Order Soundness Predicates

We want to justify generic proof rules, like

e1 : Pre1 ⇒ Post1

e2 : Pre2 ⇒ Post2
Let

let x =e1 in e2 : Pre ⇒ Post

that is, to find a predicate

λPre Pre1 Post1 x Pre2 Post2 Post . LET

s. t. for all e1, e2, x one has

LET(Pre, Pre1, Post1, x, Pre2, Post2, Post) ⇒ Let

and similarly for other rules.

Guarantees for Resource-Bounded Computations – p.21/33

We are looking for Higher-Order Soundness Predicates

Combinations of Type Systems

independent type systems
e : Pre1 ⇒ Post1 ∧ Pre2 ⇒ Post2, that is the proofs for
e : Pre1 ⇒ Post1 and e : Pre2 ⇒ Post2

are obtained separately,

interleaving type systems
e : Pre1 ∧ Pre2 ⇒ Post1 ∧ Post2

The First case: obviously, we need just two collection of soundness
predicates, for both systems.

The Second case: ...

Guarantees for Resource-Bounded Computations – p.22/33

We are looking for Higher-Order Soundness Predicates

e1 : Pre11 ∧ Pre21 ⇒ Post11 ∧ Post21

e2 : Pre12 ∧ Pre22 ⇒ Post12 ∧ Post22
Let

let x =e1 in e2 : Pre1 ∧ Pre2 ⇒ Post1 ∧ Post2

Shall we prove the following (almost) from scratch?

LET(Pre1 ∧ Pre2, Pre11 ∧ Pre21, Post11 ∧ Post21, x,

Pre12 ∧ Pre22, Post12 ∧ Post22, Post1 ∧ Post2)

Guarantees for Resource-Bounded Computations – p.23/33

We are looking for Higher-Order Soundness Predicates

Properties like

LET(Pre1, Pre11, Post11, x, Pre12, Post12, Post1)

LET(Pre2, Pre21, Post21, x, Pre22, Post22, Post2)

}

⇒

LET(Pre1 ∧ Pre2, Pre11 ∧ Pre21, Post11 ∧ Post21, x,

Pre12 ∧ Pre22, Post12 ∧ Post22, Post1 ∧ Post2)

allow to re-use soundness statements for both systems:

no need in proofs for their combinations!

Guarantees for Resource-Bounded Computations – p.24/33

How do we prove a let-rule

e1 : λE hh′ v. ∀ X.Pre
E, h
1 (X) −→ Post

h′, v
1 (X) (1)

e2 : λE hh′ v. ∀ X.Pre
E, h
2 (X) −→ Post

h′, v
2 (X) (2)

lemma1, lemma2, lemma3

let x =e1 in e2 : λE hh′ v. ∀ X.PreE, h(X) −→ Posth′, v(X)

Fix E, h, h′, v and X.

∃Y.Pre
E, h
1 (Y)

(1) - Post
h0, v0

1 (Y) Posth′, v(X)

PreE, h(X)

lemma1

6

lemma2- ∃Z.Pre
E[x:=v0], h0

2 (Z)

lemma2

?
(2)- Post

h′, v
2 (Z)

lemma3

6

Guarantees for Resource-Bounded Computations – p.25/33

How do we prove a let-rule

λ Pre Pre1. lemma1(Pre , Pre1) ≡

∀E h. ∀X. PreE, h(X) −→ ∃Y.Pre
E, h
1 (Y)

λ Pre Pre1 Post1 x Pre2.lemma2(Pre , Pre1, Post1, x, Pre2)

≡

∀E hh0 v0. ∀X Y. PreE, h(X) −→

Pre
E, h
1 (Y) −→

Post
h0, v
1 (Y) −→

∃Z.Pre
E[x:=v], h0

2 (Z)

Guarantees for Resource-Bounded Computations – p.26/33

How do we prove a let-rule

λPre Pre1 Post1 x Pre2 Post2 Post .

lemma3(Pre, Pre1, Post1, x, Pre2, Post2, Post)

≡

∀E hh0 v0 h′ v. ∀X Y Z. PreE, h(X) −→

Pre
E, h
1 (Y) −→

Post
h0, v
1 (Y) −→

Pre
E[x:=v], h0

2 (Z) −→

Post
h′, v
2 (Z) −→

Posth′, v(X)

Guarantees for Resource-Bounded Computations – p.27/33

LET

λPre Pre1 Post1 x Pre2 Post2 Post . LET

≡

lemma1(Pre, Pre1) ∧

lemma2(Pre, Pre1, Post1, x, Pre2) ∧

lemma3(Pre, Pre1, Post1, x, Pre2, Post2, Post)

LET(Pre1, Pre11, Post11, x, Pre12, Post12, Post1)

LET(Pre2, Pre21, Post21, x, Pre22, Post22, Post2)

⇒

LET(Pre1 ∧ Pre2, Pre11 ∧ Pre21, Post11 ∧ Post21, x,

Pre12 ∧ Pre22, Post12 ∧ Post22, Post1 ∧ Post2)

is satisfied as well

Guarantees for Resource-Bounded Computations – p.28/33

A non-decent let-rule

e1 : Pre1 ⇒ Post1

e2 : Pre2 ⇒ Post2

e1 : A
Let

let x =e1 in e2 : Pre ⇒ Post

lemma2(Pre, Pre1, Post1, A, x, Pre2) ≡ ∀E hh0 v0. ∀X Y.

PreE, h(X) −→

Pre
E, h
1 (Y) −→

Post
h0, v
1 (Y) −→

A(E, h, h0, v0) −→

∃Z.Pre
E[x:=v], h0

2 (Z)

Similarly with lemma3.

Guarantees for Resource-Bounded Computations – p.29/33

non-decent LET

λPre Pre1 Post1 x Pre2 Post2 Post . LET

≡

lemma1(Pre, Pre1) ∧

lemma2(Pre, Pre1, Post1, A, x, Pre2) ∧

lemma3(Pre, Pre1, Post1, A, x, Pre2, Post2, Post)

Guarantees for Resource-Bounded Computations – p.30/33

Interleaving

We want to get a decent let-rule by approximating A

with another type system (Pre
A, Post

A).
Define
Approximate(Pre, A) ≡ ∀E h h0 v0.Pre(E, h) −→ A(E, h, h0, v0).

LET(Pre1, Pre11, Post11, A, x, Pre12, Post12, Post1)

LET(Pre2, Pre21, Post21, x, Pre22, Post22, Post2)

Approximate(Pre2, A)
︸ ︷︷ ︸

⇓

e1 : Pre11 ∧ Pre21 ⇒ Post11 ∧ Post21

e2 : Pre12 ∧ Pre22 ⇒ Post12 ∧ Post22

let x =e1 in e2 : Pre1 ∧ Pre2 ⇒ Post1 ∧ Post2

Guarantees for Resource-Bounded Computations – p.31/33

Non-decent Let-rule becomes a decent one: no non-typeable assertion

because

LET(Pre1, Pre11, Post11, A, x, Pre12, Post12, Post1)

LET(Pre2, Pre21, Post21, x, Pre22, Post22, Post2)

Approximate(Pre2, A)

⇒

LET(Pre1 ∧ Pre2, Pre11 ∧ Pre21, Post11 ∧ Post21, x, Pre12 ∧ Pre22, Post12 ∧ Post22, Post1 ∧ Post2)

Guarantees for Resource-Bounded Computations – p.32/33

Conclusions and Future Work

(Some of) MRG’s achievements:

Type inference system for linear heap space bounds,

The system of derived assertions for bytecode logic,

MRG-architecture: PCC framework

Future Work:

Advanced type inference system for nonlinear heap usage bounds.

Generic derived assertions are to be instantiated with different
assertions. In particular, with the “pure” resource aware assertion
and sharing-managing ones,

PCC framework with Isabelle theorem prover is huge and at present
may be used for off-device verification. Proof checking on the device
itself is an extremely challenging goal!

Guarantees for Resource-Bounded Computations – p.33/33

	small Motivation
	small Structure of this talk
	small Security of Mobile Code
	small PCC framework for MRG
	small High-level Analysis for Heap Consumption
	small High-level Analysis for Heap Consumption
	small A derived assertion for Grail
	small A derived assertion for Grail
	small Derived rules for Grail
	small Derived rules for Grail
	small Derived rules for Grail
	small Derived rules for Grail
	small How to prove derived assertions in a smart way?
	small Tired?
	small Typing judgment + Semantics = Derived Assertion
	small Example
	small A Generic Assertion
	small A Generic Assertion
	small A Generic Assertion
	small We are looking for Higher-Order Soundness Predicates
	small We are looking for Higher-Order Soundness Predicates
	small We are looking for Higher-Order Soundness Predicates
	small We are looking for Higher-Order Soundness Predicates
	small How do we prove a let-rule
	small How do we prove a let-rule
	small How do we prove a let-rule
	small LET
	small A non-decent let-rule
	small non-decent LET
	small Interleaving
	small Non-decent Let-rule becomes a decent one: no non-typeable assertion
	small Conclusions and Future Work

