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Motivation

1st of September: MOBIUS,
“Mobility, Ubiquity and Security”

15 participants, incl. IoC, Tallinn

Aim of MOBIUS: to develop the technology for establishing trust and
security of global computers, using Proof-Carrying Code (PCC) paradigm

Mobile Resource Guarantees (MRG) is one of the
predecessors of MOBIUS.
It develops a PCC paradigm for resource bounded computations.
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Structure of this talk

What is this talk about:
MRG and what from its experience may be used in future.

MRG - a framework for ensuring heap space
safety of programs

Break?

Specifications of programs and their proofs
in more detail
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Security of Mobile Code

Examples of mobile code: Java-applets on the Internet,
applications for smart cards, ...

Alarm: alien on the device!!!

We download the code if it is secure

What do we mean by security in MRG?
A program runs inside (quantitatively) restricted
memory

How to ensure security?
Sandboxing - too restrictive
Signed applets - too bureaucratic: many questions
and permissions
PCC: mobile code is supported with the proof of its
safety
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PCC framework for MRG
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High-level Analysis for Heap Consumption

We can infer linear heap-consumption bounds
for Camelot programs:

Given
f : List(Int) −→ List(Int)

Obtain a notated, with numbers, signature

f : List(Int, k), n −→ List(Int, k′), n′

For example
copy : List(Int, 1), 0 −→ List(Int, 0), 0

or

cons : Int, List(Int, 0), 1 −→ List(Int, 0), 0
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High-level Analysis for Heap Consumption

f : List(Int, k), n −→ List(Int, k′), n′

with |x| be the length of an input list x

with (at least) k|x| + n of free heap units available

the body of f terminates with a value v

then there will be (at least) k′|v| + n′ free heap units
available after evaluation.

append : List(Int, 0), List(Int, 0), 0 −→ List(Int, 0), 0

append_cp : List(Int, 1), List(Int, 0), 0 −→ List(Int, 0), 0

where append_cp appends 2nd arg. to the copy of the 1st one.
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A derived assertion for Grail

Bounds for a given program are to be proved
on the level of compiled code, i. e. Grail

To prove a statement about a code one needs

to formalise semantics of its basic operations
and structured expressions via a partial correctness assertion
of the form E, h ` e  h′, v

to formalise the meaning of the statement itself
to define the region occupied by a list, a tree

to define virtual cost number, which is for List(Int, 3) of length k

is equal to 3k.

... lots of work
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A derived assertion for Grail

A resource statement for a compiled code =
The soundness for a for a high-level typing judgment (mod. compilation)

e : JU, n, Γ I T, mK.
If e terminates on a given environment E and a heap h,
then when

E satisfies the context Γ;

the used by e variables are in U ;

n extra free heap units (+ the virtual costs of U

defined by Γ) are available before evaluation

the expression e terminates with

an output value of type T ;

m extra free heap units
(+ the virtual cost of a value) are after evaluation.
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Derived rules for Grail

How to prove such assertions?
We have a basic logic, that is a set of weakest conditions for Grail
constructions, mirroring operational semantics

straightforward proofs, i.e. syntactically driven
application of the rules of the basic logic
Naive! Eventually we obtain a huge HOL-predicate
over heaps and environments with right-hand-side existensials!

proofs with derived rules mirroring high-level typing
rules
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Derived rules for Grail

Example: the let-rules

Γ, n ` e1 : T0, l

(Γ, x : T0), l ` e2 : T, m
Camelot− Let

Γ, n ` let x =e1 in e2 : T, m

⇓

e1 : JU1, n, Γ I T0, lK

e2 : JU2, l, (Γ, x : T0) I T, mK
Grail− Let

let x =e1 in e2 : JU1 ] (U2 \ {x}), n, Γ I T, mK
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Derived rules for Grail

Restriction:
current judgments are designed
for linear usage of variables:

soundness is proved for a linear let-rule

for that one has to prohibit sharing of arguments

although the high-level analysis is sound for a weaker
(semantical) condition of benign sharing.
We cannot prove that

let h = length x in cons(h, x) :

J{x}, 1, List(0) I List(0), 0K
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Derived rules for Grail

correctness of the analyser assumes
benign sharing of variables in let-rule,
i.e. no reachable from e2 cells get deallocated
by e1

to get derived assertions for proving bounds
one needs to approximate benign sharing statically

one way of approximation is linear let-rule,
which is rather restrictive

the other way is to involve usage aspects

there is even more deep analysis,
involving layered sharing...
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How to prove derived assertions in a smart way?

Observations:

numerical part of a resource aware assertion may be
separated from sharing-managing assertion

a pure resource aware assertion and various
sharing-managing assertions have similar structure, so
do their proofs!

It does make sense to design generic rules!

we find a condition, say LET, that implies a rule Let

to prove Let for a given assertion show that it satisfies LET and then
instantiate the generic Let with the given assertion

LET must have a special property allowing to combine assertions
without duplicating work (later ...)
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Tired?

Break ...
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Typing judgment + Semantics = Derived Assertion

Does our type system work as we mean?
Derived assertions help to answer this question

Γ ` e : T Γ may be decorated

e : λ E hh′ v. Spec(E, h, h′, v)

meaning
�

w
w
w
w
w
w
w
w
w
w

where e satisfies a partial correctness assertion of the form

E, h ` e  h′, v
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Example

Γ ` e : List(Bool)

Let Γ(x) = List(Bool) for all x ∈ Dom(Γ),
an inductive data structure list is defined in a heap.
If

E(x) |=h
Γ(x) l, i.e. “l is a well-formed list”

Extra-property holds: l is acyclic

then there exists a well-formed list l′, s.t.

v |=h′

List(Bool) l′

l′ is acyclic
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A Generic Assertion

A precondition is a model relation and some property

Pre
E, h

Γ
(X) ≡ Γ |=E, h X1 ∧

Property (X)

A postcondition states an existence of a model for the output
with some property

Post
h′, v

T (X) ≡ ∃Y. v |=h′

T Y1 ∧

PropertyT (X, Y )
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A Generic Assertion

Γ ` e : T Γ may be decorated

e : λE hh′ v. ∀ X.

meaning
�

w
w
w
w
w
w
w
w
w
w

Pre
E, h
Γ (X) −→ Post

h′, v
T (X)

Definition

Pre ⇒ Post ≡ λE hh′ v. ∀ X. PreE, h(X) −→ Posth′, v(X)
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A Generic Assertion

We will consider inference rules for assertions of the form

e : Pre ⇒ Post

regardless if they mirror some type judgment or not.

A semantic mapping of a typing judgment onto an assertion of this form
motivates our interest to such assertions, but they give just a partial case
of inference systems for e : Pre ⇒ Post .

In the case of a typing judgment like Γ ` e : T one defines
corresponding parametric pre- and postconditions, PreΓ and PostT , and
instantiate with them a generic assertion e : PreΓ ⇒ PostT
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We are looking for Higher-Order Soundness Predicates

We want to justify generic proof rules, like

e1 : Pre1 ⇒ Post1

e2 : Pre2 ⇒ Post2
Let

let x =e1 in e2 : Pre ⇒ Post

that is, to find a predicate

λPre Pre1 Post1 x Pre2 Post2 Post . LET

s. t. for all e1, e2, x one has

LET(Pre, Pre1, Post1, x, Pre2, Post2, Post) ⇒ Let

and similarly for other rules.
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We are looking for Higher-Order Soundness Predicates

Combinations of Type Systems

independent type systems
e : Pre1 ⇒ Post1 ∧ Pre2 ⇒ Post2, that is the proofs for
e : Pre1 ⇒ Post1 and e : Pre2 ⇒ Post2

are obtained separately,

interleaving type systems
e : Pre1 ∧ Pre2 ⇒ Post1 ∧ Post2

The First case: obviously, we need just two collection of soundness
predicates, for both systems.

The Second case: ...
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We are looking for Higher-Order Soundness Predicates

e1 : Pre11 ∧ Pre21 ⇒ Post11 ∧ Post21

e2 : Pre12 ∧ Pre22 ⇒ Post12 ∧ Post22
Let

let x =e1 in e2 : Pre1 ∧ Pre2 ⇒ Post1 ∧ Post2

Shall we prove the following (almost) from scratch?

LET(Pre1 ∧ Pre2, Pre11 ∧ Pre21, Post11 ∧ Post21, x,

Pre12 ∧ Pre22, Post12 ∧ Post22, Post1 ∧ Post2)
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We are looking for Higher-Order Soundness Predicates

Properties like

LET(Pre1, Pre11, Post11, x, Pre12, Post12, Post1)

LET(Pre2, Pre21, Post21, x, Pre22, Post22, Post2)

}

⇒

LET(Pre1 ∧ Pre2, Pre11 ∧ Pre21, Post11 ∧ Post21, x,

Pre12 ∧ Pre22, Post12 ∧ Post22, Post1 ∧ Post2)

allow to re-use soundness statements for both systems:

no need in proofs for their combinations!
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How do we prove a let-rule

e1 : λE hh′ v. ∀ X.Pre
E, h
1 (X) −→ Post

h′, v
1 (X) (1)

e2 : λE hh′ v. ∀ X.Pre
E, h
2 (X) −→ Post

h′, v
2 (X) (2)

lemma1, lemma2, lemma3

let x =e1 in e2 : λE hh′ v. ∀ X.PreE, h(X) −→ Posth′, v(X)

Fix E, h, h′, v and X.

∃Y.Pre
E, h
1 (Y )

(1) - Post
h0, v0

1 (Y ) Posth′, v(X)

PreE, h(X)

lemma1

6

lemma2- ∃Z.Pre
E[x:=v0], h0

2 (Z)

lemma2

?
(2)- Post

h′, v
2 (Z)

lemma3

6
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How do we prove a let-rule

λ Pre Pre1. lemma1(Pre , Pre1) ≡

∀E h. ∀X. PreE, h(X) −→ ∃Y.Pre
E, h
1 (Y )

λ Pre Pre1 Post1 x Pre2.lemma2(Pre , Pre1, Post1, x, Pre2)

≡

∀E hh0 v0. ∀X Y. PreE, h(X) −→

Pre
E, h
1 (Y ) −→

Post
h0, v
1 (Y ) −→

∃Z.Pre
E[x:=v], h0

2 (Z)
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How do we prove a let-rule

λPre Pre1 Post1 x Pre2 Post2 Post .

lemma3(Pre, Pre1, Post1, x, Pre2, Post2, Post)

≡

∀E hh0 v0 h′ v. ∀X Y Z. PreE, h(X) −→

Pre
E, h
1 (Y ) −→

Post
h0, v
1 (Y ) −→

Pre
E[x:=v], h0

2 (Z) −→

Post
h′, v
2 (Z) −→

Posth′, v(X)
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LET

λPre Pre1 Post1 x Pre2 Post2 Post . LET

≡

lemma1(Pre, Pre1) ∧

lemma2(Pre, Pre1, Post1, x, Pre2) ∧

lemma3(Pre, Pre1, Post1, x, Pre2, Post2, Post)

LET(Pre1, Pre11, Post11, x, Pre12, Post12, Post1)

LET(Pre2, Pre21, Post21, x, Pre22, Post22, Post2)






⇒

LET(Pre1 ∧ Pre2, Pre11 ∧ Pre21, Post11 ∧ Post21, x,

Pre12 ∧ Pre22, Post12 ∧ Post22, Post1 ∧ Post2)

is satisfied as well
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A non-decent let-rule

e1 : Pre1 ⇒ Post1

e2 : Pre2 ⇒ Post2

e1 : A
Let

let x =e1 in e2 : Pre ⇒ Post

lemma2(Pre, Pre1, Post1, A, x, Pre2) ≡ ∀E hh0 v0. ∀X Y.

PreE, h(X) −→

Pre
E, h
1 (Y ) −→

Post
h0, v
1 (Y ) −→

A(E, h, h0, v0) −→

∃Z.Pre
E[x:=v], h0

2 (Z)

Similarly with lemma3.
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non-decent LET

λPre Pre1 Post1 x Pre2 Post2 Post . LET

≡

lemma1(Pre, Pre1) ∧

lemma2(Pre, Pre1, Post1, A, x, Pre2) ∧

lemma3(Pre, Pre1, Post1, A, x, Pre2, Post2, Post)
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Interleaving

We want to get a decent let-rule by approximating A

with another type system (Pre
A, Post

A).
Define
Approximate(Pre, A) ≡ ∀E h h0 v0.Pre(E, h) −→ A(E, h, h0, v0).

LET(Pre1, Pre11, Post11, A, x, Pre12, Post12, Post1)

LET(Pre2, Pre21, Post21, x, Pre22, Post22, Post2)

Approximate(Pre2, A)
︸ ︷︷ ︸

⇓

e1 : Pre11 ∧ Pre21 ⇒ Post11 ∧ Post21

e2 : Pre12 ∧ Pre22 ⇒ Post12 ∧ Post22

let x =e1 in e2 : Pre1 ∧ Pre2 ⇒ Post1 ∧ Post2
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Non-decent Let-rule becomes a decent one: no non-typeable assertion

because

LET(Pre1, Pre11, Post11, A, x, Pre12, Post12, Post1)

LET(Pre2, Pre21, Post21, x, Pre22, Post22, Post2)

Approximate(Pre2, A)







⇒

LET(Pre1 ∧ Pre2, Pre11 ∧ Pre21, Post11 ∧ Post21, x, Pre12 ∧ Pre22, Post12 ∧ Post22, Post1 ∧ Post2)
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Conclusions and Future Work

(Some of) MRG’s achievements:

Type inference system for linear heap space bounds,

The system of derived assertions for bytecode logic,

MRG-architecture: PCC framework

Future Work:

Advanced type inference system for nonlinear heap usage bounds.

Generic derived assertions are to be instantiated with different
assertions. In particular, with the “pure” resource aware assertion
and sharing-managing ones,

PCC framework with Isabelle theorem prover is huge and at present
may be used for off-device verification. Proof checking on the device
itself is an extremely challenging goal!
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