Amortised analysis of heap consumption

Olha Shkaravska

Institut of Informatics, LMU Munich, Germany Motivation and Structure of this talk Hofmann-Jost inference system: inference of linear bounds of heap consumption. What about non-linear bounds? The talk:

- Amortized analysis for time, incl. Banker's algorithm
- Hofmann-Jost analysis = a Banker's algorithm with constant credits
- A Banker's algorithm for dependent credits

Amortised Time Analysis

Idea: to distribute the worst-case run time of an entire sequence of operations over the operations.

Given: a sequence of n operations.

Let a_i and t_i be the amortized and actual costs

of *i*-th operation.

$$\sum_{i=1}^{j} a_i \ge \sum_{i=1}^{j} t_i,$$

where $1 \leq j \leq n$.

Aggregate method

$$a_i = \frac{T(n)}{n}$$

... like we have payed in the African restaurant.

Banker's (Accounting) method If

$$a_i \geq t_i$$

then $c_i = a_i - t_i$ is viewed as a credit.

It can be used late to pay for the operations whose amortised cost is less then their actual cost.

Example.

while not StackEmpty(S) and k<>0
do {
 Pop(S)
 k:= k-1
 }

Banker's (Accounting) method

while not StackEmpty(S) and k<>0 do { Pop(S); k := k-1 } The actual costs, t_i -s: Push Pop Multipop min(s, k), where s is a size of the stack S. The amortized costs, a_i -s: 2 Push Pop Multipop ()

Physicist's (Potential) method

One can associate all "prepayment" with the data structure as a whole.

Data structures: D_0, \ldots, D_n :

- D_0 is an initial one,
- *D_i* is a result of application of *i*-th operation on
 D_i-1

Find a potential function $\Phi: D_i \mapsto \Phi(D_i)$, a number.

The amortised cost per op.: $a_i = t_i + (\Phi(D_i) - \Phi(D_{i-1}))$

Physicist's (Potential) method

The amortised cost per op.: $a_i = t_i + (\Phi(D_i) - \Phi(D_{i-1}))$

The total amortized cost is

$$\Sigma_{i=1}^{n} a_{i} = \Sigma_{i=1}^{n} t_{i} + \Sigma_{i=1}^{n} (\Phi(D_{i}) - \Phi(D_{i-1}))$$
$$= \Sigma_{i=1}^{n} t_{i} + (\Phi(D_{n}) - \Phi(D_{0}))$$

Hofmann-Jost inference system

We can infer linear heap-consumption bounds:

• Given

 $f: L(Int) \rightarrow L(Int)$

• Obtain a notated, with numbers, signature

 $f: L(Int, k), k_0 \rightarrow L(Int, k'), k'_0$

Examples:

copy: L(Int, 1), $0 \rightarrow L(Int, 0), 0$ cons: L(Int, 0), $1 \rightarrow L(Int, 0), 0$

k is a constant credit, k |l| is a potential of the list l.

Type system for dependent credits

 $B = \{0, 1\}$

$$T ::= \ \mathsf{B} |\mathsf{L}_0(T, \ k)| \ \dots \ | \ \mathsf{L}_m(T, \ k)| \ \dots \ |\mathsf{L}(T, \ k)|$$

where

- $k: \operatorname{Nat} \to \mathbb{R}^+$,
- $L_m(T, k)$ is a not. list of length m of type T, s. t. *i*-th element of the list has a credit k(i),
- $L(T, k) = \sum_{n=0}^{\infty} L_n(T, k).$

Typing judgment is almost the same as for HJ typing: $\Gamma, n \vdash e : T, n'$

The context is mixed: with non-sized and sized types.

$$\frac{n \ge n' + 1 + k(m+1)}{h: T, t: L_m(T, k), n \vdash} Cons$$
$$cons(h, t): L_{m+1}(T, k), n'$$

$$\begin{array}{c} \Gamma, \ n \vdash e_1 : A, \ n' \\ \Gamma, \ h : T, \\ t : \operatorname{L}_{m-1}(T, \ k), \ n + 1 + k(m) \vdash e_2 : A, \ n' \\ \hline \Gamma, \ l : \operatorname{L}_m(T, \ k), \ n \vdash \\ \operatorname{match} l \ \text{with} \\ \operatorname{Nil} \Rightarrow e_1 : \qquad A, \ n' \\ \mid \operatorname{Cons}@(h, \ t) \Rightarrow e_2 : \end{array} DM$$

The rule

$$\begin{split} \Sigma(P) &= \mathtt{L}(T,\,k),\;k_0 \,\,
ightarrow^p \ &\, \mathtt{L}ig(T',\,k'ig),\;k'_0 \ &\, n \geq k_0 \ &\, n - k_0 \geq n' - k'_0 \ \hline \Gamma,\,l:\,\mathtt{L}_m(T,\,k),\;n \,\,dash$$
Fun $\Gamma,\,l:\,\mathtt{L}_m(T,\,k),\;n \,\,dash$

$$\begin{split} \Sigma(P) &= \mathtt{L}(T, \, k), \, k_0 \, \longrightarrow^p \\ & \frac{\mathtt{L}(T', \, k'), \, k'_0}{l : \, \mathtt{L}_m(T, \, k), \, k_0 \, \vdash} \mathtt{Spec} \\ & e_P : \, \mathtt{L}_{p(m)}(T', \, k'), \, k'_0 \end{split}$$

Checking heap bounds

Given a program of $L(T) \rightarrow L(T')$. How to check, if its heap consumption does not exceed O(f(x)), where x is a length of an input list, and f(x) is smooth?

Notate the signature with functions of k, k': Nat $\rightarrow \mathbb{R}^+$ and nat. numbers k_0, k'_0 : $L(T, k), k_0 \rightarrow L(T', k'), k'_0$ Take k = f'

Checking heap bounds f(x)

Take k = f' in L(T, k), $k_0 \rightarrow L(T', k')$, k'_0 If type-checking for this k and some nonnegative k_0 , k', k'_0 works (a bit of type-inference for k_0, k', k'_0), then the program consumes up to O(f(x)) heap units. Why?

- $f(x) = \int_0^x f'(v) \, dv + f(0)$
- $\sum_{v=1}^{x} k(v)$ is a total amount of free heap units associated with an input list of length x
- approximate the integral by the sum $\sum_{v=1}^{x} k(v)$, rectang. approx. of the square: $|\sum_{v=1}^{x} k(v) - f(x)| \leq C.$

Examples

- f(x) = x for copy: we have $k(x) = f'(x) \equiv 1$
- $f(x) = a \log(x+b) + c$ and $k(x) = \frac{a}{\ln 2} \frac{1}{x+b}$ for binary

where

To generalise type inference

```
binInc l =
   match 1 with
   Nil => Cons(1, Nil)
 | Cons@(h, t) => if h=0 then
                       Cons(1, t)
                       else
                       Cons(0, binInc t)
If ||l|| = 2^s - 1, for some natural number s,
binInc consumes exactly one heap unit,
otherwise there is no consumption.
Consider another measure \mu = \|\cdot\|.
```

Consumption on measure

 $\begin{aligned} \operatorname{consume}(l) &= f(\mu(l)) \\ &= \int_0^{\mu(l)} f'_{\mu}(v) \, dv + f(0) \\ &\approx \sum_{v=1}^{\mu(l)} f'_{\mu}(v) + C \end{aligned}$

Generally: a credit in heap units is payed pro 1 unit of growth of measure.

consumption on measure: the example to do

binInc

- $\mu = \|\cdot\|$,
- $f(x) = \lceil \log_2(x+2) \rceil \lceil \log_2(x+1) \rceil$,

•
$$k(x) = \frac{a}{\ln 2} \frac{1}{x+2} - \frac{b}{\ln 2} \frac{1}{x+1}$$

• $L_d(B, k), 0 \rightarrow L_{d+1}(B, 0), 0,$ where *d* is a measure of an input.

Functions of 2 arguments (back to length)

 $k_1, k_2 : \text{Nat} \to \text{Nat} \to \mathbb{R}^+$ $k_i: \text{length of the partner} \to \text{position of the element} \to \text{credit}$

$$\Sigma(P) = L(T_1, k_1), L(T_1, k_2), k_0 \rightarrow^p \\ L(T', k')), k'_0 \\ n \ge k_0 \\ n - k_0 \ge n' - k'_0$$

 $\Gamma, l_1 : L_{m_1}(T, \overline{k_1(m_2)}), l_2 : L_{m_2}(\overline{T}, \overline{k_2(m_1)}), n \vdash P(l_1, l_2) : L_{p(m_1, m_2)}(T', k')), n'$

V

Functions of 2 arguments

$$f(x,y) = \int_0^y f'_y(x, u) \, du + f(x, 0)$$

= $\int_0^y f'_y(x, u) \, du + \int_0^x f'_{0x}(v) \, dv$
+ $f_0(0)$
 $\approx \sum_{u=1}^y f'_y(x, u) + \sum_{v=1}^x f'_{0x}(v)$
where $f_0 := f(x, 0)$

Functions of 2 arguments

$$f(x, y) \approx \sum_{u=1}^{y} f'_{y}(x, u) + \sum_{v=1}^{x} f'_{0 x}(v)$$

with $f_0 := f(x, 0)$ Let

$$k_1(y) = f'_{0 x}$$

 $k_2(x) = f'_y(x, y)$

Example of bounds

f(x, y) = a x y + b x + c y + d? How to answer this question?

 $k_1(y) = f'_{0x} = b$ $k_2(x) = f'_y(x, y) = ax + c$ Find such a, b, c, d that for some k_0, k', k'_0 type-checking works...

Let for simplicity $k' \equiv 0, k'_0 = 0$.

Example: Multiplication

Typechecking works with $a = 1, b = 0, c = 1, k_0 = 0$ $L(B, 0), L(B, x + 1), 0 \rightarrow L((B, 0), 0), 0$

To Do

- Design an Inference system parametric w.r.t. measures
- The Examples: type-checking revisited

 Soundness of the inference system w.r.t. op.sem of Hofmann-Jost