Amortised analysis of heap consumption

Olha Shkaravska

Institut of Informatics, LMU
Munich, Germany

Motivation and Structure of this talk

Hofmann-Jost inference system: inference of linear bounds of heap consumption. What about non-linear bounds?

The talk:

- Amortized analysis for time, incl. Banker's algorithm
- Hofmann-Jost analysis = a Banker's algorithm with constant credits
- A Banker's algorithm for dependent credits

Amortised Time Analysis

Idea: to distribute the worst-case run time of an entire sequence of operations over the operations.
Given: a sequence of n operations.
Let a_{i} and t_{i} be the amortized and actual costs of i-th operation.

$$
\sum_{i=1}^{j} a_{i} \geq \sum_{i=1}^{j} t_{i},
$$

where $1 \leq j \leq n$.

Aggregate method

$$
a_{i}=\frac{T(n)}{n}
$$

... like we have payed in the African restaurant.

Banker's (Accounting) method

If

$$
a_{i} \geq t_{i}
$$

then $c_{i}=a_{i}-t_{i}$ is viewed as a credit.
It can be used late to pay for the operations whose amortised cost is less then their actual cost. Example.
while not StackEmpty(S) and k<>0 do \{

Pop (S)
$\mathrm{k}:=\mathrm{k}-1$
\}

Banker's (Accounting) method

```
while not StackEmpty(S) and k<>0
do { Pop(S); k:= k-1 }
The actual costs,}\mp@subsup{t}{i}{}-\textrm{S}
    Push 1
    Pop 1
Multipop min}(s,k)
where s is a size of the stack S.
The amortized costs, }\mp@subsup{a}{i}{}\mathrm{ -s:
Push 2
Pop 0
Multipop 0
```


Physicist's (Potential) method

One can associate all "prepayment" with the data structure as a whole.

Data structures: D_{0}, \ldots, D_{n} :

- D_{0} is an initial one,
- D_{i} is a result of application of i-th operation on D_{i-1}

Find a potential function $\Phi: D_{i} \mapsto \Phi\left(D_{i}\right)$, a number.

The amortised cost per op.:
$a_{i}=t_{i}+\left(\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right)$

Physicist's (Potential) method

The amortised cost per op.:

$$
a_{i}=t_{i}+\left(\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right)
$$

The total amortized cost is

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} & =\sum_{i=1}^{n} t_{i}+\sum_{i=1}^{n}\left(\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right) \\
& =\sum_{i=1}^{n} t_{i}+\left(\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right)\right)
\end{aligned}
$$

Hofmann-Jost inference system

We can infer linear heap-consumption bounds:

- Given

$$
f: \mathrm{L}(\text { Int }) \rightarrow \mathrm{L}(\mathrm{Int})
$$

- Obtain a notated, with numbers, signature

$$
f: \mathrm{L}(\text { Int }, k), k_{0} \rightarrow \mathrm{~L}\left(\text { Int }, k^{\prime}\right), k_{0}^{\prime}
$$

Examples:
copy : L(Int, 1), $0 \rightarrow$ L(Int, 0), 0
cons : L(Int, 0), $1 \rightarrow \mathrm{~L}($ Int, 0$), 0$
k is a constant credit, $k|l|$ is a potential of the list l.

Type system for dependent credits

$$
B=\{0,1\}
$$

$$
\begin{aligned}
T::= & \mathrm{B}\left|\mathrm{~L}_{0}(T, k)\right| \ldots \mid \\
& \mathrm{L}_{m}(T, k)|\ldots| \mathrm{L}(T, k),
\end{aligned}
$$

where

- $k:$ Nat $\rightarrow \mathbb{R}^{+}$,
- $\mathrm{L}_{m}(T, k)$ is a not. list of length m of type T, s. t. i-th element of the list has a credit $k(i)$,
- $\mathrm{L}(T, k)=\sum_{n=0}^{\infty} \mathrm{L}_{n}(T, k)$.

Inference for dependent credits

Typing judgment is almost the same as for HJ typing: $\Gamma, n \vdash e: T, n^{\prime}$
The context is mixed: with non-sized and sized types.

$$
\begin{aligned}
& \frac{n \geq n^{\prime}+1+k(m+1)}{h: T, t: \mathrm{L}_{m}(T, k), n \vdash} \mathrm{Cons} \\
& \operatorname{cons}(h, t): \mathrm{L}_{m+1}(T, k), n^{\prime}
\end{aligned}
$$

Inference for dependent credits

$$
\begin{gathered}
\Gamma, n \vdash e_{1}: A, n^{\prime} \\
\Gamma, h: T, \\
t: \mathrm{L}_{m-1}(T, k), n+1+k(m) \vdash e_{2}: A, n^{\prime} \\
\hline \Gamma, l: \mathrm{L}_{m}(T, k), n \vdash \\
\operatorname{match} l \text { with } \\
N i l \Rightarrow e_{1}: \\
\mid \text { Cons@ }(h, t) \Rightarrow e_{2}:
\end{gathered}
$$

Inference for dependent credits

The rule

$$
\begin{aligned}
& \Gamma, n \vdash e_{1}: A, n^{\prime} \\
& \Gamma, n \vdash e_{2}: A, n^{\prime}
\end{aligned}
$$

$$
\Gamma, x: \mathrm{B}, n \vdash \text { if } \mathrm{x} \text { then } e_{1} \text { else } e_{2}: A, n^{\prime} \mathrm{f}
$$ perhaps, is not that restrictive if we have

$$
\frac{\Gamma, n \vdash e: \mathrm{L}_{m}(T, k), n^{\prime}}{\Gamma, n \vdash e: \mathrm{L}(T, k), n^{\prime}} \mathrm{Sum}
$$

Inference for dependent credits

$$
\begin{aligned}
& \Sigma(P)=\mathrm{L}(T, k), k_{0} \rightarrow^{p} \\
& \mathrm{~L}\left(T^{\prime}, k^{\prime}\right), k_{0}^{\prime} \\
& n \geq k_{0} \\
& \quad n-k_{0} \geq n^{\prime}-k_{0}^{\prime} \\
& \hline \Gamma, l: \mathrm{L}_{m}(T, k), n \vdash \\
& P(l): \mathrm{L}_{p(m)}\left(T^{\prime}, k^{\prime}\right), n^{\prime}
\end{aligned}
$$

Inference for dependent credits

$$
\begin{gathered}
\Sigma(P)=\mathrm{L}(T, k), k_{0} \rightarrow^{p} \\
\quad \frac{\mathrm{~L}\left(T^{\prime}, k^{\prime}\right), k_{0}^{\prime}}{} \quad \mathrm{S}: \mathrm{L}_{m}(T, k), k_{0} \vdash \\
e_{P}: \mathrm{L}_{p(m)}\left(T^{\prime}, k^{\prime}\right), k_{0}^{\prime}
\end{gathered}
$$

Checking heap bounds

Given a program of $\mathrm{L}(T) \rightarrow \mathrm{L}\left(T^{\prime}\right)$.
How to check, if its heap consumption does not exceed $O(f(x))$, where x is a length of an input list, and $f(x)$ is smooth?
Notate the signature with functions of $k, k^{\prime}:$ Nat $\rightarrow \mathbb{R}^{+}$ and nat. numbers k_{0}, k_{0}^{\prime} :
$\mathrm{L}(T, k), k_{0} \rightarrow \mathrm{~L}\left(T^{\prime}, k^{\prime}\right), k_{0}^{\prime}$
Take $k=f^{\prime}$

Checking heap bounds $f(x)$

Take $k=f^{\prime}$ in $\mathrm{L}(T, k), k_{0} \rightarrow \mathrm{~L}\left(T^{\prime}, k^{\prime}\right), k_{0}^{\prime}$ If type-checking for this k and some nonnegative k_{0}, $k^{\prime}, k_{0}^{\prime}$ works (a bit of type-inference for $k_{0}, k^{\prime}, k_{0}^{\prime}$), then the program consumes up to $O(f(x))$ heap units. Why?

- $f(x)=\int_{0}^{x} f^{\prime}(v) d v+f(0)$
- $\sum_{v=1}^{x} k(v)$ is a total amount of free heap units associated with an input list of length x
- approximate the integral by the sum $\sum_{v=1}^{x} k(v)$, rectang. approx. of the square:

$$
\left|\sum_{v=1}^{x} k(v)-f(x)\right| \leq C .
$$

Examples

- $f(x)=x$ for copy: we have $k(x)=f^{\prime}(x) \equiv 1$
- $f(x)=a \log (x+b)+c$ and $k(x)=\frac{a}{\ln 2} \frac{1}{x+b}$ for binary
binary l =
match l with
Nil => Nil
Cons (h, t) => let $y=$ binary t in binInc y
where

To generalise type inference

binInc $\quad l=$
match $\quad=$ with
Nil => Cons(1, Nil)
Cons@ (h, t) => if h=0 then
Cons (1, t)
else
Cons(0, binInc t)
If $\|l\|=2^{s}-1$, for some natural number s, binInc consumes exactly one heap unit, otherwise there is no consumption.
Consider another measure $\mu=\|\cdot\|$.

Consumption on measure

$$
\begin{aligned}
\operatorname{consume}(l) & =f(\mu(l)) \\
& =\int_{0}^{\mu(l)} f_{\mu}^{\prime}(v) d v+f(0) \\
& \approx \sum_{v=1}^{\mu(l)} f_{\mu}^{\prime}(v)+C
\end{aligned}
$$

Generally: a credit in heap units is payed pro 1 unit of growth of measure.

consumpuron on measure: une example to do

binInc

- $\mu=\|\cdot\|$,
- $f(x)=\left\lceil\log _{2}(x+2)\right\rceil-\left\lceil\log _{2}(x+1)\right\rceil$,
- $k(x)=\frac{a}{\ln 2} \frac{1}{x+2}-\frac{b}{\ln 2} \frac{1}{x+1}$
- $\mathrm{L}_{d}(\mathrm{~B}, k), 0 \rightarrow \mathrm{~L}_{d+1}(\mathrm{~B}, 0), 0$,
where d is a measure of an input.

Functions of 2 arguments (back to length)

$k_{1}, k_{2}:$ Nat $\rightarrow \mathrm{Nat} \rightarrow \mathbb{R}^{+}$
k_{i} : length of the partner \rightarrow position of the element \rightarrow credit

$$
\begin{gathered}
\Sigma(P)=\mathrm{L}\left(T_{1}, k_{1}\right), \mathrm{L}\left(T_{1}, k_{2}\right), k_{0} \rightarrow^{p} \\
\left.\mathrm{~L}\left(T^{\prime}, k^{\prime}\right)\right), k_{0}^{\prime} \\
n \geq k_{0} \\
n-k_{0} \geq n^{\prime}-k_{0}^{\prime} \\
\hline \Gamma, l_{1}: \mathrm{L}_{m_{1}}\left(T, k_{1}\left(m_{2}\right)\right), l_{2}: \mathrm{L}_{m_{2}}\left(T, k_{2}\left(m_{1}\right)\right), n \vdash \\
\left.P\left(l_{1}, l_{2}\right): \mathrm{L}_{p\left(m_{1}, m_{2}\right)}\left(T^{\prime}, k^{\prime}\right)\right), n^{\prime}
\end{gathered}
$$

Functions of 2 arguments

$$
\begin{aligned}
f(x, y) & =\int_{0}^{y} f_{y}^{\prime}(x, u) d u+f(x, 0) \\
& =\int_{0}^{y} f_{y}^{\prime}(x, u) d u+\int_{0}^{x} f_{0_{x}}^{\prime}(v) d v \\
& +f_{0}(0) \\
& \approx \sum_{u=1}^{y} f_{y}^{\prime}(x, u)+\sum_{v=1}^{x} f_{0_{x}}^{\prime}(v)
\end{aligned}
$$

where $f_{0}:=f(x, 0)$

Functions of 2 arguments

$$
\begin{gathered}
f(x, y) \approx \sum_{u=1}^{y} f_{y}^{\prime}(x, u)+ \\
\sum_{v=1}^{x} f_{0}^{\prime}(v)
\end{gathered}
$$

with $f_{0}:=f(x, 0)$
Let

$$
\begin{aligned}
& k_{1}(y)=f_{0}^{\prime} \\
& k_{2}(x)=f_{y}^{\prime}(x, y)
\end{aligned}
$$

Example of bounds

$f(x, y)=a x y+b x+c y+d ?$
How to answer this question?

$$
k_{1}(y)=f_{0 x}^{\prime}=b
$$

$$
k_{2}(x)=f_{y}^{\prime}(x, y)=a x+c
$$

Find such a, b, c, d that for some $k_{0}, k^{\prime}, k_{0}^{\prime}$ type-checking works...
Let for simplicity $k^{\prime} \equiv 0, k_{0}^{\prime}=0$.

Example: Multiplication

$$
\begin{aligned}
& \text { mult(l1, l2) = } \\
& \text { match } 12 \text { with } \\
& \text { Nil => Nil } \\
& \text { Cons(h, t) }=>\text { let } x=m u l t(11, t) \\
& \text { in } \\
& \text { let l=copy } 11 \\
& \text { in } \\
& \text { cons (l, x) }
\end{aligned}
$$

Typechecking works with
$a=1, b=0, c=1, k_{0}=0$
$\mathrm{L}(\mathrm{B}, 0), \mathrm{L}(\mathrm{B}, x+1), 0 \rightarrow \mathrm{~L}((\mathrm{~B}, 0), 0), 0$

To Do

- Design an Inference system parametric w.r.t. measures
- The Examples: type-checking revisited
- Soundness of the inference system w.r.t. op.sem of Hofmann-Jost

