
Amortised analysis
of heap consumption

Olha Shkaravska

Institut of Informatics, LMU

Munich, Germany

Amortised analysisof heap consumption – p.1/27

Motivation and Structure of this talk

Hofmann-Jost inference system:
inference of linear bounds of heap consumption.

What about non-linear bounds?

The talk:

• Amortized analysis for time, incl. Banker’s
algorithm

• Hofmann-Jost analysis = a Banker’s algorithm
with constant credits

• A Banker’s algorithm for dependent credits

Amortised analysisof heap consumption – p.2/27

Amortised Time Analysis
Idea: to distribute the worst-case run time
of an entire sequence of operations over the
operations.

Given: a sequence of n operations.

Let ai and ti be the amortized and actual costs

of i-th operation.

Σj
i=1ai ≥ Σj

i=1ti,

where 1 ≤ j ≤ n.

Amortised analysisof heap consumption – p.3/27

Aggregate method

ai =
T (n)

n
... like we have payed in the African restaurant.

Amortised analysisof heap consumption – p.4/27

Banker’s (Accounting) method
If

ai ≥ ti
then ci = ai − ti is viewed as a credit.

It can be used late to pay for the operations
whose amortised cost is less then their actual cost.

Example.
while not StackEmpty(S) and k<>0
do {

Pop(S)
k:= k-1
}

Amortised analysisof heap consumption – p.5/27

Banker’s (Accounting) method
while not StackEmpty(S) and k<>0

do { Pop(S); k:= k-1 }

The actual costs, ti-s:
Push 1
Pop 1
Multipop min(s, k),

where s is a size of the stack S.
The amortized costs, ai-s:
Push 2
Pop 0
Multipop 0

Amortised analysisof heap consumption – p.6/27

Physicist’s (Potential) method
One can associate all “prepayment”
with the data structure as a whole.

Data structures: D0, . . . , Dn:

• D0 is an initial one,
• Di is a result of application of i-th operation on

Di−1

Find a potential function Φ : Di 7→ Φ(Di),
a number.

The amortised cost per op.:

ai = ti +
(

Φ(Di) − Φ(Di−1)
)

Amortised analysisof heap consumption – p.7/27

Physicist’s (Potential) method
The amortised cost per op.:

ai = ti +
(

Φ(Di) − Φ(Di−1)
)

The total amortized cost is

Σn
i=1ai = Σn

i=1ti + Σn
i=1

(

Φ(Di) − Φ(Di−1)
)

= Σn
i=1ti +

(

Φ(Dn) − Φ(D0)
)

Amortised analysisof heap consumption – p.8/27

Hofmann-Jost inference system
We can infer linear heap-consumption bounds:

• Given
f : L(Int) → L(Int)

• Obtain a notated, with numbers, signature

f : L(Int, k), k0 → L(Int, k′), k′
0

Examples:
copy : L(Int, 1), 0 → L(Int, 0), 0
cons : L(Int, 0), 1 → L(Int, 0), 0

k is a constant credit, k |l| is a potential of the list l.

Amortised analysisof heap consumption – p.9/27

Type system for dependent credits

B = {0, 1}

T ::= B|L0(T, k)| . . . |

Lm(T, k)| . . . |L(T, k),

where
• k : Nat → R

+,

• Lm(T, k) is a not. list of length m of type T ,
s. t. i-th element of the list has a credit k(i),

• L(T, k) = Σ∞
n=0Ln(T, k).

Amortised analysisof heap consumption – p.10/27

Inference for dependent credits
Typing judgment is almost the same as for HJ typing:
Γ, n ` e : T, n′

The context is mixed: with non-sized and sized types.

n ≥ n′ + 1 + k(m + 1)
Cons

h : T, t : Lm(T, k), n `

cons(h, t) : Lm+1(T, k), n′

Amortised analysisof heap consumption – p.11/27

Inference for dependent credits

Γ, n ` e1 : A, n′

Γ, h : T,
t : Lm−1(T, k), n + 1 + k(m) ` e2 : A, n′

DM
Γ, l : Lm(T, k), n `

match l with
Nil ⇒ e1 : A, n′

| Cons@(h, t) ⇒ e2 :

Amortised analysisof heap consumption – p.12/27

Inference for dependent credits
The rule

Γ, n ` e1 : A, n′

Γ, n ` e2 : A, n′

If
Γ, x : B, n ` if x then e1 else e2 : A, n′

perhaps, is not that restrictive if we have

Γ, n ` e : Lm(T, k), n′

Sum
Γ, n ` e : L(T, k), n′

Amortised analysisof heap consumption – p.13/27

Inference for dependent credits

Σ(P) = L(T, k), k0 →p

L
(

T ′, k′
)

, k′
0

n ≥ k0

n − k0 ≥ n′ − k′
0

Fun
Γ, l : Lm(T, k), n `

P (l) : Lp(m)

(

T ′, k′
)

, n′

Amortised analysisof heap consumption – p.14/27

Inference for dependent credits

Σ(P) = L(T, k), k0 →p

L
(

T ′, k′
)

, k′
0

Spec
l : Lm(T, k), k0 `

eP : Lp(m)

(

T ′, k′
)

, k′
0

Amortised analysisof heap consumption – p.15/27

Checking heap bounds
Given a program of L(T) → L(T ′).

How to check, if its heap consumption
does not exceed O(f (x)),
where x is a length of an input list,
and f (x) is smooth?

Notate the signature
with functions of k, k′ : Nat → R

+

and nat. numbers k0, k
′
0:

L(T, k), k0 → L(T ′, k′), k′
0

Take k = f ′

Amortised analysisof heap consumption – p.16/27

Checking heap bounds f (x)

Take k = f ′ in L(T, k), k0 → L(T ′, k′), k′
0

If type-checking for this k and some nonnegative k0,
k′, k′

0 works (a bit of type-inference for k0, k′, k′

0
),

then the program consumes up to O(f(x)) heap units.

Why?

• f (x) =
∫ x

0 f ′(v) d v + f (0)

•
∑x

v=1 k(v) is a total amount of free heap units
associated with an input list of length x

• approximate the integral by the sum
∑x

v=1 k(v),
rectang. approx. of the square:
|
∑x

v=1 k(v) − f(x)| ≤ C.

Amortised analysisof heap consumption – p.17/27

Examples
• f (x) = x for copy: we have

k(x) = f ′(x) ≡ 1

• f (x) = a log(x + b) + c and k(x) = a
ln 2

1
x+b

for binary

binary l =
match l with
Nil => Nil

| Cons(h, t) => let y = binary t
in binInc y

where

Amortised analysisof heap consumption – p.18/27

To generalise type inference
binInc l =

match l with
Nil => Cons(1, Nil)

| Cons@(h, t) => if h=0 then
Cons(1, t)
else
Cons(0, binInc t)

If ‖l‖ = 2s − 1, for some natural number s,
binInc consumes exactly one heap unit,
otherwise there is no consumption.

Consider another measure µ = ‖ · ‖.

Amortised analysisof heap consumption – p.19/27

Consumption on measure

consume(l) = f (µ(l))

=
∫ µ(l)

0 f ′
µ(v) d v + f (0)

≈
∑µ(l)

v=1 f ′
µ(v) + C

Generally: a credit in heap units is payed
pro 1 unit of growth of measure.

Amortised analysisof heap consumption – p.20/27

Consumption on measure: the
example to do

binInc

• µ = ‖ · ‖,

• f (x) = dlog2 (x + 2)e − dlog2 (x + 1)e,

• k(x) = a
ln 2

1
x+2 −

b
ln 2

1
x+1

• Ld(B, k), 0 → Ld+1(B, 0), 0,

where d is a measure of an input.

Amortised analysisof heap consumption – p.21/27

Functions of 2 arguments (back to length)

k1, k2 : Nat → Nat → R
+

ki: length of the partner → position of the element →
credit

Σ(P) = L(T1, k1), L(T1, k2), k0 →p

L
(

T ′, k′)
)

, k′
0

n ≥ k0

n − k0 ≥ n′ − k′
0

Γ, l1 : Lm1
(T, k1(m2)), l2 : Lm2

(T, k2(m1)), n `

P (l1, l2) : Lp(m1, m2)

(

T ′, k′)
)

, n′

Amortised analysisof heap consumption – p.22/27

Functions of 2 arguments

f (x, y) =
∫ y

0 f ′
y(x, u) d u + f (x, 0)

=
∫ y

0 f ′
y(x, u) d u +

∫ x

0 f ′
0 x

(v)dv

+f0(0)

≈
∑y

u=1 f ′
y(x, u) +

∑x
v=1 f ′

0 x
(v)

where f0 := f (x, 0)

Amortised analysisof heap consumption – p.23/27

Functions of 2 arguments

f (x, y) ≈
∑y

u=1 f ′
y(x, u)+

∑x
v=1 f ′

0 x(v)

with f0 := f (x, 0)

Let

k1(y) = f ′
0 x

k2(x) = f ′
y(x, y)

Amortised analysisof heap consumption – p.24/27

Example of bounds

f (x, y) = a x y + b x + c y + d ?
How to answer this question?

k1(y) = f ′
0 x = b

k2(x) = f ′
y(x, y) = ax + c

Find such a, b, c, d that for some k0, k′, k′
0

type-checking works...

Let for simplicity k′ ≡ 0, k′
0 = 0.

Amortised analysisof heap consumption – p.25/27

Example: Multiplication
mult(l1, l2) =
match l2 with

Nil => Nil
| Cons(h, t) => let x=mult(l1, t)

in
let l=copy l1
in
cons(l, x)

Typechecking works with
a = 1, b = 0, c = 1, k0 = 0

L(B, 0), L(B, x + 1), 0 → L((B, 0), 0), 0

Amortised analysisof heap consumption – p.26/27

To Do
• Design an Inference system parametric

w.r.t. measures

• The Examples: type-checking revisited

• Soundness of the inference system

w.r.t. op.sem of Hofmann-Jost

Amortised analysisof heap consumption – p.27/27

	small Motivation and Structure of this talk
	 Amortised Time Analysis
	 Aggregate method
	 Banker's (Accounting)
method
	 Banker's (Accounting)
method
	 Physicist's (Potential)
method
	 Physicist's (Potential)
method
	 Hofmann-Jost inference system
	small Type system for dependent credits
	 Inference for dependent credits
	Inference for dependent credits
	 Inference for dependent credits
	 Inference for dependent credits
	 Inference for dependent credits
	 Checking heap bounds
	 Checking heap bounds $f(x)$
	 Examples
	 To generalise type inference
	 Consumption on measure
	 Consumption on measure: the example to do
	small Functions of 2 arguments (back to length)
	 Functions of 2 arguments
	 Functions of 2 arguments
	 Example of bounds
	 Example: Multiplication
	To Do

