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Motivation and Structure of this talk

Hofmann-Jost inference system:
inference of linear bounds of heap consumption.

What about non-linear bounds?

The talk:

• Amortized analysis for time, incl. Banker’s
algorithm

• Hofmann-Jost analysis = a Banker’s algorithm
with constant credits

• A Banker’s algorithm for dependent credits
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Amortised Time Analysis
Idea: to distribute the worst-case run time
of an entire sequence of operations over the
operations.

Given: a sequence of n operations.

Let ai and ti be the amortized and actual costs

of i-th operation.

Σj
i=1ai ≥ Σj

i=1ti,

where 1 ≤ j ≤ n.
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Aggregate method

ai =
T (n)

n
... like we have payed in the African restaurant.
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Banker’s (Accounting) method
If

ai ≥ ti
then ci = ai − ti is viewed as a credit.

It can be used late to pay for the operations
whose amortised cost is less then their actual cost.

Example.
while not StackEmpty(S) and k<>0
do {

Pop(S)
k:= k-1
}
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Banker’s (Accounting) method
while not StackEmpty(S) and k<>0

do { Pop(S); k:= k-1 }

The actual costs, ti-s:
Push 1
Pop 1
Multipop min(s, k),

where s is a size of the stack S.
The amortized costs, ai-s:
Push 2
Pop 0
Multipop 0
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Physicist’s (Potential) method
One can associate all “prepayment”
with the data structure as a whole.

Data structures: D0, . . . , Dn:

• D0 is an initial one,
• Di is a result of application of i-th operation on

Di−1

Find a potential function Φ : Di 7→ Φ(Di),
a number.

The amortised cost per op.:

ai = ti +
(

Φ(Di) − Φ(Di−1)
)
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Physicist’s (Potential) method
The amortised cost per op.:

ai = ti +
(

Φ(Di) − Φ(Di−1)
)

The total amortized cost is

Σn
i=1ai = Σn

i=1ti + Σn
i=1

(

Φ(Di) − Φ(Di−1)
)

= Σn
i=1ti +

(

Φ(Dn) − Φ(D0)
)
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Hofmann-Jost inference system
We can infer linear heap-consumption bounds:

• Given
f : L(Int) → L(Int)

• Obtain a notated, with numbers, signature

f : L(Int, k), k0 → L(Int, k′), k′
0

Examples:
copy : L(Int, 1), 0 → L(Int, 0), 0
cons : L(Int, 0), 1 → L(Int, 0), 0

k is a constant credit, k |l| is a potential of the list l.
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Type system for dependent credits

B = {0, 1}

T ::= B|L0(T, k)| . . . |

Lm(T, k)| . . . |L(T, k),

where
• k : Nat → R

+,

• Lm(T, k) is a not. list of length m of type T ,
s. t. i-th element of the list has a credit k(i),

• L(T, k) = Σ∞
n=0Ln(T, k).
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Inference for dependent credits
Typing judgment is almost the same as for HJ typing:
Γ, n ` e : T, n′

The context is mixed: with non-sized and sized types.

n ≥ n′ + 1 + k(m + 1)
Cons

h : T, t : Lm(T, k), n `

cons(h, t) : Lm+1(T, k), n′
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Inference for dependent credits

Γ, n ` e1 : A, n′

Γ, h : T,
t : Lm−1(T, k), n + 1 + k(m) ` e2 : A, n′

DM
Γ, l : Lm(T, k), n `

match l with
Nil ⇒ e1 : A, n′

| Cons@(h, t) ⇒ e2 :
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Inference for dependent credits
The rule

Γ, n ` e1 : A, n′

Γ, n ` e2 : A, n′

If
Γ, x : B, n ` if x then e1 else e2 : A, n′

perhaps, is not that restrictive if we have

Γ, n ` e : Lm(T, k), n′

Sum
Γ, n ` e : L(T, k), n′
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Inference for dependent credits

Σ(P ) = L(T, k), k0 →p

L
(

T ′, k′
)

, k′
0

n ≥ k0

n − k0 ≥ n′ − k′
0

Fun
Γ, l : Lm(T, k), n `

P (l) : Lp(m)

(

T ′, k′
)

, n′
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Inference for dependent credits

Σ(P ) = L(T, k), k0 →p

L
(

T ′, k′
)

, k′
0

Spec
l : Lm(T, k), k0 `

eP : Lp(m)

(

T ′, k′
)

, k′
0
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Checking heap bounds
Given a program of L(T ) → L(T ′).

How to check, if its heap consumption
does not exceed O(f (x)),
where x is a length of an input list,
and f (x) is smooth?

Notate the signature
with functions of k, k′ : Nat → R

+

and nat. numbers k0, k
′
0:

L(T, k), k0 → L(T ′, k′), k′
0

Take k = f ′
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Checking heap bounds f (x)

Take k = f ′ in L(T, k), k0 → L(T ′, k′), k′
0

If type-checking for this k and some nonnegative k0,
k′, k′

0 works (a bit of type-inference for k0, k′, k′

0
),

then the program consumes up to O(f(x)) heap units.

Why?

• f (x) =
∫ x

0 f ′(v) d v + f (0)

•
∑x

v=1 k(v) is a total amount of free heap units
associated with an input list of length x

• approximate the integral by the sum
∑x

v=1 k(v),
rectang. approx. of the square:
|
∑x

v=1 k(v) − f(x)| ≤ C.
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Examples
• f (x) = x for copy: we have

k(x) = f ′(x) ≡ 1

• f (x) = a log(x + b) + c and k(x) = a
ln 2

1
x+b

for binary

binary l =
match l with
Nil => Nil

| Cons(h, t) => let y = binary t
in binInc y

where ....
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To generalise type inference
binInc l =

match l with
Nil => Cons(1, Nil)

| Cons@(h, t) => if h=0 then
Cons(1, t)
else
Cons(0, binInc t)

If ‖l‖ = 2s − 1, for some natural number s,
binInc consumes exactly one heap unit,
otherwise there is no consumption.

Consider another measure µ = ‖ · ‖.
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Consumption on measure

consume(l) = f (µ(l))

=
∫ µ(l)

0 f ′
µ(v) d v + f (0)

≈
∑µ(l)

v=1 f ′
µ(v) + C

Generally: a credit in heap units is payed
pro 1 unit of growth of measure.
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Consumption on measure: the
example to do

binInc

• µ = ‖ · ‖,

• f (x) = dlog2 (x + 2)e − dlog2 (x + 1)e,

• k(x) = a
ln 2

1
x+2 −

b
ln 2

1
x+1

• Ld(B, k), 0 → Ld+1(B, 0), 0,

where d is a measure of an input.
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Functions of 2 arguments (back to length)

k1, k2 : Nat → Nat → R
+

ki: length of the partner → position of the element →
credit

Σ(P ) = L(T1, k1), L(T1, k2), k0 →p

L
(

T ′, k′)
)

, k′
0

n ≥ k0

n − k0 ≥ n′ − k′
0

Γ, l1 : Lm1
(T, k1(m2)), l2 : Lm2

(T, k2(m1)), n `

P (l1, l2) : Lp(m1, m2)

(

T ′, k′)
)

, n′
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Functions of 2 arguments

f (x, y) =
∫ y

0 f ′
y(x, u) d u + f (x, 0)

=
∫ y

0 f ′
y(x, u) d u +

∫ x

0 f ′
0 x

(v)dv

+f0(0)

≈
∑y

u=1 f ′
y(x, u) +

∑x
v=1 f ′

0 x
(v)

where f0 := f (x, 0)
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Functions of 2 arguments

f (x, y) ≈
∑y

u=1 f ′
y(x, u)+

∑x
v=1 f ′

0 x(v)

with f0 := f (x, 0)

Let

k1(y) = f ′
0 x

k2(x) = f ′
y(x, y)
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Example of bounds

f (x, y) = a x y + b x + c y + d ?
How to answer this question?

k1(y) = f ′
0 x = b

k2(x) = f ′
y(x, y) = ax + c

Find such a, b, c, d that for some k0, k′, k′
0

type-checking works...

Let for simplicity k′ ≡ 0, k′
0 = 0.
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Example: Multiplication
mult(l1, l2) =
match l2 with

Nil => Nil
| Cons(h, t) => let x=mult(l1, t)

in
let l=copy l1
in
cons(l, x)

Typechecking works with
a = 1, b = 0, c = 1, k0 = 0

L(B, 0), L(B, x + 1), 0 → L((B, 0), 0), 0
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To Do
• Design an Inference system parametric

w.r.t. measures

• The Examples: type-checking revisited

• Soundness of the inference system

w.r.t. op.sem of Hofmann-Jost
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