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Overview

◮ Cellular automata (ca) are descriptions of global dynamics in
terms of local transformations, applied at all points at the
same time.

◮ By their own nature, they are easy to implement on a
computer, and useful as tools for qualitative analysis of
dynamical systems.

◮ Their properties are also a very vast research field.
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Applications

◮ Population dynamics.

◮ Economics.

◮ Fluid dynamics.

◮ Simulations of geological phenomena.

◮ Symbolic dynamics.

◮ Approximation of differential equations.

◮ Screen savers.

◮ And many more...
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History

◮ von Neumann, 1950s:
mechanical model of self-reproduction

◮ Moore, 1962:
the Garden of Eden problem

◮ Hedlund, 1969:
shift dynamical system

◮ Richardson, 1972:
d-dimensional cellular automata

◮ Hardy, de Pazzis, Pomeau 1976:
lattice gas automata

◮ Amoroso and Patt, 1972; Kari, 1990:
the invertibility problem
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John von Neumann’s model of self reproduction

◮ An infinite square grid

◮ A finite number of states for each point of the grid

◮ A finite number of neighbors for each point of the grid

◮ An evolution law where the next state of each point only
depends on the current states of its neighbors
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Life is a Game

Ideated by John Horton Conway (1960s) popularized by Martin
Gardner.
The checkboard is an infinite square grid.
Each case of the checkboard is “surrounded” by those within a
chess’ king’s move, and can be “living” or “dead”.

1. A “dead” case surrounded by exactly three living cases,
becomes living.

2. A living case surrounded by two or three living cases, survives.

3. A living case surrounded by less than two living cases, dies of
isolation.

4. A living case surrounded by more than three living cases, dies
of overpopulation.
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Simple rule, complex behavior

The structures of the Game of Life can exhibit a wide range of
behaviors.
This is a glider, which repeats itself every four iterations, after
having moved:

Gliders can transmit information between regions of the
checkboard.
Actually, using gliders and other complex structures, any planar
circuit can be simulated inside the Game of Life.

Silvio Capobianco



Introduction
Facts

Results
Conclusions

Formalism
Parallels

On a more funny side, this is called the Cheshire cat:
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... because it vanishes...
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... and vanishes...
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... more...
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... and more...
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... until the smile alone cheers at us...
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... and at last, only a pawprint remains to tell it was there!
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The ingredients of a recipe

A cellular automaton (ca) is a quadruple A = 〈d , A,N , f 〉 where

◮ d > 0 is an integer—dimension

◮ A = {q1, . . . , qn} is a finite set—alphabet

◮ N = {n1, . . . , nk } is a finite subset of Z
d—neighborhood

◮ f : AN → A is a function—local map

Special neighborhoods are:

◮ the von Neumann neighborhood of radius r

vN(r) = {x ∈ Z
d :

∑d
i=1 |xi | ≤ r }

◮ the Moore neighborhood of radius r

M(r) = {x ∈ Z
d : max1≤i≤d |xi | ≤ r }
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For d = 2, this is von Neumann’s neighborhood vN(1)...
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and this is Moore’s neighborhood M(1).
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From local to global

A d-dimensional configuration is a map c : Z
d → A.

Let A = 〈d , A,N , f 〉 be a ca.

The map FA : AZ
d

→ AZ
d

defined by

(FA(c))(x) = f (c(x + n1), . . . , c(x + nk))

is the global evolution function.
We say that A is injective, surjective, etc. if FA is.
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Implementations

Given their distinctive features, ca are straightforward to
implement on a computer.
More difficult is to provide a general framework for ca.
Such frameworks often work on a torus instead of the full plane.

◮ Hardware
◮ CAM6 (Toffoli and Margolus, ca. 1985; expansion card for PC)
◮ CAM8 (Toffoli and Margolus, ca. 1990; external device for

SparcStation)

◮ Software
◮ JCASim (Weimar; in Java)
◮ SIMP (Bach and Toffoli; in Python)
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Wolfram’s classification of ca

Stephen Wolfram: pioneering and influential work on 1-D ca.
Four classes, depending on dynamics:

1. evolution leads to homogenous state

2. evolution leads to periodic structures

3. evolution leads to chaotic space-time patterns

4. evolution leads to complex localized structures

Wolfram’s classification is much of an “appeal to common sense”
and cannot, for example, identify universal computation.
A formalization was suggested by Culik and Yu—and proved to be
undecidable.
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Wolfram’s enumeration of 1D ca rules

Given a 1-dimensional, 2-state rule with neighborhood vN(1),

1. identify the sequence (x , y , z) ∈ {0, 1}vN(1) with the the binary
number xyz , and

2. associate to the rule f the number
∑7

j=0 2j f (j).

Exercise: compute Wolfram’s number for f (x , y , z) = x ⊕ z .
Hint:

x 1 1 1 1 0 0 0 0

y 1 1 0 0 1 1 0 0

z 1 0 1 0 1 0 1 0

f (x , y , z) 0 1 0 1 1 0 1 0
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Symbolic dynamics

Origins
◮ Hadamard, 1898:

geodesic flows on surfaces of negative curvature
◮ Morse and Hedlund, 1938:

trajectories as infinite words

Key ideas
◮ given a continuous dynamics on a space
◮ identify finitely many “gross-grained” aggregates
◮ and consider evolution of these via iteration of the dynamics
◮ Then infer properties of original dynamics via those of the

new one

Symbolic dynamics also considers ca—usually, calling them
“sliding block codes”—though possibly with different start and end
alphabets.
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Subshifts

The shift map σ : AZ → AZ is given by

(σ(w))(x) = w(x + 1) ∀x ∈ Z

The shift is continuous w.r.t. the distance defined as

if (x1)[−r,r ] = 6= (x2)[−r,r ] and (x1)[−r+,r−1] = (x2)[−r−1,r+1]

then d(x1, x2) = 2−r

A shift space (subshift) is an X ⊆ AZ which is

1. closed—in the sense that sequences in X converging in AZ

have their limit in X

2. shift-invariant

Fact X subshift, A ca ⇒ FA(X ) subshift
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Characterization of subshifts

The language of a subshift X is

L(X ) = {w ∈ A∗ | ∃x ∈ X | x = lwr }

Given F ⊆ A∗, let XF be the set of bi-infinite words that have no
factor in F .

1. XF is a subshift.

2. For every X ⊆ AZ there exists F ⊆ A∗ s.t. X = XF .

A shift of finite type (sft) is a subshift for which F can be chosen
finite.
Applications: data storage
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Sofic shifts

Fact For a subshift X ⊆ AZ the following are equivalent:

1. X is the image of a sft via a ca

2. X is the set of labelings of bi-infinite paths on some finite
labeled graph

3. L(X ) has finitely many successor sets

F(w) = {u ∈ A∗ | wu ∈ L(X )} , w ∈ L(X )

4. L(X ) is a factorial closed regular language

Such objects are called sofic shifts (from the Hebrew word meaning
“finite”)
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... and for d > 1?

Many of these concept extend naturally to higher dimension:

◮ patterns—i.e., d-dimensional words (rectangular, etc.)

◮ translations—i.e., shifts in several directions

◮ multi-dimensional subshifts

◮ finiteness of type in dimension d

◮ images of subshifts via ca

◮ multi-dimensional sft

◮ sofic shifts as images of sft via ca

◮ and many more...

though not all (e.g. sofic shifts presentations by labeled graphs)
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Hedlund’s theorem (1969)

Let X ⊆ AZ, Y ⊆ BZ be subshifts. Let F : X → Y .
The following are equivalent:

1. F is a ca global map

2. F is continuous and commutes with the shift

Reason why: AZ is compact w.r.t. metric d .
Note: true in arbitrary dimension, even if dynamics restricted to
subshift
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Cellular automata and Turing machines

Let T be a Turing machine with output alphabet Σ and set of
states ∆.
Construct A as follows:

1. d = 1

2. A = Σ × (∆ ∪ {no − head})

3. N = {−1, 0, 1}

4. f so that it reproduces
◮ the write operation of T on the first component, and
◮ the state update of T and the movement of T ’s head on the

right component.

Then A simulates T in real time, so that

(1-dimensional) ca are capable of universal computation
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One after another

1. Given Aj = 〈d , A,Nj , fj〉, j = 1, 2

2. put N = {x1 + x2 | x1 ∈ N1, x2 ∈ N2}

3. and define f : QN → Q as

f (α) = f1
(

. . . , f2(. . . , αn1,i+n2,j
, . . . , ), . . .

)

Then A = 〈d , A,N , f 〉 satisfies FA = FA1
◦ FA2

, so that

the class of ca with given dimension and alphabet
is a monoid under composition.
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Reversibility

A ca A is reversible if

1. A is invertible, and

2. F−1
A is the global evolution function of some ca.

Equivalently, A is reversible iff there exists A ′ s.t. both A ′ ◦A and
A ◦ A ′ are the identity cellular automaton.
This seems more than just existence of inverse global evolution
function.
Reversible ca are important in physical modelization because
Physics, at microscopical scale, is reversible.
Fact ca reversibility is r.e.
Reason why: try all ca until a composition of local functions
returns the “identity” f (c(x + n1), . . . , c(x + njk)) = c(x)
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Richardson’s reversibility principle(1972)

The following are equivalent:

1. A is reversible

2. A is bijective

Reason why: compactness and Hedlund’s theorem.
Thus, existence of inverse ca comes at no cost from existence of
inverse global evolution, so that

the class of reversible ca with given dimension and alphabet
is a group under composition.
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Reversible ca are universal

Theorem (Toffoli, 1977)
Every d-dimensional cellular automaton can be simulated by a
(d + 1)-dimensional reversible cellular automaton.
Theorem (Morita and Harao, 1989)
Reversible Turing machines can be simulated by 1-dimensional
reversible cellular automata.
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Gardens of Eden

A Garden of Eden (GoE) for a ca A is an object that has no
predecessor according to the global law of A.
This applies to both configurations and patterns, even if global law
is restricted to a subshift.
A GoE pattern is allowed for X and forbidden for FA(X ).
Lemma Suppose FA : X → X . The following are equivalent:

1. A has a GoE configuration

2. A has a GoE pattern

Reason why: compactness.
Corollary: ca surjectivity is co-r.e.
Reason why: try all patterns until one has no predecessors.
Note: still true if ca dynamics restricted to a subshift
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Moore-Myhill’s theorem (1962)

Two distinct patterns p1, p2 on the same support E are mutually
erasable (m.e.) for A if FA(c1) = FA(c2) whenever (ci )|E = pi and
(c1)|Zd\E = (c2)|Zd\E .
The following are equivalent:

1. A has a GoE pattern on AZ
d

2. A has two m.e. pattern on AZ
d

Reason why: the boundary of a hypercube grows “slower” than the
hypercube
Corollary: (Richardson’s lemma, 1972) injective ca are surjective
Caution: not true if ca dynamics restricted to arbitrary subshift
(Fiorenzi, 2000 even for d = 1)

Silvio Capobianco



Introduction
Facts

Results
Conclusions

Special features
Reversibility
Surjectivity

Moore-Myhill’s theorem (1962)

Two distinct patterns p1, p2 on the same support E are mutually
erasable (m.e.) for A if FA(c1) = FA(c2) whenever (ci )|E = pi and
(c1)|Zd\E = (c2)|Zd\E .
The following are equivalent:

1. A has a GoE pattern on AZ
d

2. A has two m.e. pattern on AZ
d

Reason why: the boundary of a hypercube grows “slower” than the
hypercube
Corollary: (Richardson’s lemma, 1972) injective ca are surjective
Caution: not true if ca dynamics restricted to arbitrary subshift
(Fiorenzi, 2000 even for d = 1)

Silvio Capobianco



Introduction
Facts

Results
Conclusions

Special features
Reversibility
Surjectivity

Moore-Myhill’s theorem (1962)

Two distinct patterns p1, p2 on the same support E are mutually
erasable (m.e.) for A if FA(c1) = FA(c2) whenever (ci )|E = pi and
(c1)|Zd\E = (c2)|Zd\E .
The following are equivalent:

1. A has a GoE pattern on AZ
d

2. A has two m.e. pattern on AZ
d

Reason why: the boundary of a hypercube grows “slower” than the
hypercube
Corollary: (Richardson’s lemma, 1972) injective ca are surjective
Caution: not true if ca dynamics restricted to arbitrary subshift
(Fiorenzi, 2000 even for d = 1)

Silvio Capobianco



Introduction
Facts

Results
Conclusions

Special features
Reversibility
Surjectivity

Wolfram’s rule 90 is surjective but not injective

Non-injectivity: put

c0(x) = 0 ∀x ∈ Z ; c1(x) = 1 ∀x ∈ Z

then F90(c0) = F90(c1) = c0.
Surjectivity:

1. for every a and k , the equation a ⊕ x = k has a unique
solution

2. for every b and k , the equation x ⊕ b = k has a unique
solution

Thus every configuration has exactly four predecessors for
Wolfram’s rule 90.
Is this just a case?
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The balancement theorem

Given A = 〈d , A,N , f 〉, U ⊆ Z
d , define FU : AU+N → AU as

(FU(p))(z) = f (p(z + n1), . . . , p(z + nk))

Theorem (Maruoka and Kimura, 1976) The following are
equivalent:

1. A is surjective

2. for every U ⊆ Z
d , any p : U → A has the same number of

FU -preimages

Reason why: Moore-Myhill’s theorem
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The invertibility problem

Let C be a class of cellular automata.
The invertibility problem for C states:

given an element A of C,
determine whether FA is invertible.

Meaning: invertibility of the global dynamics of any ca in C can be
inferred algorithmically by looking at its local description.
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Decidability of the invertibility problem

Theorem (Amoroso and Patt, 1972)
The invertibility problem for 1D ca is decidable.
Proof: rather convoluted, “should be adaptable to d > 1”.
Theorem (Kari, 1990)
The invertibility problem for 2D ca is undecidable.
Proof: by reduction from Hao Wang’s Tiling Problem.
Corollary: The invertibility problem for dD ca is undecidable for
all d ≥ 2.
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Which dynamics are ca dynamics?

Let F : X → X be a continuous dynamics on a compact space X .
Question: Can that dynamics be described by a ca?
That is:
Are there

◮ a one-to-one and onto correspondance θ between X and (a
subshift of) AG

◮ a ca A on AG

such that θ ◦ F = FA ◦ θ?
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Conjecture (Levin and Toffoli, 1980)

The following are equivalent:

1. (X , F ) has a presentation as a d-dimensional CA;

2. there exists a continuous action φ of Z
d on X such that

2.1 F commutes with φ and
2.2 a map π : X → A exists such that

if x1 6= x2

then π(φz(x1)) 6= π(φz(x2)) for some z ∈ Z
d

Rationale: evaluation at a point acts as an “observation at the
microscope”
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Theorem (Capobianco, 2004)

The following are equivalent:

1. (X , F ) has a presentation as a d-dimensional ca on some
subshift

2. the hypotheses of Levin and Toffoli’s conjecture hold.

Reason why: φ would take the role of the natural action.
But the natural action cannot tell AZ

d
from an arbitrary subshift.

Thus, the “completeness” requirement may not be satisfied.
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Other kinds of finitary descriptions

◮ Lattice gas automata operate via a two-phase discipline:

1. a many-to-many collision in the nodes
2. a reversible propagation along lines

◮ Block automata

1. subdivision of the space in blocksat each step
2. local map operates on the states of single blocks

Advantages: allow realizations with greater thermodynamical
efficiency
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Are ca dynamics block automata dynamics?

1. Kari, 1996:
YES for reversible ca if d ≤ 2

2. Durand-Lôse, 2001:
YES for reversible ca but a larger alphabet is required

3. Toffoli, Capobianco and Mentrasti, 2008:
NO if the ca is surjective but not reversible

So what about non-surjective ca?
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Theorem (Toffoli, Capobianco and Mentrasti, TCS 2008)

Any 1D non-surjective ca can be rewritten as a block automaton.
Reason why:

◮ non-surjective ca have GoE patterns

◮ by Fekete’s lemma, the number of GoE patterns grows
unbounded

◮ then, the state of large enough blocks can be compressed to
encode that of the boundary

... but what if d > 1?
Conjecture (TCM) YES
Reason to believe: by a generalization of Fekete’s lemma
(Capobianco,DMTCS 2008) the number of GoE patterns grows
faster than the number of patterns on the boundary
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A chaotic issue—and a possible solution

No translation invariant distance can induce the product topology.
Reason why: for that topology, the shift is a chaotic map
Idea: change the topology! (with some loss)
Define dB on {0, 1}Z as

dB(c1, c2) = lim sup
n→+∞

|{z ∈ [−n, n] | c1(z) 6= c2(z)}|

2n + 1

and
c1 ∼ c2 ⇔ dB(c1, c2) = 0

Then consider the Besicovitch space XB = AZ/ ∼.
This corresponds to the ultimate point of view of an observer
getting farther and farther from the grid.
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ca in Besicovitch space

If A is a ca, then
FB ([c ]∼) = [F (c)]∼

is well defined.
Moreover (Blanchard, Formenti, and Kurka, 1999) several
properties of A can be inferred from those of FB .
In particular, FA is surjective iff FB is.

Silvio Capobianco



Introduction
Facts

Results
Conclusions

ca dynamics
ca rewritings
ca surjectivity
ca generalizations

Besicovitch spaces in arbitrary dimension

Let {Un}n∈N satisfy

1. Un ⊆ Un+1 for all n

2.
⋃

n∈N
Un = Z

d

The quotient space XB of AZ
d

w.r.t.

c1 ∼ c2 ⇔ lim
n→∞

|{z ∈ Un | c1(z) 6= c2(z)}|

|Un|
= 0

is the Besicovitch space associate to {Un}.
XB is a metric space w.r.t. the Besicovitch distance

dB(x1, x2) = lim sup
n∈N

|{z ∈ Un | c1(z) 6= c2(z)}|

|Un|
, ci ∈ xi
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A Richardson-like theorem (Capobianco, JCA 2009)

Let A be a d-dimensional ca with alphabet A.
Let {Un} be the sequence of either von Neumann or Moore
neighborhoods of radius n.

1. The classes of dB are the same in either case.

2. dB is invariant by translations.

3. FA induces a Lipschitz continuous FB : XB → XB

4. A is surjective iff FB is.

5. If FB is injective, then it is surjective.
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Cayley graphs

Instead of Z
d , one can use such grids.

◮ Take a group G—even non-commutative

◮ together with a finite set S

◮ such that every g ∈ G “is” a word on S ∪ S−1

◮ and construct a graph Cay(G , S)

◮ whose nodes are the elements of G

◮ and an arc (g , h) exists iff g−1h ∈ S ∪ S−1
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Example with G = Z
2, S = {(1, 0), (0, 1)}

Silvio Capobianco



Introduction
Facts

Results
Conclusions

ca dynamics
ca rewritings
ca surjectivity
ca generalizations

Example with G = Z
2, S = {(1, 0), (0, 1), (1, 1)}
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ca on Cayley graphs

Then

1. one can define translations as (beware of order!)

(cg )(h) = c(gh)

2. each node has finitely many one-step neighbors

3. the “shape” of one-step neighborhood is the same for all
nodes

and it’s possible to define ca on such groups, via

(F (c))(g) = f (c(gn1), . . . , c(gnk))
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... and subshifts still exist

Simply define a pattern as a map p : E → A for some finite E ⊆ G .
p occurs in c iff (cg )|E = p for some g .
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Changes with respect to the “classical” setting

◮ Characterization of subshifts: holds

◮ Hedlund’s theorem: holds

◮ Reversibility principle: holds

◮ Translations are ca: holds only for some elements of the
group!

◮ Characterization of ca dynamics: holds

◮ Richardson’s lemma for the Besicovitch space: holds if group
and sequence are “good enough”
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Subshift extensions to larger groups

Suppose G ⊆ Γ .
Consider a set F of patterns over G .
Question: is there any relation between the subshifts defined by F
on AG and AΓ?
Question: and does the induced shift depend on F
Theorem (Capobianco, LATA 2008) Suppose Fi induce subshifts
Xi and Ξi and local maps fi induce ca Fi and Φi when considered
on G and Γ ,respectively. Then

F1(X1) ⊆ F2(X2) ⇔ Φ1(Ξ1) ⊆ Φ2(Ξ2)

Reason why: since the Fi and fi are “based on” G , dynamics on
AΓ can be “sliced” w.r.t. the left cosets of G .
Corollary: induced depends on subshift not on description
Corollary: a subshift induced by a sofic shift is sofic
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ca extensions to larger groups

As a consequence, ca extension to alarger group is always well
defined.
(Easier to visualize in d and d + d ′ dimensions.)
... but the abstract dynamics is usually not the same!
(Immediate if Γ is finite and G is proper.)
Theorem (Capobianco, LATA 2008)

1. The following properties are shared by original and induced
ca:

◮ injectivity
◮ surjectivity
◮ existence of m.e. patterns

2. Induced ca contains a copy of original

Corollary: by increasing the group (even up to isomorphisms)
and/or the alphabet, the class of ca dynamics grows.
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ca and semi-direct products

The semi-direct product of groups H and K by group
homomorphism τ : H → Aut(K ) is the group H ⋉τ K of pairs
(h, k) with the product

(h1, k1)(h2, k2) = (h1h2, τh2
(k1)k2)

Direct product is a special case when τh = idK∀h.
Example: the semi-direct product of Z2 and Z by

τ0(x) = x ; τ1(x) = −x .

is isomorphic to the infinite dihedral group

D∞ =
〈

a, b | a2 = (ab)2 = e
〉

Note: H ⋉τ K is f.g. if H and K are both.
Silvio Capobianco
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A “splitting” theorem (Capobianco, IJAC 2006)

Let H and K be f.g., G = H ⋉τ K .

1. If K is finite, any ca with alphabet A and group G can be
rewritten with alphabet AK and group H.

2. If H is finite, any ca with alphabet A and group G can be
rewritten with alphabet AH and group K .

3. Finiteness of type and soficityare preserved.

4. The transformations above are computable if the word
problem is decidable for both H and K .

Reason why: moving in a direction from the finite component
cannot take too far
Noteworthy because: the role of H and K is not symmetrical
Corollary: invertibility problem for complete ca on the group of
previous slide is decidable.

Silvio Capobianco
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Personal projects for the future

◮ Characterize dynamics presented by “complete” ca.

◮ Extend the “splitting” theorem to group extensions.
(Or: find a counterexample)

◮ Study the topological properties of XB and ca in many
dimensions.

◮ Explore feasibility of a ca variant of Noether’s theorem in
classical mechanics.

Silvio Capobianco
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For the interested

On the Web

◮ Cellular automata FAQ www.cafaq.com

◮ Jörg R. Weimar’s JCASim www.jweimar.de/jcasim/

◮ Stephen Wolfram’s articles
www.stephenwolfram.com/publications/articles/ca/

Compendia

◮ T. Toffoli, N. Margolus. Invertible cellular automata: A
review. Physica D 45 (1990) 229–253.

◮ J. Kari. Theory of cellular automata: A survey. Theor. Comp.

Sci. 334 (2005) 3–33.
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Thank you for your
attention!

Any questions?

Silvio Capobianco
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