Quotient Complexity of Regular Languages

Janusz Brzozowski

David R. Cheriton School of Computer Science

Tallinn University of Technology Tallinn, Estonia June 9, 2011

A (1) > A (1) > A

• Regular Languages

э

- Regular Languages
- Quotient Complexity

-∢ ≣ ▶

- Regular Languages
- Quotient Complexity
- State Complexity

< E

- Regular Languages
- Quotient Complexity
- State Complexity
- Upper Bounds on Complexity of Operations

- Regular Languages
- Quotient Complexity
- State Complexity
- Upper Bounds on Complexity of Operations
- Results

- Regular Languages
- Quotient Complexity
- State Complexity
- Upper Bounds on Complexity of Operations
- Results
- Conclusions

Regular Languages Quotient Complexity

State Complexity Upper Bounds on Complexity of Operations Results

- Alphabet Σ a finite set of letters
- Set of all words Σ^* free monoid generated by Σ
- Empty word ε
- Language $L \subseteq \Sigma^*$

< ロ > < 同 > < 三 > < 三

Operations on Languages

- complement $\overline{L} = \Sigma^* \setminus L$
- union $K \cup L$ intersection $K \cap L$
- difference $K \setminus L$ symmetric difference $K \oplus L$
- general binary boolean operation $K \circ L$

▲ @ ▶ ▲ @ ▶ ▲

Operations on Languages

- complement $\overline{L} = \Sigma^* \setminus L$
- union $K \cup L$ intersection $K \cap L$
- difference $K \setminus L$ symmetric difference $K \oplus L$
- general binary boolean operation $K \circ L$

• product or (con)catenation,

$$K \cdot L = \{w \in \Sigma^* \mid w = uv, u \in K, v \in L\}$$

• star $K^* = \bigcup_{i \ge 0} K^i$ positive closure $K^+ = \bigcup_{i \ge 1} K^i$
• reverse L^R $\varepsilon^R = \varepsilon$, $(wa)^R = aw^R$

Regular or Rational Languages

- basic languages $\{\emptyset, \{\varepsilon\}\} \cup \{\{a\} \mid a \in \Sigma\}$
- use a finite number of rational operations \cup , \cdot , *, (-)

- **(())) (())) ())**

Regular or Rational Languages

- basic languages $\{\emptyset, \{\varepsilon\}\} \cup \{\{a\} \mid a \in \Sigma\}$
- use a finite number of rational operations \cup , \cdot , *, (-)
- Notation clumsy $L = (\{\varepsilon\} \cup \{a\})^* \cdot \{b\}$
- Free algebra over $\{\varepsilon, \emptyset\} \cup \Sigma$ with function symbols $\cup, \ \cdot, \ ^*$
- Use regular expression $E = (\varepsilon \cup a)^* \cdot b$

- < 同 > < 三 > < 三 >

Regular or Rational Languages

- basic languages $\{\emptyset, \{\varepsilon\}\} \cup \{\{a\} \mid a \in \Sigma\}$
- use a finite number of rational operations \cup , \cdot , *, (-)
- Notation clumsy $L = (\{\varepsilon\} \cup \{a\})^* \cdot \{b\}$
- Free algebra over $\{\varepsilon, \emptyset\} \cup \Sigma$ with function symbols $\cup, \ \cdot, \ ^*$
- Use regular expression $E = (\varepsilon \cup a)^* \cdot b$
- \bullet Mapping ${\cal L}$ from free algebra to regular languages

•
$$\mathcal{L}(\emptyset) = \emptyset$$
, $\mathcal{L}(\varepsilon) = \{\varepsilon\}$, $\mathcal{L}(a) = \{a\}$

- $\mathcal{L}(E \cup F) = \mathcal{L}(E) \cup \mathcal{L}(F)$
- $\mathcal{L}(E \cdot F) = \mathcal{L}(E) \cdot \mathcal{L}(F), \quad \mathcal{L}(E^*) = (\mathcal{L}(E))^*$

Quotient Complexity of a Language

Left quotient, or quotient of a language L by a word w
The language L_w = {x ∈ Σ* | wx ∈ L}

< ロ > < 同 > < 三 > < 三

Quotient Complexity of a Language

- Left quotient, or quotient of a language L by a word w
- The language $L_w = \{x \in \Sigma^* \mid wx \in L\}$
- The quotient complexity of *L* is the number of quotients of *L*
- Denoted by $\kappa(L)$ (kappa for both kwotient and komplexity)
- $\kappa(L)$ defined for any language, and may be finite or infinite

▲ □ ▶ ▲ □ ▶ ▲

Quotient Complexity of a Language

- Left quotient, or quotient of a language L by a word w
- The language $L_w = \{x \in \Sigma^* \mid wx \in L\}$
- The quotient complexity of *L* is the number of quotients of *L*
- Denoted by $\kappa(L)$ (kappa for both kwotient and komplexity)
- $\kappa(L)$ defined for any language, and may be finite or infinite

Example

• Example: $\Sigma = \{a, b\}, L = a\Sigma^* \quad \kappa(L) = 3$

•
$$L_{\varepsilon} = L$$

•
$$L_a = \Sigma^* = L_{aa} = L_{ab}$$

•
$$L_b = \emptyset = L_{ba} = L_{bb}$$

Finding Quotients: The ε -Function

Does L contain the empty word?

$$x^{\varepsilon} = \begin{cases} \emptyset, & \text{if } x = \emptyset, \text{ or } x \in \Sigma; \\ \varepsilon, & \text{if } x = \varepsilon \end{cases}$$
$$(\overline{L})^{\varepsilon} = \begin{cases} \emptyset, & \text{if } L^{\varepsilon} = \varepsilon; \\ \varepsilon, & \text{if } L^{\varepsilon} = \emptyset \end{cases}$$

Finding Quotients: The ε -Function

Does L contain the empty word?

$$x^{\varepsilon} = \begin{cases} \emptyset, & \text{if } x = \emptyset, \text{ or } x \in \Sigma; \\ \varepsilon, & \text{if } x = \varepsilon \end{cases}$$
$$(\overline{L})^{\varepsilon} = \begin{cases} \emptyset, & \text{if } L^{\varepsilon} = \varepsilon; \\ \varepsilon, & \text{if } L^{\varepsilon} = \emptyset \end{cases}$$

$$(K \cup L)^{\varepsilon} = K^{\varepsilon} \cup L^{\varepsilon}$$
$$(KL)^{\varepsilon} = K^{\varepsilon} \cap L^{\varepsilon}$$
$$(L^{*})^{\varepsilon} = \varepsilon$$

Janusz Brzozowski Quotient Complexity of Regular Languages

Quotient by a Letter

$$x_a = \begin{cases} \emptyset, & \text{if } x \in \{\emptyset, \varepsilon\}, \text{ or } x \in \Sigma \text{ and } x \neq a;\\ \varepsilon, & \text{if } x = a \end{cases}$$

▲□→ ▲ □→ ▲ □

э

Quotient by a Letter

$$x_a = \begin{cases} \emptyset, & \text{if } x \in \{\emptyset, \varepsilon\}, \text{ or } x \in \Sigma \text{ and } x \neq a;\\ \varepsilon, & \text{if } x = a \end{cases}$$

$$(\overline{L})_{a} = \overline{(L_{a})}$$
$$(K \cup L)_{a} = K_{a} \cup L_{a}$$
$$(KL)_{a} = K_{a}L \cup K^{\varepsilon}L_{a}$$
$$(L^{*})_{a} = L_{a}L^{*}$$

æ

Quotient by a Word

$$\begin{array}{rcl} L_{\varepsilon} & = & L \\ L_{w} & = & L_{a}, \mbox{ if } w = a \in \Sigma \\ L_{wa} & = & (L_{w})_{a} \end{array}$$

- * @ * * 注 * * 注

э

Quotient by a Word

$$\begin{array}{rcl} L_{\varepsilon} & = & L \\ L_{w} & = & L_{a}, \mbox{ if } w = a \in \Sigma \\ L_{wa} & = & (L_{w})_{a} \end{array}$$

- Calculating quotients, we get expressions called derivatives
- There is an infinite number of distinct derivatives

Quotient by a Word

$$L_{\varepsilon} = L$$

$$L_{w} = L_{a}, \text{ if } w = a \in \Sigma$$

$$L_{wa} = (L_{w})_{a}$$

- Calculating quotients, we get expressions called derivatives
- There is an infinite number of distinct derivatives

Example

$$(a^*)_a = (a)_a a^* = \varepsilon a^*$$
$$(a^*)_{aa} = (\varepsilon a^*)_a = \varepsilon_a a^* \cup \varepsilon (a^*)_a = \emptyset a^* \cup \varepsilon (\varepsilon a^*), \text{ etc.}$$

イロト イポト イヨト イヨト

э

Similarity Laws

$$L \cup L = L$$

$$K \cup L = L \cup K$$

$$K \cup (L \cup M) = (K \cup L) \cup M$$

$$L \cup \emptyset = L$$

$$L\emptyset = \emptyset L = \emptyset$$

$$L\varepsilon = \varepsilon L = L$$

Janusz Brzozowski Quotient Complexity of Regular Languages

<ロ> <同> <同> < 回> < 回>

э

Quotients, Equations, Automata

Example

• Example:
$$\Sigma = \{a, b\}, L = a\Sigma^{2}$$

•
$$L_{\varepsilon} = l$$

•
$$L_a = \Sigma^* = L_{aa} = L_{ab}$$

•
$$L_b = \emptyset = L_{ba} = L_{bb}$$

Quotients, Equations, Automata

Example

• Example:
$$\Sigma = \{a, b\}, L = a\Sigma^*$$

• $L_{\varepsilon} = L$
• $L_a = \Sigma^* = L_{aa} = L_{ab}$
• $L_b = \emptyset = L_{ba} = L_{bb}$
 $L = aL_a \cup bL_b,$
 $L_a = aL_a \cup bL_a \cup \varepsilon,$
 $L_b = aL_b \cup bL_b.$

Quotients, Equations, Automata

Example

$$L_a = aL_a \cup bL_a \cup \varepsilon,$$

$$L_b = aL_b \cup bL_b.$$

Extended Regular Expressions

Example $(L = \Sigma^* a \Sigma^* \cap \overline{\Sigma^* b b \Sigma^*})$

•
$$L_{\varepsilon} = L$$
 $L_{a} = \overline{\Sigma^{*}bb\Sigma^{*}}$

•
$$L_b = \Sigma^* a \Sigma^* \cap \overline{\Sigma^* b b \Sigma^* \cup b \Sigma^*}$$
 $L_{aa} = L_a$

•
$$L_{ab} = \overline{\Sigma^* bb \Sigma^* \cup b\Sigma^*}$$
 $L_{ba} = \overline{\Sigma^* bb \Sigma^*} = L_a$

•
$$L_{bb} = \emptyset$$
 $L_{aba} = L_a$ $L_{abb} = \emptyset$

A (1) > A (1) > A

Extended Regular Expressions

Example $(L = \Sigma^* a \Sigma^* \cap \overline{\Sigma^* b b \Sigma^*})$

•
$$L_{\varepsilon} = L$$
 $L_{a} = \overline{\Sigma^{*}bb\Sigma^{*}}$
• $L_{b} = \Sigma^{*}a\Sigma^{*} \cap \overline{\Sigma^{*}bb\Sigma^{*}} \cup b\overline{\Sigma^{*}}$ $L_{aa} = L_{a}$
• $L_{ab} = \overline{\Sigma^{*}bb\Sigma^{*}} \cup b\overline{\Sigma^{*}}$ $L_{ba} = \overline{\Sigma^{*}bb\Sigma^{*}} =$
• $L_{bb} = \emptyset$ $L_{aba} = L_{a}$ $L_{abb} = \emptyset$
 $L = aL_{a} \cup bL_{b},$

$$L_{a} = aL_{a} \cup bL_{ab} \cup \varepsilon,$$

$$L_{b} = aL_{a} \cup b\emptyset,$$

$$L_{ab} = aL_{a} \cup b\emptyset$$

La

▲□ ► < □ ► </p>

Solving Equations $X = AX \cup B \Longrightarrow X = A^*B$

Example $(L = \Sigma^* a \Sigma^* \cap \overline{\Sigma^* b b \Sigma^*})$

$$L = aL_a \cup bL_b$$

$$L_a = aL_a \cup bL_{ab} \cup \varepsilon$$

$$L_b = aL_a \cup b\emptyset$$

$$L_{ab} = aL_a \cup b\emptyset$$

< □ > < □ > < □

Solving Equations $X = AX \cup B \Longrightarrow X = A^*B$

Example $(L = \Sigma^* a \Sigma^* \cap \overline{\Sigma^* b b \Sigma^*})$

$$L = aL_a \cup bL_b$$

$$L_a = aL_a \cup bL_{ab} \cup e$$

$$L_b = aL_a \cup b\emptyset$$

$$L_{ab} = aL_a \cup b\emptyset$$

$$L = aL_a \cup bL_b$$

$$L_a = aL_a \cup bL_b \cup e$$

$$L_b = aL_a \cup b\emptyset$$

< ロ > < 同 > < 三 > < 三

Solving Equations $X = AX \cup B \Longrightarrow X = A^*B$

Example $(L = \Sigma^* a \Sigma^* \cap \overline{\Sigma^* b b \Sigma^*})$

 $L = aL_a \cup bL_b$ $L_a = aL_a \cup bL_{ab} \cup \varepsilon$ $L_b = aL_a \cup b\emptyset$ $L_{ab} = aL_a \cup b\emptyset$ $L = aL_a \cup bL_b$ $L_a = aL_a \cup bL_b \cup \varepsilon$ $L_b = aL_a \cup b\emptyset$

$$L = (a \cup ba)L_a$$

$$L_a = (a \cup ba)L_a \cup \varepsilon = (a \cup ba)^*$$

$$L = (a \cup ba)(a \cup ba)^*$$

Automata

Deterministic finite automaton DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$

- Q set of states
- $\delta: Q \times \Sigma \rightarrow Q$ transition function
- q₀ initial state
- $F \subseteq Q$ set of final or accepting states

Automata

Deterministic finite automaton DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$

- Q set of states
- $\delta: Q \times \Sigma \rightarrow Q$ transition function
- q₀ initial state
- $F \subseteq Q$ set of final or accepting states

Nondeterministic finite automaton NFA $\mathcal{N} = (Q, \Sigma, \delta, I, F)$

- Q set of states
- $\delta: Q \times \Sigma \to 2^Q$ transition function
- I set of initial states
- $F \subseteq Q$ set of final or accepting states

Quotient Automaton

DFA
$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$

•
$$Q = \{L_w \mid w \in \Sigma^*\}$$

•
$$\delta(L_w, a) = L_{wa}$$

•
$$q_0 = L_{\varepsilon} = L$$

•
$$F = \{L_w \mid \varepsilon \in L_w\}$$
 accepting or final quotients

イロト イポト イヨト イヨ

э

Quotient Automaton

DFA
$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$

•
$$Q = \{L_w \mid w \in \Sigma^*\}$$

•
$$\delta(L_w, a) = L_{wa}$$

•
$$q_0 = L_{\varepsilon} = L$$

•
$$F = \{L_w \mid \varepsilon \in L_w\}$$
 accepting or final quotients

L is recognizable if and only if the number of quotients is finite (Nerode, 1958; Brzozowski, 1962)

State Complexity

State complexity of L is the number of states in the minimal DFA recognizing L

< ロ > < 同 > < 三 > < 三

State Complexity

State complexity of L is the number of states in the minimal DFA recognizing L

• Why define the complexity of a language by the size of its automaton, a different object?

State Complexity

State complexity of L is the number of states in the minimal DFA recognizing L

- Why define the complexity of a language by the size of its automaton, a different object?
- Quotient DFA of L is isomorphic to the minimal DFA of L

State Complexity

State complexity of L is the number of states in the minimal DFA recognizing L

- Why define the complexity of a language by the size of its automaton, a different object?
- Quotient DFA of L is isomorphic to the minimal DFA of L
- State complexity = quotient complexity

State Complexity

State complexity of L is the number of states in the minimal DFA recognizing L

- Why define the complexity of a language by the size of its automaton, a different object?
- Quotient DFA of L is isomorphic to the minimal DFA of L
- State complexity = quotient complexity
- Quotient complexity is more natural

State Complexity

State complexity of L is the number of states in the minimal DFA recognizing L

- Why define the complexity of a language by the size of its automaton, a different object?
- Quotient DFA of L is isomorphic to the minimal DFA of L
- State complexity = quotient complexity
- Quotient complexity is more natural
- Quotients have some advantages

Complexity of Operations

- A subclass C of regular languages
- $L_1, \ldots, L_k \in C$ with quotient complexities n_1, \ldots, n_k
- A k-ary operation f on L_1, \ldots, L_k
- Quotient complexity of $f(L_1, \ldots, L_k)$
- Quotient complexity of f in C is the worst case quotient complexity of f(L₁,...,L_k) as L₁,...,L_k range over C
- A function of n_1, \ldots, n_k

A (1) > A (1) > A

Complexity of Operations

- A subclass $\mathcal C$ of regular languages
- $L_1, \ldots, L_k \in C$ with quotient complexities n_1, \ldots, n_k
- A k-ary operation f on L_1, \ldots, L_k
- Quotient complexity of $f(L_1, \ldots, L_k)$
- Quotient complexity of f in C is the worst case quotient complexity of f(L₁,...,L_k) as L₁,...,L_k range over C
- A function of n_1, \ldots, n_k

- Regular languages K and L with $\kappa(K) = m$, $\kappa(L) = n$
- Union: $\kappa(K \cup L) \leq mn$
- Complement: $\kappa(\overline{L}) = \kappa(L) = n$

Some Early Work on State Complexity

- 1957, Rabin and Scott: upper bound of mn for intersection
- 1962, Brzozowski: upper bounds for union, product and star
- 1963, Lupanov: NFA to DFA conversion bound of 2^n is tight
- 1964, Lyubich: unary case
- 1966, Mirkin: 2ⁿ bound for reversal is attainable
- 1970, Maslov: examples meeting bounds for union, concatenation, star and other operations
- 1971, Moore: NFA to DFA conversion bound of 2ⁿ is tight (rediscovered)

A (1) > A (1) > A

Some Early Work on State Complexity

- 1957, Rabin and Scott: upper bound of mn for intersection
- 1962, Brzozowski: upper bounds for union, product and star
- 1963, Lupanov: NFA to DFA conversion bound of 2^n is tight
- 1964, Lyubich: unary case
- 1966, Mirkin: 2ⁿ bound for reversal is attainable
- 1970, Maslov: examples meeting bounds for union, concatenation, star and other operations
- 1971, Moore: NFA to DFA conversion bound of 2ⁿ is tight (rediscovered)

Renewed interest

- 1991, Birget: "state complexity"
- 1994, Yu, Zhuang, K. Salomaa: complexity of operations

Upper Bounds Using Automata

• Given automata \mathcal{A} , \mathcal{B} of languages K, L, find $\kappa(f(K,L))$

Upper Bounds Using Automata

- Given automata \mathcal{A} , \mathcal{B} of languages K, L, find $\kappa(f(K,L))$
- Check if automata "complete"

Upper Bounds Using Automata

- Given automata \mathcal{A} , \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?

Upper Bounds Using Automata

- Given automata \mathcal{A} , \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?

Upper Bounds Using Automata

- Given automata \mathcal{A} , \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?

Upper Bounds Using Automata

- Given automata \mathcal{A} , \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?

• Construct DFA for f(K, L) directly

▲ □ ▶ ▲ 三 ▶ ▲

Upper Bounds Using Automata

- Given automata \mathcal{A} , \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?
- Construct DFA for f(K, L) directly
- Construct NFA, convert to DFA

▲ □ ▶ ▲ 三 ▶ ▲

Upper Bounds Using Automata

- Given automata \mathcal{A} , \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?
- Construct DFA for f(K, L) directly
- Construct NFA, convert to DFA
- Use NFA with ε transitions

4 A N 4 B N

Upper Bounds Using Automata

- Given automata \mathcal{A} , \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?
- Construct DFA for f(K, L) directly
- Construct NFA, convert to DFA
- Use NFA with ε transitions
- Use NFA with multiple initial states

Upper Bounds Using Automata

- Given automata \mathcal{A} , \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?
- Construct DFA for f(K, L) directly
- Construct NFA, convert to DFA
- Use NFA with ε transitions
- Use NFA with multiple initial states

Upper Bounds Using Automata

- Given automata \mathcal{A} , \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?
- Construct DFA for f(K, L) directly
- Construct NFA, convert to DFA
- Use NFA with ε transitions
- Use NFA with multiple initial states

• There is an alternative: Quotient complexity

Formulas for Boolean Operations and Product

Theorem

If K and L are regular expressions, then

$$(\overline{L})_w = \overline{L_w}$$

$$(\mathcal{K} \circ \mathcal{L})_{w} = \mathcal{K}_{w} \circ \mathcal{L}_{w}$$
$$(\mathcal{K}\mathcal{L})_{w} = \mathcal{K}_{w}\mathcal{L} \cup \mathcal{K}^{\varepsilon}\mathcal{L}_{w} \cup \left(\bigcup_{w \in \mathcal{U}^{+} \\ u, v \in \Sigma^{+}}} \mathcal{K}^{\varepsilon}_{u}\mathcal{L}_{v}\right)$$

- ∢ ≣ ▶

Example Formula for Product: $(KL)_w = K_w L \cup K^{\varepsilon} L_w \cup \left(\bigcup_{\substack{w=uv\\u,v \in \Sigma^+}} K_u^{\varepsilon} L_v \right)$

Example

•
$$\kappa(G) = n$$

•
$$(\Sigma^*G)_w = \Sigma^*G \cup G_w \cup \bigcup_{w=uv} G_v$$

- G is always present on the right-hand side
- At most 2^{n-1} subsets of quotients to be added to Σ^*G

•
$$\kappa(\Sigma^*G) \leq 2^{n-1}$$

A (10) > A (10) > A (10)

Formula for Star

Theorem

For the empty word

$$(L^*)_{\varepsilon} = \varepsilon \cup LL^*$$

and for $w \in \Sigma^+$

$$(L^*)_w = \left(L_w \cup \bigcup_{w=uv \ u,v\in\Sigma^+} (L^*)^{\varepsilon}_u L_v
ight) L^*$$

< ロ > < 同 > < 三 > < 三

э

Quotient Formulas

All you have to do is count!

Janusz Brzozowski Quotient Complexity of Regular Languages

Upper bounds for operations

Theorem

For any languages K and L with $\kappa(K) = m$ and $\kappa(L) = n$,

- $\kappa(\overline{L}) = n$. $\kappa(K \circ L) \leq mn$.
- If K (L) has k (ℓ) accepting quotients, then
 - If k = 0 or $\ell = 0$, then $\kappa(KL) = 1$.
 - If $k, \ell > 0$ and n = 1, then $\kappa(KL) \leq m (k 1)$.
 - If $k, \ell > 0$ and n > 1, then $\kappa(KL) \le m2^n k2^{n-1}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Upper bounds for operations

Theorem

For any languages K and L with $\kappa(K) = m$ and $\kappa(L) = n$,

- $\kappa(\overline{L}) = n$. $\kappa(K \circ L) \leq mn$.
- If K (L) has k (ℓ) accepting quotients, then
 - If k = 0 or $\ell = 0$, then $\kappa(KL) = 1$.
 - If $k, \ell > 0$ and n = 1, then $\kappa(KL) \leq m (k 1)$.
 - If $k, \ell > 0$ and n > 1, then $\kappa(KL) \le m2^n k2^{n-1}$.

Claim for boolean operations is obvious since $(\overline{L})_w = \overline{L_w}$ and $(K \cup L)_w = K_w \cup L_w$

- 4 同 6 - 4 三 6 - 4 三 6

Proof for product $(KL)_w = K_w L \cup K^{\varepsilon} L_w \cup (\bigcup_{u \neq \varepsilon \Sigma^+} K^{\varepsilon}_u L_v)$

- if k = 0 or $\ell = 0$, then $KL = \emptyset$ and $\kappa(KL) = 1$
- If k, l > 0, n = 1, then $L = \Sigma^*$ and $w \in K \Rightarrow (KL)_w = \Sigma^*$
- All k accepting quotients of K produce Σ^* in KL (1)
- For each rejecting quotient of K, we have two choices for the union of quotients of L: the empty union or Σ*
- If we choose the empty union, at most m k quotients of KL
- Choosing Σ^* results in $(KL)_w = \Sigma^*$, which has been counted
- Altogether, there are at most 1 + m k quotients of KL

- **(())) (())) ())**

Proof for product $(KL)_w = K_w L \cup K^{\varepsilon} L_w \cup (\bigcup_{w=uv \ u,v \in \Sigma^+} K^{\varepsilon}_u L_v)$

• k, l > 0 and n > 1

- If w ∉ K, then we can choose K_w in m − k ways, and the union of quotients of L in 2ⁿ ways
- If w ∈ K, then we can choose K_w in k ways, and the set of quotients of L in 2ⁿ⁻¹ ways, since L is then always present
- Thus we have $(m-k)2^n + k2^{n-1}$

Star

Let
$$M = L^*$$
, $w \neq \varepsilon$
 $M_w = (L_w \cup M_w^{\varepsilon} L \cup \bigcup_{u,v \in \Sigma^+} M_u^{\varepsilon} L_v)M$

Theorem

- If n = 1, then $\kappa(L^*) \le 2$.
- If n > 1 and only L_{ε} accepts, then $\kappa(L^*) = n$.
- If n > 1 and L has l > 0 accepting quotients $\neq L$, then $\kappa(L^*) \leq 2^{n-1} + 2^{n-l-1}$.

(日) (同) (三) (三)

Witnesses to bounds

- This is a challenging problem
- Take a guess
- How do you prove the guess meets the bound?
- Use quotients, of course!

Witnesses to bounds

Example

• Symmetric difference, $K \oplus L$

・日・ ・ モ ・ ・ モ ・

Witnesses to bounds

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$

Witnesses to bounds

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \le i \le m-1$, $0 \le j \le n-1$

Witnesses to bounds

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \le i \le m-1$, $0 \le j \le n-1$

• Let
$$x = a^i b^j$$
 and $y = a^k b^\ell$

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \le i \le m-1$, $0 \le j \le n-1$
- Let $x = a^i b^j$ and $y = a^k b^\ell$

• If
$$i < k$$
, let $u = a^{m-1-k}b^n$

< 17 ×

I = ≥

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \le i \le m-1$, $0 \le j \le n-1$
- Let $x = a^i b^j$ and $y = a^k b^\ell$
- If i < k, let $u = a^{m-1-k}b^n$
- xu not full of a's, is full of b's, yu full of a's and b's

< 17 ×

< = >

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \le i \le m-1$, $0 \le j \le n-1$
- Let $x = a^i b^j$ and $y = a^k b^\ell$
- If i < k, let $u = a^{m-1-k}b^n$
- xu not full of a's, is full of b's, yu full of a's and b's
- Then $xu \notin K$, $yu \in K$, and $xu, yu \in L$

< 17 ×

< = >

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \le i \le m-1$, $0 \le j \le n-1$
- Let $x = a^i b^j$ and $y = a^k b^\ell$
- If i < k, let $u = a^{m-1-k}b^n$
- xu not full of a's, is full of b's, yu full of a's and b's
- Then $xu \notin K$, $yu \in K$, and $xu, yu \in L$
- $xu \in K \oplus L$, and $yu \notin K \oplus L$, *i.e.*, $(K \oplus L)_x \neq (K \oplus L)_y$

< 17 ×

< = >

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \le i \le m-1$, $0 \le j \le n-1$
- Let $x = a^i b^j$ and $y = a^k b^\ell$
- If i < k, let $u = a^{m-1-k}b^n$
- xu not full of a's, is full of b's, yu full of a's and b's
- Then $xu \notin K$, $yu \in K$, and $xu, yu \in L$
- $xu \in K \oplus L$, and $yu \notin K \oplus L$, *i.e.*, $(K \oplus L)_x \neq (K \oplus L)_y$
- Case $j < \ell$ is similar

< 17 ×

.≡ >

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \le i \le m-1$, $0 \le j \le n-1$
- Let $x = a^i b^j$ and $y = a^k b^\ell$
- If i < k, let $u = a^{m-1-k}b^n$
- xu not full of a's, is full of b's, yu full of a's and b's
- Then $xu \notin K$, $yu \in K$, and $xu, yu \in L$
- $xu \in K \oplus L$, and $yu \notin K \oplus L$, *i.e.*, $(K \oplus L)_x \neq (K \oplus L)_y$
- Case $j < \ell$ is similar
- All quotients of $K \oplus L$ by these *mn* words are distinct

Recent work on quotient complexity

- TCS 1994: Yu, Zhuang, K. Salomaa: regular languages (state complexity)
- WIA 2001, Câmpeanu, Culik, Salomaa, Yu: finite languages
- DCFS 2009: Brzozowski: regular languages (quotients)
- TCS 2009: Han Salomaa: suffix-free languages
- 2009: Han, Salomaa, Wood: prefix-free languages
- LATIN 2010, Brzozowski, Jirásková, Li: ideal languages
- CSR 2010, Brzozowski, Jirásková, Zou: closed languages
- AFL 2011, Brzozowski, Liu: star-free languages
- AFL 2011, Brzozowski, Jirásková, Li, Smith: bifix-, factor-, subword-free languages

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Prefixes, Suffixes, Factors and Subwords

• w = uv u is a prefix of w

Janusz Brzozowski Quotient Complexity of Regular Languages

▲□ ► ▲ □ ► ▲ □

Prefixes, Suffixes, Factors and Subwords

- w = uv u is a prefix of w
- üks is a prefix of üksteist

A (1) > A (1) > A

Prefixes, Suffixes, Factors and Subwords

- w = uv u is a prefix of w
- üks is a prefix of üksteist
- w = uv v is a suffix of w

A (1) > A (1) > A

Prefixes, Suffixes, Factors and Subwords

- w = uv u is a prefix of w
- üks is a prefix of üksteist
- w = uv v is a suffix of w
- päev is suffix of laupäev

Prefixes, Suffixes, Factors and Subwords

- w = uv u is a prefix of w
- üks is a prefix of üksteist
- w = uv v is a suffix of w
- päev is suffix of laupäev
- w = uxv x is a factor of w

Prefixes, Suffixes, Factors and Subwords

- w = uv u is a prefix of w
- üks is a prefix of üksteist
- w = uv v is a suffix of w
- päev is suffix of laupäev
- w = uxv x is a factor of w
- serv is a factor of konservatiivsus

Prefixes, Suffixes, Factors and Subwords

- w = uv u is a prefix of w
- üks is a prefix of üksteist
- w = uv v is a suffix of w
- päev is suffix of laupäev
- w = uxv x is a factor of w
- serv is a factor of konservatiivsus
- $w = w_0 a_0 w_1 a_1 \cdots a_n w_n$ $a_0 \cdots a_n$ is a subword of w

Prefixes, Suffixes, Factors and Subwords

- w = uv u is a prefix of w
- üks is a prefix of üksteist
- w = uv v is a suffix of w
- päev is suffix of laupäev
- w = uxv x is a factor of w
- serv is a factor of konservatiivsus
- $w = w_0 a_0 w_1 a_1 \cdots a_n w_n$ $a_0 \cdots a_n$ is a subword of w
- kaks is a subword of kaheksa

Convex Languages

- A language L is prefix-convex if u is a prefix of v, v is a prefix of w and u, w ∈ L implies v ∈ L
- L is prefix-closed if u is a prefix of v and $v \in L$ implies u in L
- L is converse prefix-closed if u is a prefix of v, and u ∈ L implies v ∈ L right ideal
- L is prefix-free if $u \neq v$ is a prefix of v and $v \in L$ implies $u \notin L$ prefix code

A □ > A □ > A

Convex Languages

- A language L is prefix-convex if u is a prefix of v, v is a prefix of w and u, w ∈ L implies v ∈ L
- L is prefix-closed if u is a prefix of v and $v \in L$ implies u in L
- L is converse prefix-closed if u is a prefix of v, and u ∈ L implies v ∈ L right ideal
- L is prefix-free if u ≠ v is a prefix of v and v ∈ L implies u ∉ L prefix code
- *L* is suffix-convex
- L is factor-convex
- L is subword-convex
- L is bifix-convex

Closed Languages

- L is prefix-closed
- L is suffix-closed
- L is factor-closed
- L is subword-closed
- L is bifix-closed if it is both prefix- and suffix-closed if and only if it is factor closed

/⊒ > < ∃ >

Ideal Languages

L is nonempty

- Right ideal $L = L\Sigma^*$
- Left ideal $L = \Sigma^* L$
- Two-sided ideal $L = \Sigma^* L \Sigma^*$
- All-sided ideal $L = \Sigma^* \sqcup L$

A (1) > A (1) > A

Ideal Languages

L is nonempty

- Right ideal $L = L\Sigma^*$
- Left ideal $L = \Sigma^* L$
- Two-sided ideal $L = \Sigma^* L \Sigma^*$
- All-sided ideal $L = \Sigma^* \sqcup L$

• Shuffle: let
$$w = a_1 a_2 \cdots a_k$$
, $a_i \in \Sigma$
 $\Sigma^* \sqcup w = \Sigma^* \sqcup (a_1 a_2 \cdots a_k) = \Sigma^* a_1 \Sigma^* a_2 \Sigma^* \cdots \Sigma^* a_k \Sigma^*$
 $\Sigma^* \sqcup L = \bigcup_{w \in L} (\Sigma^* \sqcup w)$

▲□▶ ▲ □▶ ▲ □

- *L* is prefix-free:
- *L* is suffix-free
- L is factor-free
- L is subword-free
- L is bifix-free if it is both prefix- and suffix-free

Star-Free Languages

(1日) (1日) (1日)

э

Star-Free Languages

• The smallest class of languages containing finite languages and closed under boolean operations and product

Tight Upper Bounds for Union $(|\Sigma|)$

- *mn* regular (2), star-free (2), prefix-, factor-, subword-closed (2), suffix-closed (4), left ideal (4)
- mn 2 prefix-free (2)
- mn (m + n 2) suffix-free (2), right, two-sided, all-sided ideal (2)
- mn (m + n) bifix-, factor-free (3), subword-free (m + n 3), finite (mn 2(m + n) + 5)
- max(m, n) free unary, closed unary
- min(m, n) ideal unary

Similar results for intersection, difference, symmetric difference

(日) (同) (三) (三)

Tight Upper Bounds for Product $(|\Sigma|)$

- $(m-1)2^n + 2^{n-1}$ regular (2), star-free (4)
- $(m-1)2^{n-1} + 1$ suffix-free (3)
- $(m+1)2^{n-2}$ prefix-closed (3)
- $m + 2^{n-2}$ right ideal (3)
- (m-1)n+1 suffix-closed (3)
- m + n 1 left, two-sided, all-sided ideal (1), unary ideal, factor-closed (2), subword-closed (2)
- m + n 2 closed unary, free unary, prefix-, bifix-, factor, subword-free (1)

- 4 同 2 4 回 2 4 U

Tight Upper Bounds for Star $(|\Sigma|)$

- $2^{n-1} + 2^{n-2}$ regular (2), star-free (4)
- $2^{n-2} + 1$ prefix-closed (3), suffix-free (2)
- $2^{n-3} + 2^{n-4}$ finite (3)
- $n^2 7n + 13$ finite unary, star-free unary
- n + 1 left, right, two-sided, all-sided ideals (2)
- *n* free unary, suffix-closed (2), prefix-free (2)
- n-1 bifix-, factor-, subword-free (2)
- 2 closed unary, factor-, subword-closed (2)

▲□ → ▲ □ → ▲ □ →

Tight Upper Bounds for Reversal $(|\Sigma|)$

- 2ⁿ regular (2),
- 2ⁿ − 1 star-free (n − 1)
- $2^{n-1} + 1$ suffix-closed (3), left ideal (3)
- 2ⁿ⁻¹ prefix-closed (2), right ideal (2)
- 2ⁿ⁻² + 1 free unary, prefix-, suffix-free (3), factor-closed (3), subword-closed (2n), two-sided, all-sided ideal (3)
- $2^{n-3} + 2$ bifix-, factor-free (3), subword-free $(2^{n-3} 1)$
- $2^{(n+1)/2} 1$ finite, *n* odd (2)
- $3 \cdot 2^{n/2-1} 1$ finite, *n* even (2)

n unary

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・ クタマ

• Quotients provide a uniform approach

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds
- A step towards a theory of complexity of languages

/⊒ > < ∃ >

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds
- A step towards a theory of complexity of languages
- An interesting theory

/⊒ > < ∃ >

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds
- A step towards a theory of complexity of languages
- An interesting theory
- Difficult problems

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds
- A step towards a theory of complexity of languages
- An interesting theory
- Difficult problems
- State complexity useful when implementing regular operations

• Combined operations, for example, KL*

Janusz Brzozowski Quotient Complexity of Regular Languages

A (1) > A (1) > A

- Combined operations, for example, KL*
- Other operations, for example, shuffle

Related work

- Combined operations, for example, KL*
- Other operations, for example, shuffle
- Nondeterministic complexity

- ∢ ≣ →

Related work

- Combined operations, for example, KL*
- Other operations, for example, shuffle
- Nondeterministic complexity
- Transition complexity

- ∢ ≣ →

Related work

- Combined operations, for example, KL*
- Other operations, for example, shuffle
- Nondeterministic complexity
- Transition complexity
- Syntactic complexity

-∢ ≣ ▶

LÕPP

<ロ> <回> <回> <回> <回> < 回>

æ