Quotient Complexity of Regular Languages

Janusz Brzozowski
David R. Cheriton School of Computer Science

University of
Waterloo

Tallinn University of Technology Tallinn, Estonia
June 9, 2011

Outline

- Regular Languages

Outline

- Regular Languages
- Quotient Complexity

Outline

- Regular Languages
- Quotient Complexity
- State Complexity

Outline

- Regular Languages
- Quotient Complexity
- State Complexity
- Upper Bounds on Complexity of Operations

Outline

- Regular Languages
- Quotient Complexity
- State Complexity
- Upper Bounds on Complexity of Operations
- Results

Outline

- Regular Languages
- Quotient Complexity
- State Complexity
- Upper Bounds on Complexity of Operations
- Results
- Conclusions

Languages

- Alphabet Σ a finite set of letters
- Set of all words Σ^{*} free monoid generated by Σ
- Empty word ε
- Language $L \subseteq \Sigma^{*}$

Operations on Languages

- complement $\bar{L}=\Sigma^{*} \backslash L$
- union $K \cup L \quad$ intersection $K \cap L$
- difference $K \backslash L \quad$ symmetric difference $K \oplus L$
- general binary boolean operation $K \circ L$

Operations on Languages

- complement $\bar{L}=\Sigma^{*} \backslash L$
- union $K \cup L$
- difference $K \backslash L \quad$ symmetric difference $K \oplus L$
- general binary boolean operation $K \circ L$
- product or (con)catenation,

$$
K \cdot L=\left\{w \in \Sigma^{*} \mid w=u v, u \in K, v \in L\right\}
$$

- $\operatorname{star} K^{*}=\bigcup_{i \geq 0} K^{i} \quad$ positive closure $K^{+}=\bigcup_{i \geq 1} K^{i}$
- reverse $L^{R} \quad \varepsilon^{R}=\varepsilon,(w a)^{R}=a w^{R}$

Regular or Rational Languages

- basic languages $\{\emptyset,\{\varepsilon\}\} \cup\{\{a\} \mid a \in \Sigma\}$
- use a finite number of rational operations $\cup, \cdot,{ }^{*},\left({ }^{-}\right)$

Regular or Rational Languages

- basic languages $\{\emptyset,\{\varepsilon\}\} \cup\{\{a\} \mid a \in \Sigma\}$
- use a finite number of rational operations $\cup, \cdot,{ }^{*},\left({ }^{-}\right)$
- Notation clumsy $L=(\{\varepsilon\} \cup\{a\})^{*} \cdot\{b\}$
- Free algebra over $\{\varepsilon, \emptyset\} \cup \Sigma$ with function symbols $\cup, \cdot{ }^{*}$ *
- Use regular expression $E=(\varepsilon \cup a)^{*} \cdot b$

Regular or Rational Languages

- basic languages $\{\emptyset,\{\varepsilon\}\} \cup\{\{a\} \mid a \in \Sigma\}$
- use a finite number of rational operations $\cup, \cdot,{ }^{*},\left({ }^{-}\right)$
- Notation clumsy $L=(\{\varepsilon\} \cup\{a\})^{*} \cdot\{b\}$
- Free algebra over $\{\varepsilon, \emptyset\} \cup \Sigma$ with function symbols \cup, \cdot, *
- Use regular expression $E=(\varepsilon \cup a)^{*} \cdot b$
- Mapping \mathcal{L} from free algebra to regular languages
- $\mathcal{L}(\emptyset)=\emptyset, \quad \mathcal{L}(\varepsilon)=\{\varepsilon\}, \quad \mathcal{L}(a)=\{a\}$
- $\mathcal{L}(E \cup F)=\mathcal{L}(E) \cup \mathcal{L}(F)$
- $\mathcal{L}(E \cdot F)=\mathcal{L}(E) \cdot \mathcal{L}(F), \quad \mathcal{L}\left(E^{*}\right)=(\mathcal{L}(E))^{*}$
- $\mathcal{L}(\bar{E})=\overline{\mathcal{L}(E)}$

Quotient Complexity of a Language

- Left quotient, or quotient of a language L by a word w
- The language $L_{w}=\left\{x \in \Sigma^{*} \mid w x \in L\right\}$

Quotient Complexity of a Language

- Left quotient, or quotient of a language L by a word w
- The language $L_{w}=\left\{x \in \Sigma^{*} \mid w x \in L\right\}$
- The quotient complexity of L is the number of quotients of L
- Denoted by $\kappa(L)$ (kappa for both kwotient and komplexity)
- $\kappa(L)$ defined for any language, and may be finite or infinite

Quotient Complexity of a Language

- Left quotient, or quotient of a language L by a word w
- The language $L_{w}=\left\{x \in \Sigma^{*} \mid w x \in L\right\}$
- The quotient complexity of L is the number of quotients of L
- Denoted by $\kappa(L)$ (kappa for both kwotient and komplexity)
- $\kappa(L)$ defined for any language, and may be finite or infinite

Example

- Example: $\Sigma=\{a, b\}, L=a \Sigma^{*} \quad \kappa(L)=3$

$$
\begin{array}{ll}
\text { - } & L_{\varepsilon}=L \\
\text { - } & L_{a}=\Sigma^{*}=L_{a a}=L_{a b} \\
\text { - } L_{b}=\emptyset=L_{b a}=L_{b b}
\end{array}
$$

Finding Quotients: The ε-Function

Does L contain the empty word?

$$
\begin{aligned}
x^{\varepsilon} & = \begin{cases}\emptyset, & \text { if } x=\emptyset, \text { or } x \in \Sigma ; \\
\varepsilon, & \text { if } x=\varepsilon\end{cases} \\
(\bar{L})^{\varepsilon} & = \begin{cases}\emptyset, & \text { if } L^{\varepsilon}=\varepsilon ; \\
\varepsilon, & \text { if } L^{\varepsilon}=\emptyset\end{cases}
\end{aligned}
$$

Finding Quotients: The ε-Function

Does L contain the empty word?

$$
\begin{aligned}
x^{\varepsilon} & = \begin{cases}\emptyset, & \text { if } x=\emptyset, \text { or } x \in \Sigma ; \\
\varepsilon, & \text { if } x=\varepsilon\end{cases} \\
(\bar{L})^{\varepsilon} & = \begin{cases}\emptyset, & \text { if } L^{\varepsilon}=\varepsilon ; \\
\varepsilon, & \text { if } L^{\varepsilon}=\emptyset\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
(K \cup L)^{\varepsilon} & =K^{\varepsilon} \cup L^{\varepsilon} \\
(K L)^{\varepsilon} & =K^{\varepsilon} \cap L^{\varepsilon} \\
\left(L^{*}\right)^{\varepsilon} & =\varepsilon
\end{aligned}
$$

Quotient by a Letter

$$
x_{a}= \begin{cases}\emptyset, & \text { if } x \in\{\emptyset, \varepsilon\}, \text { or } x \in \Sigma \text { and } x \neq a ; \\ \varepsilon, & \text { if } x=a\end{cases}
$$

Quotient by a Letter

$$
x_{a}= \begin{cases}\emptyset, & \text { if } x \in\{\emptyset, \varepsilon\}, \text { or } x \in \Sigma \text { and } x \neq a ; \\ \varepsilon, & \text { if } x=a\end{cases}
$$

$$
\begin{aligned}
(\bar{L})_{a} & =\overline{\left(L_{a}\right)} \\
(K \cup L)_{a} & =K_{a} \cup L_{a} \\
(K L)_{a} & =K_{a} L \cup K^{\varepsilon} L_{a} \\
\left(L^{*}\right)_{a} & =L_{a} L^{*}
\end{aligned}
$$

Quotient by a Word

$$
\begin{aligned}
L_{\varepsilon} & =L \\
L_{w} & =L_{a}, \text { if } w=a \in \Sigma \\
L_{w a} & =\left(L_{w}\right)_{a}
\end{aligned}
$$

Quotient by a Word

$$
\begin{aligned}
L_{\varepsilon} & =L \\
L_{w} & =L_{a}, \text { if } w=a \in \Sigma \\
L_{w a} & =\left(L_{w}\right)_{a}
\end{aligned}
$$

- Calculating quotients, we get expressions called derivatives
- There is an infinite number of distinct derivatives

Quotient by a Word

$$
\begin{aligned}
L_{\varepsilon} & =L \\
L_{w} & =L_{a}, \text { if } w=a \in \Sigma \\
L_{w a} & =\left(L_{w}\right)_{a}
\end{aligned}
$$

- Calculating quotients, we get expressions called derivatives
- There is an infinite number of distinct derivatives

Example

$$
\begin{aligned}
& \left(a^{*}\right)_{a}=(a)_{a} a^{*}=\varepsilon a^{*} \\
& \left(a^{*}\right)_{a a}=\left(\varepsilon a^{*}\right)_{a}=\varepsilon_{a} a^{*} \cup \varepsilon\left(a^{*}\right)_{a}=\emptyset a^{*} \cup \varepsilon\left(\varepsilon a^{*}\right), \text { etc. }
\end{aligned}
$$

Similarity Laws

$$
\begin{aligned}
L \cup L & =L \\
K \cup L & =L \cup K \\
K \cup(L \cup M) & =(K \cup L) \cup M \\
L \cup \emptyset & =L \\
L \emptyset & =\emptyset L=\emptyset \\
L \varepsilon & =\varepsilon L=L
\end{aligned}
$$

Quotients, Equations, Automata

Example

- Example: $\Sigma=\{a, b\}, L=a \Sigma^{*}$
- $L_{\varepsilon}=L$
- $L_{a}=\Sigma^{*}=L_{a a}=L_{a b}$
- $L_{b}=\emptyset=L_{b a}=L_{b b}$

Quotients, Equations, Automata

Example

- Example: $\Sigma=\{a, b\}, L=a \Sigma^{*}$
- $L_{\varepsilon}=L$
- $L_{a}=\Sigma^{*}=L_{a a}=L_{a b}$
- $L_{b}=\emptyset=L_{b a}=L_{b b}$

$$
\begin{aligned}
L & =a L_{a} \cup b L_{b}, \\
L_{a} & =a L_{a} \cup b L_{a} \cup \varepsilon, \\
L_{b} & =a L_{b} \cup b L_{b} .
\end{aligned}
$$

Quotients, Equations, Automata

Example

- Example: $\Sigma=\{a, b\}, L=a \Sigma^{*}$
- $L_{\varepsilon}=L$
- $L_{a}=\Sigma^{*}=L_{a a}=L_{a b}$
- $L_{b}=\emptyset=L_{b a}=L_{b b}$

$$
\begin{aligned}
L & =a L_{a} \cup b L_{b}, \\
L_{a} & =a L_{a} \cup b L_{a} \cup \varepsilon, \\
L_{b} & =a L_{b} \cup b L_{b} .
\end{aligned}
$$

Extended Regular Expressions

Example ($L=\Sigma^{*} a \Sigma^{*} \cap \overline{\Sigma^{*} b b \Sigma^{*}}$)

- $L_{\varepsilon}=L \quad L_{a}=\overline{\Sigma^{*} b b \Sigma^{*}}$
- $L_{b}=\Sigma^{*} a \Sigma^{*} \cap \overline{\Sigma^{*} b b \Sigma^{*} \cup b \Sigma^{*}} \quad L_{a a}=L_{a}$
- $L_{a b}=\overline{\Sigma^{*} b b \Sigma^{*} \cup b \Sigma^{*}} \quad L_{b a}=\overline{\Sigma^{*} b b \Sigma^{*}}=L_{a}$
- $L_{b b}=\emptyset \quad L_{a b a}=L_{a} \quad L_{a b b}=\emptyset$

Extended Regular Expressions

Example ($L=\Sigma^{*} a \Sigma^{*} \cap \overline{\Sigma^{*} b b \Sigma^{*}}$)

- $L_{\varepsilon}=L \quad L_{a}=\overline{\Sigma^{*} b b \Sigma^{*}}$
- $L_{b}=\Sigma^{*} a \Sigma^{*} \cap \overline{\Sigma^{*} b b \Sigma^{*} \cup b \Sigma^{*}} \quad L_{a a}=L_{a}$
- $L_{a b}=\overline{\Sigma^{*} b b \Sigma^{*} \cup b \Sigma^{*}} \quad L_{b a}=\overline{\Sigma^{*} b b \Sigma^{*}}=L_{a}$
- $L_{b b}=\emptyset \quad L_{a b a}=L_{a} \quad L_{a b b}=\emptyset$

$$
\begin{aligned}
L & =a L_{a} \cup b L_{b}, \\
L_{a} & =a L_{a} \cup b L_{a b} \cup \varepsilon, \\
L_{b} & =a L_{a} \cup b \emptyset, \\
L_{a b} & =a L_{a} \cup b \emptyset
\end{aligned}
$$

Solving Equations $X=A X \cup B \Longrightarrow X=A^{*} B$

Example ($\left.L=\Sigma^{*} a \Sigma^{*} \cap \overline{\sum^{*} b b \Sigma^{*}}\right)$

$$
\begin{aligned}
L & =a L_{a} \cup b L_{b} \\
L_{a} & =a L_{a} \cup b L_{a b} \cup \varepsilon \\
L_{b} & =a L_{a} \cup b \emptyset \\
L_{a b} & =a L_{a} \cup b \emptyset
\end{aligned}
$$

Solving Equations $X=A X \cup B \Longrightarrow X=A^{*} B$

Example $\left(L=\Sigma^{*} a \Sigma^{*} \cap \overline{\Sigma^{*} b b \Sigma^{*}}\right)$

$$
\begin{aligned}
L & =a L_{a} \cup b L_{b} \\
L_{a} & =a L_{a} \cup b L_{a b} \cup \varepsilon \\
L_{b} & =a L_{a} \cup b \emptyset \\
L_{a b} & =a L_{a} \cup b \emptyset \\
L & =a L_{a} \cup b L_{b} \\
L_{a} & =a L_{a} \cup b L_{b} \cup \varepsilon \\
L_{b} & =a L_{a} \cup b \emptyset
\end{aligned}
$$

Solving Equations $X=A X \cup B \Longrightarrow X=A^{*} B$

Example ($\left.L=\Sigma^{*} a \Sigma^{*} \cap \overline{\Sigma^{*} b b \Sigma^{*}}\right)$

$$
\begin{aligned}
L & =a L_{a} \cup b L_{b} \\
L_{a} & =a L_{a} \cup b L_{a b} \cup \varepsilon \\
L_{b} & =a L_{a} \cup b \emptyset \\
L_{a b} & =a L_{a} \cup b \emptyset \\
L & =a L_{a} \cup b L_{b} \\
L_{a} & =a L_{a} \cup b L_{b} \cup \varepsilon \\
L_{b} & =a L_{a} \cup b \emptyset
\end{aligned}
$$

$$
\begin{aligned}
L & =(a \cup b a) L_{a} \\
L_{a} & =(a \cup b a) L_{a} \cup \varepsilon=(a \cup b a)^{*} \\
L & =(a \cup b a)(a \cup b a)^{*}
\end{aligned}
$$

Automata

Deterministic finite automaton DFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$

- Q set of states
- $\delta: Q \times \Sigma \rightarrow Q$ transition function
- q_{0} initial state
- $F \subseteq Q$ set of final or accepting states

Automata

Deterministic finite automaton DFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$

- Q set of states
- $\delta: Q \times \Sigma \rightarrow Q$ transition function
- q_{0} initial state
- $F \subseteq Q$ set of final or accepting states

Nondeterministic finite automaton NFA $\mathcal{N}=(Q, \Sigma, \delta, I, F)$

- Q set of states
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ transition function
- I set of initial states
- $F \subseteq Q$ set of final or accepting states

Quotient Automaton

DFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$

- $Q=\left\{L_{w} \mid w \in \Sigma^{*}\right\}$
- $\delta\left(L_{w}, a\right)=L_{w a}$
- $q_{0}=L_{\varepsilon}=L$
- $F=\left\{L_{w} \mid \varepsilon \in L_{w}\right\}$ accepting or final quotients

Quotient Automaton

DFA $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$

- $Q=\left\{L_{w} \mid w \in \Sigma^{*}\right\}$
- $\delta\left(L_{w}, a\right)=L_{w a}$
- $q_{0}=L_{\varepsilon}=L$
- $F=\left\{L_{w} \mid \varepsilon \in L_{w}\right\}$ accepting or final quotients
L is recognizable if and only if the number of quotients is finite (Nerode, 1958; Brzozowski, 1962)

State Complexity

State complexity of L is the number of states in the minimal DFA recognizing L

State Complexity

State complexity of L is the number of states in the minimal DFA recognizing L

- Why define the complexity of a language by the size of its automaton, a different object?

State Complexity

State complexity of L is the number of states in the minimal DFA recognizing L

- Why define the complexity of a language by the size of its automaton, a different object?
- Quotient DFA of L is isomorphic to the minimal DFA of L

State Complexity

State complexity of L is the number of states in the minimal DFA recognizing L

- Why define the complexity of a language by the size of its automaton, a different object?
- Quotient DFA of L is isomorphic to the minimal DFA of L
- State complexity = quotient complexity

State Complexity

State complexity of L is the number of states in the minimal DFA recognizing L

- Why define the complexity of a language by the size of its automaton, a different object?
- Quotient DFA of L is isomorphic to the minimal DFA of L
- State complexity = quotient complexity
- Quotient complexity is more natural

State Complexity

State complexity of L is the number of states in the minimal DFA recognizing L

- Why define the complexity of a language by the size of its automaton, a different object?
- Quotient DFA of L is isomorphic to the minimal DFA of L
- State complexity = quotient complexity
- Quotient complexity is more natural
- Quotients have some advantages

Complexity of Operations

- A subclass \mathcal{C} of regular languages
- $L_{1}, \ldots, L_{k} \in \mathcal{C}$ with quotient complexities n_{1}, \ldots, n_{k}
- A k-ary operation f on L_{1}, \ldots, L_{k}
- Quotient complexity of $f\left(L_{1}, \ldots, L_{k}\right)$
- Quotient complexity of f in \mathcal{C} is the worst case quotient complexity of $f\left(L_{1}, \ldots, L_{k}\right)$ as L_{1}, \ldots, L_{k} range over \mathcal{C}
- A function of n_{1}, \ldots, n_{k}

Complexity of Operations

- A subclass \mathcal{C} of regular languages
- $L_{1}, \ldots, L_{k} \in \mathcal{C}$ with quotient complexities n_{1}, \ldots, n_{k}
- A k-ary operation f on L_{1}, \ldots, L_{k}
- Quotient complexity of $f\left(L_{1}, \ldots, L_{k}\right)$
- Quotient complexity of f in \mathcal{C} is the worst case quotient complexity of $f\left(L_{1}, \ldots, L_{k}\right)$ as L_{1}, \ldots, L_{k} range over \mathcal{C}
- A function of n_{1}, \ldots, n_{k}

Example

- Regular languages K and L with $\kappa(K)=m, \kappa(L)=n$
- Union: $\kappa(K \cup L) \leq m n$
- Complement: $\kappa(\bar{L})=\kappa(L)=n$

Some Early Work on State Complexity

- 1957, Rabin and Scott: upper bound of $m n$ for intersection
- 1962, Brzozowski: upper bounds for union, product and star
- 1963, Lupanov: NFA to DFA conversion bound of 2^{n} is tight
- 1964, Lyubich: unary case
- 1966, Mirkin: 2^{n} bound for reversal is attainable
- 1970, Maslov: examples meeting bounds for union, concatenation, star and other operations
- 1971, Moore: NFA to DFA conversion bound of 2^{n} is tight (rediscovered)

Some Early Work on State Complexity

- 1957, Rabin and Scott: upper bound of $m n$ for intersection
- 1962, Brzozowski: upper bounds for union, product and star
- 1963, Lupanov: NFA to DFA conversion bound of 2^{n} is tight
- 1964, Lyubich: unary case
- 1966, Mirkin: 2^{n} bound for reversal is attainable
- 1970, Maslov: examples meeting bounds for union, concatenation, star and other operations
- 1971, Moore: NFA to DFA conversion bound of 2^{n} is tight (rediscovered)

Renewed interest

- 1991, Birget: "state complexity"
- 1994, Yu, Zhuang, K. Salomaa: complexity of operations

Upper Bounds Using Automata

- Given automata \mathcal{A}, \mathcal{B} of languages K, L, find $\kappa(f(K, L))$

Upper Bounds Using Automata

- Given automata \mathcal{A}, \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"

Upper Bounds Using Automata

- Given automata \mathcal{A}, \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?

Upper Bounds Using Automata

- Given automata \mathcal{A}, \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?

Upper Bounds Using Automata

- Given automata \mathcal{A}, \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?

Upper Bounds Using Automata

- Given automata \mathcal{A}, \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?
- Construct DFA for $f(K, L)$ directly

Upper Bounds Using Automata

- Given automata \mathcal{A}, \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?
- Construct DFA for $f(K, L)$ directly
- Construct NFA, convert to DFA

Upper Bounds Using Automata

- Given automata \mathcal{A}, \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?
- Construct DFA for $f(K, L)$ directly
- Construct NFA, convert to DFA
- Use NFA with ε transitions

Upper Bounds Using Automata

- Given automata \mathcal{A}, \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?
- Construct DFA for $f(K, L)$ directly
- Construct NFA, convert to DFA
- Use NFA with ε transitions
- Use NFA with multiple initial states

Upper Bounds Using Automata

- Given automata \mathcal{A}, \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?
- Construct DFA for $f(K, L)$ directly
- Construct NFA, convert to DFA
- Use NFA with ε transitions
- Use NFA with multiple initial states

Upper Bounds Using Automata

- Given automata \mathcal{A}, \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata "complete"
- If there is a "sink state", is there only one?
- Is every state "useful"?
- Construct DFA for $f(K, L)$ directly
- Construct NFA, convert to DFA
- Use NFA with ε transitions
- Use NFA with multiple initial states
- There is an alternative: Quotient complexity

Formulas for Boolean Operations and Product

Theorem

If K and L are regular expressions, then

$$
\begin{gathered}
(\bar{L})_{w}=\overline{L_{w}} \\
(K \circ L)_{w}=K_{w} \circ L_{w} \\
(K L)_{w}=K_{w} L \cup K^{\varepsilon} L_{w} \cup\left(\bigcup_{\substack{w=u v \\
u, v \in \Sigma^{+}}} K_{u}^{\varepsilon} L_{v}\right)
\end{gathered}
$$

Example Formula for Product:

$(K L)_{w}=K_{w} L \cup K^{\varepsilon} L_{w} \cup\left(\bigcup_{\substack{w=c=v \\ u v \in \Sigma \Sigma^{+}}} K_{u}^{\varepsilon} L_{v}\right)$

Example

- $\kappa(G)=n$
- $\left(\Sigma^{*} G\right)_{w}=\Sigma^{*} G \cup G_{w} \cup \bigcup_{w=u v} G_{v}$
- G is always present on the right-hand side
- At most 2^{n-1} subsets of quotients to be added to $\Sigma^{*} G$
- $\kappa\left(\Sigma^{*} G\right) \leq 2^{n-1}$

Formula for Star

Theorem

For the empty word

$$
\left(L^{*}\right)_{\varepsilon}=\varepsilon \cup L L^{*}
$$

and for $w \in \Sigma^{+}$

$$
\left(L^{*}\right)_{w}=\left(L_{w} \cup \bigcup_{\substack{w=u v \\ u, v \in \Sigma^{+}}}\left(L^{*}\right)_{u}^{\varepsilon} L_{v}\right) L^{*}
$$

Quotient Formulas

All you have to do is count!

Upper bounds for operations

Theorem

For any languages K and L with $\kappa(K)=m$ and $\kappa(L)=n$,

- $\kappa(\bar{L})=n . \quad \kappa(K \circ L) \leq m n$.
- If $K(L)$ has $k(\ell)$ accepting quotients, then
- If $k=0$ or $\ell=0$, then $\kappa(K L)=1$.
- If $k, \ell>0$ and $n=1$, then $\kappa(K L) \leq m-(k-1)$.
- If $k, \ell>0$ and $n>1$, then $\kappa(K L) \leq m 2^{n}-k 2^{n-1}$.

Upper bounds for operations

Theorem

For any languages K and L with $\kappa(K)=m$ and $\kappa(L)=n$,

- $\kappa(\bar{L})=n . \quad \kappa(K \circ L) \leq m n$.
- If $K(L)$ has $k(\ell)$ accepting quotients, then
- If $k=0$ or $\ell=0$, then $\kappa(K L)=1$.
- If $k, \ell>0$ and $n=1$, then $\kappa(K L) \leq m-(k-1)$.
- If $k, \ell>0$ and $n>1$, then $k(K L) \leq m 2^{n}-k 2^{n-1}$.

Claim for boolean operations is obvious since $(\bar{L})_{w}=\overline{L_{w}}$ and $(K \cup L)_{w}=K_{w} \cup L_{w}$

Proof for product $(K L)_{w}=K_{w} L \cup K^{\varepsilon} L_{w} \cup\left(\bigcup \left\lvert\, \begin{array}{c}w=w \\ u \in \in \Sigma^{+} \\ \end{array} K_{u}^{\varepsilon} L_{v}\right.\right)$

- if $k=0$ or $\ell=0$, then $K L=\emptyset$ and $\kappa(K L)=1$
- If $k, I>0, n=1$, then $L=\Sigma^{*}$ and $w \in K \Rightarrow(K L)_{w}=\Sigma^{*}$
- All k accepting quotients of K produce Σ^{*} in $K L(1)$
- For each rejecting quotient of K, we have two choices for the union of quotients of L : the empty union or Σ^{*}
- If we choose the empty union, at most $m-k$ quotients of $K L$
- Choosing Σ^{*} results in $(K L)_{w}=\Sigma^{*}$, which has been counted
- Altogether, there are at most $1+m-k$ quotients of $K L$

Proof for product $(K L)_{w}=K_{w} L \cup K^{\varepsilon} L_{w} \cup\left(\bigcup_{\substack{w=w \\ u \in \in \Sigma^{+}}} K_{u}^{\varepsilon} L_{v}\right)$

- $k, l>0$ and $n>1$
- If $w \notin K$, then we can choose K_{w} in $m-k$ ways, and the union of quotients of L in 2^{n} ways
- If $w \in K$, then we can choose K_{w} in k ways, and the set of quotients of L in 2^{n-1} ways, since L is then always present
- Thus we have $(m-k) 2^{n}+k 2^{n-1}$

Star

Let $M=L^{*}, w \neq \varepsilon$
$M_{w}=\left(L_{w} \cup M_{w}^{\varepsilon} L \cup \bigcup \underset{\substack{w=u v \\ u, v \in \Sigma^{+}}}{ } M_{u}^{\varepsilon} L_{v}\right) M$

Theorem

- If $n=1$, then $\kappa\left(L^{*}\right) \leq 2$.
- If $n>1$ and only L_{ε} accepts, then $\kappa\left(L^{*}\right)=n$.
- If $n>1$ and L has $I>0$ accepting quotients $\neq L$, then $\kappa\left(L^{*}\right) \leq 2^{n-1}+2^{n-I-1}$.

Witnesses to bounds

- This is a challenging problem
- Take a guess
- How do you prove the guess meets the bound?
- Use quotients, of course!

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K=\left(b^{*} a\right)^{m-1}(a \cup b)^{*}, L=\left(a^{*} b\right)^{n-1}(a \cup b)^{*}$

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K=\left(b^{*} a\right)^{m-1}(a \cup b)^{*}, L=\left(a^{*} b\right)^{n-1}(a \cup b)^{*}$
- Words $a^{i} b^{j}, 0 \leq i \leq m-1,0 \leq j \leq n-1$

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K=\left(b^{*} a\right)^{m-1}(a \cup b)^{*}, L=\left(a^{*} b\right)^{n-1}(a \cup b)^{*}$
- Words $a^{i} b^{j}, 0 \leq i \leq m-1,0 \leq j \leq n-1$
- Let $x=a^{i} b^{j}$ and $y=a^{k} b^{\ell}$

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K=\left(b^{*} a\right)^{m-1}(a \cup b)^{*}, L=\left(a^{*} b\right)^{n-1}(a \cup b)^{*}$
- Words $a^{i} b^{j}, 0 \leq i \leq m-1,0 \leq j \leq n-1$
- Let $x=a^{i} b^{j}$ and $y=a^{k} b^{\ell}$
- If $i<k$, let $u=a^{m-1-k} b^{n}$

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K=\left(b^{*} a\right)^{m-1}(a \cup b)^{*}, L=\left(a^{*} b\right)^{n-1}(a \cup b)^{*}$
- Words $a^{i} b^{j}, 0 \leq i \leq m-1,0 \leq j \leq n-1$
- Let $x=a^{i} b^{j}$ and $y=a^{k} b^{\ell}$
- If $i<k$, let $u=a^{m-1-k} b^{n}$
- $x u$ not full of a 's, is full of b 's, $y u$ full of a 's and b 's

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K=\left(b^{*} a\right)^{m-1}(a \cup b)^{*}, L=\left(a^{*} b\right)^{n-1}(a \cup b)^{*}$
- Words $a^{i} b^{j}, 0 \leq i \leq m-1,0 \leq j \leq n-1$
- Let $x=a^{i} b^{j}$ and $y=a^{k} b^{\ell}$
- If $i<k$, let $u=a^{m-1-k} b^{n}$
- $x u$ not full of a's, is full of b 's, $y u$ full of a's and b 's
- Then $x u \notin K, y u \in K$, and $x u, y u \in L$

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K=\left(b^{*} a\right)^{m-1}(a \cup b)^{*}, L=\left(a^{*} b\right)^{n-1}(a \cup b)^{*}$
- Words $a^{i} b^{j}, 0 \leq i \leq m-1,0 \leq j \leq n-1$
- Let $x=a^{i} b^{j}$ and $y=a^{k} b^{\ell}$
- If $i<k$, let $u=a^{m-1-k} b^{n}$
- $x u$ not full of a's, is full of b 's, $y u$ full of a's and b 's
- Then $x u \notin K, y u \in K$, and $x u, y u \in L$
- $x u \in K \oplus L$, and $y u \notin K \oplus L$, i.e., $(K \oplus L)_{x} \neq(K \oplus L)_{y}$

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K=\left(b^{*} a\right)^{m-1}(a \cup b)^{*}, L=\left(a^{*} b\right)^{n-1}(a \cup b)^{*}$
- Words $a^{i} b^{j}, 0 \leq i \leq m-1,0 \leq j \leq n-1$
- Let $x=a^{i} b^{j}$ and $y=a^{k} b^{\ell}$
- If $i<k$, let $u=a^{m-1-k} b^{n}$
- xu not full of a's, is full of b's, yu full of a's and b's
- Then $x u \notin K, y u \in K$, and $x u, y u \in L$
- $x u \in K \oplus L$, and $y u \notin K \oplus L$, i.e., $(K \oplus L)_{x} \neq(K \oplus L)_{y}$
- Case $j<\ell$ is similar

Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K=\left(b^{*} a\right)^{m-1}(a \cup b)^{*}, L=\left(a^{*} b\right)^{n-1}(a \cup b)^{*}$
- Words $a^{i} b^{j}, 0 \leq i \leq m-1,0 \leq j \leq n-1$
- Let $x=a^{i} b^{j}$ and $y=a^{k} b^{\ell}$
- If $i<k$, let $u=a^{m-1-k} b^{n}$
- $x u$ not full of a's, is full of b 's, $y u$ full of a's and b 's
- Then $x u \notin K, y u \in K$, and $x u, y u \in L$
- $x u \in K \oplus L$, and $y u \notin K \oplus L$, i.e., $(K \oplus L)_{x} \neq(K \oplus L)_{y}$
- Case $j<\ell$ is similar
- All quotients of $K \oplus L$ by these $m n$ words are distinct

Recent work on quotient complexity

- TCS 1994: Yu, Zhuang, K. Salomaa: regular languages (state complexity)
- WIA 2001, Câmpeanu, Culik, Salomaa, Yu: finite languages
- DCFS 2009: Brzozowski: regular languages (quotients)
- TCS 2009: Han Salomaa: suffix-free languages
- 2009: Han, Salomaa, Wood: prefix-free languages
- LATIN 2010, Brzozowski, Jirásková, Li: ideal languages
- CSR 2010, Brzozowski, Jirásková, Zou: closed languages
- AFL 2011, Brzozowski, Liu: star-free languages
- AFL 2011, Brzozowski, Jirásková, Li, Smith: bifix-, factor-, subword-free languages

Prefixes, Suffixes, Factors and Subwords

- $w=u v \quad u$ is a prefix of w

Prefixes, Suffixes, Factors and Subwords

- $w=u v \quad u$ is a prefix of w
- üks is a prefix of üksteist

Prefixes, Suffixes, Factors and Subwords

- $w=u v \quad u$ is a prefix of w
- üks is a prefix of üksteist
- $w=u v \quad v$ is a suffix of w

Prefixes, Suffixes, Factors and Subwords

- $w=u v \quad u$ is a prefix of w
- üks is a prefix of üksteist
- $w=u v \quad v$ is a suffix of w
- päev is suffix of laupäev

Prefixes, Suffixes, Factors and Subwords

- $w=u v \quad u$ is a prefix of w
- üks is a prefix of üksteist
- $w=u v \quad v$ is a suffix of w
- päev is suffix of laupäev
- $w=u \times v \quad x$ is a factor of w

Prefixes, Suffixes, Factors and Subwords

- $w=u v \quad u$ is a prefix of w
- üks is a prefix of üksteist
- $w=u v \quad v$ is a suffix of w
- päev is suffix of laupäev
- $w=u \times v \quad x$ is a factor of w
- serv is a factor of konservatiivsus

Prefixes, Suffixes, Factors and Subwords

- $w=u v \quad u$ is a prefix of w
- üks is a prefix of üksteist
- $w=u v \quad v$ is a suffix of w
- päev is suffix of laupäev
- $w=u \times v \quad x$ is a factor of w
- serv is a factor of konservatiivsus
- $w=w_{0} a_{0} w_{1} a_{1} \cdots a_{n} w_{n} \quad a_{0} \cdots a_{n}$ is a subword of w

Prefixes, Suffixes, Factors and Subwords

- $w=u v \quad u$ is a prefix of w
- üks is a prefix of üksteist
- $w=u v \quad v$ is a suffix of w
- päev is suffix of laupäev
- $w=u \times v \quad x$ is a factor of w
- serv is a factor of konservatiivsus
- $w=w_{0} a_{0} w_{1} a_{1} \cdots a_{n} w_{n} \quad a_{0} \cdots a_{n}$ is a subword of w
- kaks is a subword of kaheksa

Convex Languages

- A language L is prefix-convex if u is a prefix of v, v is a prefix of w and $u, w \in L$ implies $v \in L$
- L is prefix-closed if u is a prefix of v and $v \in L$ implies u in L
- L is converse prefix-closed if u is a prefix of v, and $u \in L$ implies $v \in L$ right ideal
- L is prefix-free if $u \neq v$ is a prefix of v and $v \in L$ implies $u \notin L \quad$ prefix code

Convex Languages

- A language L is prefix-convex if u is a prefix of v, v is a prefix of w and $u, w \in L$ implies $v \in L$
- L is prefix-closed if u is a prefix of v and $v \in L$ implies u in L
- L is converse prefix-closed if u is a prefix of v, and $u \in L$ implies $v \in L$ right ideal
- L is prefix-free if $u \neq v$ is a prefix of v and $v \in L$ implies $u \notin L \quad$ prefix code
- L is suffix-convex
- L is factor-convex
- L is subword-convex
- L is bifix-convex

Closed Languages

- L is prefix-closed
- L is suffix-closed
- L is factor-closed
- L is subword-closed
- L is bifix-closed if it is both prefix- and suffix-closed if and only if it is factor closed

Ideal Languages

L is nonempty

- Right ideal $L=L \Sigma^{*}$
- Left ideal $L=\Sigma^{*} L$
- Two-sided ideal $L=\Sigma^{*} L \Sigma^{*}$
- All-sided ideal $L=\Sigma * ш L$

Ideal Languages

L is nonempty

- Right ideal $L=L \Sigma^{*}$
- Left ideal $L=\Sigma^{*} L$
- Two-sided ideal $L=\Sigma^{*} L \Sigma^{*}$
- All-sided ideal $L=\Sigma * ш L$
- Shuffle: let $w=a_{1} a_{2} \cdots a_{k}, \quad a_{i} \in \Sigma$ $\Sigma^{*} ш w=\Sigma^{*} ш\left(a_{1} a_{2} \cdots a_{k}\right)=\Sigma^{*} a_{1} \Sigma^{*} a_{2} \Sigma^{*} \cdots \Sigma^{*} a_{k} \Sigma^{*}$ $\Sigma^{*} \omega L=\bigcup_{w \in L}\left(\Sigma^{*} \omega w\right)$

X-Free Languages

- L is prefix-free:
- L is suffix-free
- L is factor-free
- L is subword-free
- L is bifix-free if it is both prefix- and suffix-free

Star-Free Languages

- $\emptyset,\{\varepsilon\},\{a\}, a \in \Sigma$ are star-free
- If K and L are star-free, then so are
- \bar{L}
- $K \cup L$
- KL

Star-Free Languages

- $\emptyset,\{\varepsilon\},\{a\}, a \in \Sigma$ are star-free
- If K and L are star-free, then so are
- \bar{L}
- $K \cup L$
- KL
- The smallest class of languages containing finite languages and closed under boolean operations and product

Tight Upper Bounds for Union (|इ|)

- mn regular (2), star-free (2), prefix-, factor-, subword-closed (2), suffix-closed (4), left ideal (4)
- mn - 2 prefix-free (2)
- $m n-(m+n-2)$ suffix-free (2), right, two-sided, all-sided ideal (2)
- $m n-(m+n)$ bifix-, factor-free (3), subword-free $(m+n-3)$, finite $(m n-2(m+n)+5)$
- $\max (m, n)$ free unary, closed unary
- $\min (m, n)$ ideal unary

Similar results for intersection, difference, symmetric difference

Tight Upper Bounds for Product (|इ|)

- $(m-1) 2^{n}+2^{n-1}$ regular (2), star-free (4)
- $(m-1) 2^{n-1}+1$ suffix-free (3)
- $(m+1) 2^{n-2}$ prefix-closed (3)
- $m+2^{n-2}$ right ideal (3)
- (m-1) $n+1$ suffix-closed (3)
- $m+n-1$ left, two-sided, all-sided ideal (1), unary ideal, factor-closed (2), subword-closed (2)
- $m+n-2$ closed unary, free unary, prefix-, bifix-, factor, subword-free (1)

Tight Upper Bounds for Star (|इ|)

- $2^{n-1}+2^{n-2}$ regular (2), star-free (4)
- $2^{n-2}+1$ prefix-closed (3), suffix-free (2)
- $2^{n-3}+2^{n-4}$ finite (3)
- $n^{2}-7 n+13$ finite unary, star-free unary
- $n+1$ left, right, two-sided, all-sided ideals (2)
- n free unary, suffix-closed (2), prefix-free (2)
- $n-1$ bifix-, factor-, subword-free (2)
- 2 closed unary, factor-, subword-closed (2)

Tight Upper Bounds for Reversal (|इ|)

- 2^{n} regular (2),
- $2^{n}-1$ star-free $(n-1)$
- $2^{n-1}+1$ suffix-closed (3), left ideal (3)
- 2^{n-1} prefix-closed (2), right ideal (2)
- $2^{n-2}+1$ free unary, prefix-, suffix-free (3), factor-closed (3), subword-closed (2n), two-sided, all-sided ideal (3)
- $2^{n-3}+2$ bifix-, factor-free (3), subword-free $\left(2^{n-3}-1\right)$
- $2^{(n+1) / 2}-1$ finite, n odd (2)
- $3 \cdot 2^{n / 2-1}-1$ finite, n even (2)
- n unary

Conclusions

- Quotients provide a uniform approach

Conclusions

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations

Conclusions

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds

Conclusions

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds
- A step towards a theory of complexity of languages

Conclusions

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds
- A step towards a theory of complexity of languages
- An interesting theory

Conclusions

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds
- A step towards a theory of complexity of languages
- An interesting theory
- Difficult problems

Conclusions

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds
- A step towards a theory of complexity of languages
- An interesting theory
- Difficult problems
- State complexity useful when implementing regular operations

Related work

- Combined operations, for example, $K L^{*}$

Related work

- Combined operations, for example, $K L^{*}$
- Other operations, for example, shuffle

Related work

- Combined operations, for example, $K L^{*}$
- Other operations, for example, shuffle
- Nondeterministic complexity

Related work

- Combined operations, for example, $K L^{*}$
- Other operations, for example, shuffle
- Nondeterministic complexity
- Transition complexity

Related work

- Combined operations, for example, $K L^{*}$
- Other operations, for example, shuffle
- Nondeterministic complexity
- Transition complexity
- Syntactic complexity

LÕPP

