
Applicative Shortcut Fusion

Germán Delbianco1 Mauro Jaskelioff2 Alberto Pardo3

1IMDEA Software Institute, Spain

2CIFASIS-CONICET/Universidad Nacional de Rosario, Argentina

3Instituto de Computación, Universidad de la República, Uruguay

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Program Fusion

A program written in a compositional style:

sumRecipDiffs :: [Float]→ [Float]→ Maybe Float
sumRecipDiffs ys = fmap sum ◦ recipList ◦ diffList ys

generates a series of intermediate data stuctures,

[Float]

sumRecipDiffs ys

44

diffList ys
((
[Float]

recipList
**

Maybe [Float]

fmap sum
**

Maybe Float

The goal of fusion is to obtain, whenever possible, an equivalent,
monolithic definition without intermediate structures.

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Shortcut Fusion

foldr f e ◦ build g = g f e

where

foldr :: (a→ b → b)→ b → [a]→ b
foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)

build :: (∀b.(a→ b → b)→ b → c → b)→ c → [a]
build g = g (:) []

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Example: factorial

factorial :: Int → Int
factorial n = product (down n)

product :: [Int]→ Int
product [] = 1
product (a : as) = a ∗ product as

down :: Int → [Int]
down 0 = []
down n = n : down (n − 1)

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Example: factorial

product = foldr (∗) 1

down = build gdown
where

gdown fc fn 0 = fn
gdown fc fn n = n ‘fc ‘ gdown fc fn (n − 1)

factorial = product ◦ down
= foldr (∗) 1 ◦ build gdown
= gdown (∗) 1

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Example: factorial

product = foldr (∗) 1

down = build gdown
where

gdown fc fn 0 = fn
gdown fc fn n = n ‘fc ‘ gdown fc fn (n − 1)

factorial = product ◦ down
= foldr (∗) 1 ◦ build gdown
= gdown (∗) 1

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Extended Shortcut Fusion

fmap (foldr f e) ◦ ebuild g = g f e

where

ebuild :: Functor f ⇒
(∀b.(a→ b → b)→ b → c → f b)→ c → f [a]

ebuild g = g (:) []

Functor f acts as a container of the generated list.

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Monadic Shortcut Fusion

mmap ::Monad m⇒ (a→ b)→ (m a→ m b)
mmap f m = do {a← m; return (f a)}

mbuild ::Monad m
⇒ (∀b.(a→ b → b)→ b → c → m b)
→ c → m [a]

mbuild g = g (:) []

do {as ← mbuild g c; return (fold f e as)}
= g f e c

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Example: lenLine

lenLine = do {cs ← getLine; return (length cs)}

length :: [a]→ Int
length [] = 0
length (x : xs) = 1 + length xs

getLine :: IO String
getLine = do c ← getChar

if c ≡ eol
then return []
else do cs ← getLine

return (c : cs)

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Example: lenLine

length = foldr (λx y → 1 + y) 0

getLine = mbuild ggL
where ggL fc fn = do c ← getChar

if c ≡ eol
then return fn
else do cs ← ggL fc fn

return (c ‘fc ‘ cs)

lenLine = do c ← getChar
if c ≡ eol
then return 0
else do n← lenLine

return (1 + n)

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Example: lenLine

length = foldr (λx y → 1 + y) 0

getLine = mbuild ggL
where ggL fc fn = do c ← getChar

if c ≡ eol
then return fn
else do cs ← ggL fc fn

return (c ‘fc ‘ cs)

lenLine = do c ← getChar
if c ≡ eol
then return 0
else do n← lenLine

return (1 + n)

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

In this talk

We present a shortcut fusion rules for data structures produced
within applicative computations

The rule illustrates, once more, the relevance and generality of
applicative traversals for generating and consuming data
structures in applicative contexts.

We introduce two combinators, ifold and ibuild , which model
uniform consumption and production schemes in the presence
of applicative computations.

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Applicative Functors

An Applicative Functor (or idiom) is a type constructor with two
operations:

class Functor f ⇒ Applicative f where
pure :: a→ f a
(~) :: f (a→ b)→ f a→ f b

pure lifts pure values into computations.

~ performs functional application, sequentializing effects

For example,

instance Applicative Maybe where
pure = Just
(Just f)~ (Just x) = Just (f x)

~ = Nothing

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Applicative Functors

An Applicative Functor (or idiom) is a type constructor with two
operations:

class Functor f ⇒ Applicative f where
pure :: a→ f a
(~) :: f (a→ b)→ f a→ f b

pure lifts pure values into computations.

~ performs functional application, sequentializing effects

For example,

instance Applicative Maybe where
pure = Just
(Just f)~ (Just x) = Just (f x)

~ = Nothing

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Traversable Functors

Traversable Functors support effectful traversals with
applicative actions of type a→ f b

class Functor t ⇒ Traversable t where
traverse :: Applicative f ⇒ (a→ f b)→ t a→ t (f b)
dist :: Applicative f ⇒ t (f a)→ f (t a)

Example (Lists)

traverse :: Applicative f ⇒ (a→ f b)→ [a]→ f [b]
traverse ι [] = pure []
traverse ι (x : xs) = pure (:)~ ι x ~ traverse ι xs

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Traversable Functors

Traversable Functors support effectful traversals with
applicative actions of type a→ f b

class Functor t ⇒ Traversable t where
traverse :: Applicative f ⇒ (a→ f b)→ t a→ t (f b)
dist :: Applicative f ⇒ t (f a)→ f (t a)

Example (Lists)

traverse :: Applicative f ⇒ (a→ f b)→ [a]→ f [b]
traverse ι [] = pure []
traverse ι (x : xs) = pure (:)~ ι x ~ traverse ι xs

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Applicative Fold

ifoldr :: Applicative f ⇒
(b → c → c)→ c → (a→ f b)→ [a]→ f c

ifoldr f e ι = fmap (foldr f e) ◦ traverse ι

Fusing the parts,

ifoldr f e ι [] = pure e
ifoldr f e ι (x : xs) = pure f ~ ι x ~ ifoldr f e ι xs

Observe that ifoldr is in turn a fold:

ifoldr f e ι = foldr φ (pure e)
where
φ x y = pure f ~ ι x ~ y

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Applicative Fold

ifoldr :: Applicative f ⇒
(b → c → c)→ c → (a→ f b)→ [a]→ f c

ifoldr f e ι = fmap (foldr f e) ◦ traverse ι

Fusing the parts,

ifoldr f e ι [] = pure e
ifoldr f e ι (x : xs) = pure f ~ ι x ~ ifoldr f e ι xs

Observe that ifoldr is in turn a fold:

ifoldr f e ι = foldr φ (pure e)
where
φ x y = pure f ~ ι x ~ y

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Applicative Fold

ifoldr :: Applicative f ⇒
(b → c → c)→ c → (a→ f b)→ [a]→ f c

ifoldr f e ι = fmap (foldr f e) ◦ traverse ι

Fusing the parts,

ifoldr f e ι [] = pure e
ifoldr f e ι (x : xs) = pure f ~ ι x ~ ifoldr f e ι xs

Observe that ifoldr is in turn a fold:

ifoldr f e ι = foldr φ (pure e)
where
φ x y = pure f ~ ι x ~ y

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Example: sum the reciprocals of a list

sumrecips :: [Float]→ Maybe Float
sumrecips = fmap (foldr (+) 0) ◦ recipList

recipList :: [Float]→ Maybe [Float]
recipList = traverse recip

recip :: Float → Maybe Float
recip x = if (x 6≡ 0) then pure (1 / x) else Nothing

Then, function sumrecips can be written as:

sumrecips = ifoldr (+) 0 recip

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Applicative Build

We define an applicative build as a standard build followed by
traverse:

ibuild :: Applicative f ⇒
(a→ f d)→ (∀b.(a→ b → b)→ b → c → b)→ c → f [d]

ibuild ι g = traverse ι ◦ build g

Since traverse is a fold,

traverse ι = foldr ψ (pure [])
where
ψ x y = pure (:)~ ι x ~ y

we get that:

ibuild ι g = g ψ (pure [])

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Applicative Build

We define an applicative build as a standard build followed by
traverse:

ibuild :: Applicative f ⇒
(a→ f d)→ (∀b.(a→ b → b)→ b → c → b)→ c → f [d]

ibuild ι g = traverse ι ◦ build g

Since traverse is a fold,

traverse ι = foldr ψ (pure [])
where
ψ x y = pure (:)~ ι x ~ y

we get that:

ibuild ι g = g ψ (pure [])

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Applicative Build

It is interesting to see that the applicative build can be written as
an extended build:

ibuild ι g = ebuild g ′

where
g ′ :: Applicative f ⇒

(∀b.(d → b → b)→ b → c → b)→ c → f [d]
g ′ f e = g φ (pure e)

φ :: a→ b → b
φ x y = pure f ~ ι x ~ y

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Example: reciprocals of difference of two lists

recipDiffList = recipList ◦ diffList

where

diffList :: [Float]→ [Float]→ [Float]
diffList ys [] = []
diffList [] (x : xs) = []
diffList (y : ys) (x : xs) = (y − x) : difflist ys xs

recipList = traverse recip

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Example: reciprocals of difference of two lists

Since diffList can be written as a build,

diffList ys = build (gdiff ys)

gdiff :: [Float]→ (Float → b → b)→ b → [Float]→ b
gdiff ys c n [] = n
gdiff [] c n (x : xs) = n
gdiff (y : ys) c n (x : xs) = (y − x) ‘c ‘ (gdiff ys c n xs)

we have that:

recipDiffList ys = ibuild recip (gdiff ys)

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Applicative Shortcut Fusion

We can formulate a shortcut fusion theorem for intermediate
structures with effects introduced by a traversal:

Theorem (Applicative Shortcut Fusion)

fmap (foldr f e) ◦ traverse ι ◦ build g
=

ifoldr f e ι ◦ build g
=

fmap (foldr f e) ◦ ibuild ι g
=

g φ (pure e)

where φ x y = pure f ~ ι x ~ y.

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Example

Returning to our example,

sumRecipDiffs ys = fmap sum ◦ recipList ◦ diffList ys

if we apply our shortcut fusion theorem, then we obtain a
monolithic definition for sumRecipDiffs ys:

sumRecipDiffs ys = gdiff ys (+) 0 recip

Inlining,

sumRecipDiffs :: [Float]→ [Float]→ Maybe Float
sumRecipDiffs ys [] = pure 0
sumRecipDiffs [] xs = pure 0
sumRecipDiffs (y : ys) (x : xs) = pure (+)~ recip (y − x)

~ sumRecipDiffs ys xs

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

Summary

We presented a shortcut fusion rule for applicative
computations

It shows the role of applicative traversals as the core of
applicative computations over data structures.

Associated with the rule we introduced the operators ifold and
ibuild , which capture uniform ways of consuming and
producing data structures in an applicative context.

G. Delbianco, M. Jaskelioff, A. Pardo Applicative Shortcut Fusion

