Normality, randomness, and the Garden of Eden

Silvio Capobianco
Institute of Cybernetics at TUT
Institute of Cybernetics at TUT October 15, 2013

Joint work with Pierre Guillon (CNRS \& IML Marseille) and Jarkko Kari (Mathematics Department, University of Turku)

Introduction

- Cellular automata (CA) are uniform, synchronous model of parallel computation on uniform grids, where the next state of a point is a function of the current state of a finite neighborhood of the point.
- The Garden-of-Eden theorem provides a necessary condition for the global function of a CA in dimension d to be surjective.
- Also, surjective d-dimensional CA are balanced-every pattern of a given shape has the same number of pre-images.
- Notably, on more complex grids such implications are not respected.
- Bartholdi's theorem characterizes amenable groups (a class introduced by von Neumann) as those where all surjective CA are balanced.
- We measure the amount by which a surjective CA on a non-amenable group may fail to be balanced.

The Banach-Tarski paradox (1924)

A closed ball U in the 3-dimensional Euclidean space can be decomposed into two disjoint subsets X, Y, both piecewise congruent to U.

This is due to a series of facts:

- The axiom of choice.
- The group of rotations of the 3-dimensional space has a free subgroup on two generators.
- The pieces of the decomposition are not Lebesgue measurable.

What is the role of the group?

Amenable groups

A group G is amenable if there exists a finitely additive probability measure $\mu: \mathcal{P}(G) \rightarrow[0,1]$ such that:

$$
\mu(g A)=\mu(A) \text { for every } g \in G, A \subseteq G
$$

- Subgroups of amenable groups are amenable.
- Quotients of amenable groups are amenable.
- Abelian groups are amenable.
- A group whose finitely generated subgroups are all amenable, is amenable.

A paradoxical decomposition of \mathbb{F}_{2}

Paradoxical groups

A paradoxical decomposition of a group G is a partition $G=\bigsqcup_{i=1}^{n} A_{i}$ such that, for suitable $\alpha_{1}, \ldots, \alpha_{n} \in G$,

$$
G=\bigsqcup_{i=1}^{k} \alpha_{i} A_{i}=\bigsqcup_{i=k+1}^{n} \alpha_{i} A_{i}
$$

A bounded propagation $2: 1$ compressing map on G is a function $\phi: G \rightarrow G$ such that, for a finite propagation set S,

- $\phi(g)^{-1} g \in S$ for every $g \in G$ (bounded propagation) and
- $\left|\phi^{-1}(g)\right|=2$ for every $g \in G$ (2:1 compression)

A group has a paradoxical decomposition if and only if it has a bounded propagation 2:1 compression map. Such groups are called paradoxical.

Examples of paradoxical groups

- The free group on two generators is paradoxical.
- Every group with a paradoxical subgroup is paradoxical.
- In particular, every group with a free subgroup on two generators is paradoxical.
- The converse of the previous point is false! (von Neumann's conjecture; disproved by Ol'shanskii, 1980)
- In fact, there exist paradoxical groups where every element has finite order. (Adian, 1983)

The Tarski alternative

Let G be a group. Exactly one of the following happens:
(1) G is amenable.
(2) G is paradoxical.

Are there other ways to express that?

Cellular automata

A cellular automaton (CA) on a group G is a triple $\mathcal{A}=\langle Q, \mathcal{N}, f\rangle$ where:

- Q is a finite set of states.
- $\mathcal{N}=\left\{n_{1}, \ldots, n_{k}\right\} \subseteq G$ is a finite neighborhood.
- $f: Q^{k} \rightarrow Q$ is a finitary local function

The local function induces a global function $F: Q^{G} \rightarrow Q^{G}$ via

$$
\begin{aligned}
F_{\mathcal{A}}(c)(x) & =f\left(c\left(x \cdot n_{1}\right), \ldots, c\left(x \cdot n_{k}\right)\right) \\
& =f\left(\left.c^{x}\right|_{\mathcal{N}}\right)
\end{aligned}
$$

where $c^{x}(g)=c(x \cdot g)$ for all $g \in G$.
The same rule induces a function over patterns with finite support:

$$
f(p): E \rightarrow Q, \quad f(p)(x)=f\left(\left.p^{x}\right|_{\mathcal{N}}\right) \quad \forall p: E \mathcal{N} \rightarrow Q
$$

The Garden-of-Eden theorem

A cellular automaton is pre-injective if it satisfies the following condition:

$$
\begin{gathered}
\text { if } 0<|\{g \in G \mid c(g) \neq e(g)\}|<\infty \\
\text { then } F_{\mathcal{A}}(c) \neq F_{\mathcal{A}}(e)
\end{gathered}
$$

Theorem (Moore's Garden-of-Eden theorem, 1962)
A surjective cellular automaton on $G=\mathbb{Z}^{d}$ is pre-injective.

Theorem (Myhill, 1963)
A pre-injective cellular automaton on $G=\mathbb{Z}^{d}$ is surjective.

A counterexample on the free group

Let $G=\mathbb{F}_{2}, Q=\{0,1\}, \mathcal{N}=\left\{1_{G}, a, b, a^{-1}, b^{-1}\right\}$, and f the majority rule.
\mathcal{A} is not pre-injective.

- The configuration which has value 1 only on 1_{G} is updated into the all-0 configuration.

However, \mathcal{A} is surjective.

- Let $E \in \mathcal{P F}(G)$ and let $m=\max \{\|g\| \mid g \in E\}$.
- Each $g \in E$ with $\|g\|=m$ has three neighbors outside E.
- This allows an argument by induction.

Prodiscrete topology and product measure

The prodiscrete topology of the space Q^{G} of configurations is generated by the cylinders

$$
C(E, p)=\left\{c: G \rightarrow Q|c|_{E}=p\right\}
$$

The cylinders also generate a σ-algebra Σ_{C}, on which the product measure induced by

$$
\mu_{\Pi}(C(E, p))=|Q|^{-|E|}
$$

is well defined.

- Σ_{C} is not the Borel σ-algebra unless G is countable.

Balancedness

Let E be a finite nonempty subset of G; let $\mathcal{A}=\langle Q, \mathcal{N}, f\rangle$ be a CA on G. \mathcal{A} is E-balanced if for every $p: E \rightarrow Q$,

$$
\left|f^{-1}(p)\right|=|Q|^{|E \mathcal{N}|-|E|}
$$

This is the same as saying that \mathcal{A} preserves μ_{Π}, i.e.,

$$
\mu_{\Pi}\left(F_{\mathcal{A}}^{-1}(U)\right)=\mu_{\Pi}(U)
$$

for every open $U \in \Sigma_{C}$.

Theorem (Maruoka and Kimura, 1976)
A CA on \mathbb{Z}^{d} is surjective if and only if it is balanced.

Martin-Löf randomness for infinite words

A sequential Martin-Löf test (briefly, M-L test) is a recursively enumerable $U \subseteq \mathbb{N} \times Q^{*}$ such that the level sets $U_{n}=\left\{x \in Q^{*} \mid(n, x) \in U\right\}$ satisfy the following conditions:
(1) For every $n \geq 1, U_{n+1} \subseteq U_{n}$.
(2) For every $n \geq 1$ and $m \geq n,\left|U_{n} \cap Q^{m}\right| \leq|Q|^{m-n} /(|Q|-1)$.
(3) For every $n \geq 1$ and $x, y \in Q^{*}$, if $x \in U_{n}$ and $y \in x Q^{*}$ then $y \in U_{n}$. $w \in Q^{\mathcal{N}}$ fails a sequential M-L test U if $w \in \bigcap_{n \geq 0} U_{n} Q^{\mathbb{N}}$.
w is Martin-Löf random if w does not fail any sequential M-L test.

- If $\eta: \mathbb{N} \rightarrow \mathbb{N}$ is a computable bijection, then w is M-L random if and only if $w \circ \eta$ is M-L random.
- It is well known (cf. [Martin-Löf, 1966]) that M-L random words are normal.

What is normality?

Consider the definition for real numbers:
a real number $x \in[0,1)$ is normal in base b if the sequence of its digits in base b is equidistributed
x is normal if it is normal in every base b
A similar definition holds for sequences $w \in Q^{\mathbb{N}}$:

- Let $\operatorname{occ}(u, w)=\left\{i \geq 0 \mid w_{[i: i+|u|-1]}=u\right\}$.
- w is m-normal if for every $u \in Q^{m}$,

$$
\lim _{n \rightarrow \infty} \frac{|\operatorname{occ}(u, w) \cap\{0, \ldots, n-1\}|}{n}=|Q|^{-m}
$$

Theorem (Niven and Zuckerman, 1951)
w is m-normal over Q iff it is 1 -normal over Q^{m}.

Enumerating the cylinders

Suppose G is finitely generated and has decidable word problem.

- Then there is a computable bijection $\phi: \mathbb{N} \rightarrow G$.
- Also, there is a computable function $m: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that, for all i and j, if $\phi(i)=g$ and $\phi(j)=h$, then $\phi(m(i, j))=g \cdot h$.
Then we can enumerate the cylinders as follows:
- First, we enumerate the elementary cylinders:

$$
B_{|Q| i+j}=C\left(g_{i}, q_{j}\right)=\left\{c: G \rightarrow Q \mid c(\phi(i))=q_{j}\right\}
$$

- Next, we define a bijection $\Psi: \mathcal{P F}(G) \rightarrow \mathbb{N}$ as $\Psi(X)=\sum_{i \in X} 2^{i}$ (so that $\Psi(\emptyset)=0$)
- Finally, we enumerate the cylinders as:

$$
B_{n}^{\prime}=\bigcap_{i \in \Psi-1(n+1)} B_{i}
$$

Martin-Löf randomness for configurations

Let G be a f.g. group with decidable word problem.

- We say that \mathcal{U} is \mathcal{V}-computable if there exists a r.e. $A \subseteq \mathbb{N}$ such that

$$
U_{i}=\bigcup_{\pi(i, j) \in A} V_{j} \forall i \geq 0
$$

where $\pi(i, j)=(i+j)(i+j+1) / 2+j$.

- A B^{\prime}-computable family $\mathcal{U}=\left\{U_{n}\right\}_{n \geq 0}$ of open subsets of Q^{G} is a Martin-Löf μ_{Π}-test if $\mu_{\Pi}\left(U_{n}\right) \leq 2^{-n}$ for every $n \geq 0$.
$c \in Q^{G}$ fails \mathcal{U} if $c \in \bigcap_{n \geq 0} U_{n}$.
- c is $M-L \mu_{\Pi}$-random if it does not fail any $\mathrm{M}-\mathrm{L} \mu_{\Pi}$-test.

Two important facts about Martin-Löf randomness

Theorem (Hertling and Weihrauch)
Let $\phi: \mathbb{N} \rightarrow G$ an admissible indexing.
$c \in Q^{G}$ is M-L μ_{Π}-random if and only if $c \circ \phi \in Q^{\mathbb{N}}$ is M-L random.

Theorem (Calude et al., 2001)
Let $\mathcal{A}=\langle Q, \mathcal{N}, f\rangle$ be a $C A$ on \mathbb{Z}^{d}. The following are equivalent:
(1) \mathcal{A} is surjective.
(2) For every $c: \mathbb{Z}^{d} \rightarrow Q$, if c is $M-L \mu_{\Pi}$ random then so is $F_{\mathcal{A}}(c)$.

Bartholdi's theorem (2010)

Let G be a group. The following are equivalent:
(1) G is amenable.
(2) Every surjective cellular automaton on G is pre-injective.
(3) Every surjective cellular automaton on G preserves the product measure.

How much does preservation of product measure fail on paradoxical groups?

The amount of a failure

Theorem (Capobianco, Guillon and Kari)
Let G be a non-amenable group.
There exist an alphabet Q, a subset U of Q^{G} such that

$$
\mu_{\Pi}(U)=1
$$

and a surjective cellular automaton \mathcal{A} over G with alphabet Q such that

$$
\mu_{\Pi}\left(F_{\mathcal{A}}^{-1}(U)\right)=0 .
$$

A surjective, non-balanced CA

Guillon, 2011: improves Bartholdi's counterexample.
Let G be a non-amenable group, ϕ a bounded propagation 2:1
compressing map with propagation set S.
Define on S a total ordering \preceq.
Define a cA \mathcal{A} on G by $Q=(S \times\{0,1\} \times S) \sqcup\left\{q_{0}\right\}, \mathcal{N}=S$, and
$f(u)= \begin{cases}q_{0} & \text { if } \exists s \in S \mid u_{s}=q_{0}, \\ (p, \alpha, q) & \text { if } \exists(s, t) \in S \times S \mid s \prec t, u_{s}=(s, \alpha, p), u_{t}=(t, 1, q), \\ q_{0} & \text { otherwise } .\end{cases}$
Then \mathcal{A}, although clearly non-balanced, is surjective.

- For $j \in G$ it is $j=\phi(j s)=\phi(j t)$ for exactly two $s, t \in S$ with $s \prec t$.
- If $c(j)=q_{0}$ put $e(j s)=e(j t)=(s, 0, s)$.
- If $c(j)=(p, \alpha, q)$ put $e(j s)=(s, \alpha, p)$ and $e(j t)=(t, 1, q)$.
- Then $F(e)=c$.

End of the game?

At this point, one might be tempted to reason as such:

- Let G be a non-amenable group with decidable word problem.
- Let c be a Martin-Löf random configuration for Guillon's CA.
- There exist some points $g \in G$ where $c(g)=q_{0}$.
- As $|S| \geq 2, F_{\mathcal{A}}(c)$ cannot have isolated q_{0} 's.
- Therefore, $F_{\mathcal{A}}(c)$ cannot be random.

This argument, albeit convincing, is wrong.

- To say that $F_{\mathcal{A}}(c)$ has no isolated occurrences of q_{0}, means that there are some patterns that do not occur in $F_{\mathcal{A}}(c)$.
- But c, being random, is also rich ...
- ... and a rich configuration contains all the preimages of every non-orphan pattern!

Normality for d-dimensional configurations

It is still sensible to define normality for $c \in \mathbb{Z}^{d}$ as follows:

- Let $E=E\left(n_{1}, \ldots, n_{d}\right)=\prod_{i=1}^{d}\left\{0, \ldots, n_{i}-1\right\}$.
- $c: \mathbb{Z}^{d} \rightarrow Q$ is E-normal if for every $p: E \rightarrow Q$,

$$
\lim _{n \rightarrow \infty} \frac{1}{(2 n+1)^{d}} \cdot\left|\left\{x \in \mathbb{Z}^{d}\left|\|x\| \leq n, c^{x}\right|_{E}=p\right\}\right|=\frac{1}{|Q|^{|E|}}
$$

But: why is this sensible?

- Every E such as above is a coset for some subgroup of \mathbb{Z}^{d}.
- Also, a subgroup of finite index of \mathbb{Z}^{d} is isomorphic to \mathbb{Z}^{d}.

This is not true for arbitrary groups!

- If G is free on two generators, and $H \leq G$ has index 2 , then H is free on three generators!

So, what is to be done?

The idea:

- Patch the group with patches of a given shape.
- See the state of patches as macrostates.
- Show that $\mu_{\Pi \text {-almost every configuration is normal with respect to }}$ the macrostates.

The problem:

- If we want to fill the group without having the patches overlap, we may be forced to change the underlying group.

The solution: (Kari, 2012)
only patch a portion of the group!

Normal configurations, modulo some conditions

Let G be an arbitrary infinite group.

- Let $E \in \mathcal{P F}(G)$ be nonempty.
- Let $h: \mathbb{N} \rightarrow G$ be injective.

We define the lower density, upper density, and density of $U \subseteq G$ according to h, as the lower limit dens $\inf _{h}$, upper limit dens $\sup _{h}$, and (if exist) limit dens ${ }_{h}$ of

$$
\frac{|U \cap h(\{0, \ldots, n-1\})|}{n}
$$

We say $c: G \rightarrow Q$ is h - E-normal if for every pattern $p: E \rightarrow Q$,

$$
\operatorname{dens}_{h} \operatorname{occ}(p, c)=|Q|^{-|E|}
$$

where $\operatorname{occ}(p, c)=\left\{g \in G\left|c^{g}\right|_{E}=p\right\}$.

Sanity check

If $E \subseteq F$ and c is h - F-normal, then it is also h - E-normal.

- The vice versa is false: for $h(n)=n, \ldots 010101 \ldots$ is h-\{0\}-normal and h-\{1\}-normal but not h - $\{0,1\}$-normal.
Also, the following are equivalent:
(1) c is h - E-normal.
(2) For every $p: E \rightarrow Q$, dens $\inf _{h} \operatorname{occ}(p, c) \geq|Q|^{-|E|}$.
(3) For every $p: E \rightarrow Q$, dens $\sup _{h} \operatorname{occ}(p, c) \leq|Q|^{-|E|}$.

A key lemma

Let $\mathcal{A}=\langle Q, \mathcal{N}, f\rangle$ be a nontrivial CA on G.

- Suppose \mathcal{A} has a spreading state q_{0}.
- Let s, t be two distinct elements of \mathcal{N}.
- Let $h: \mathbb{N} \rightarrow G$ be injective.

If $c: G \rightarrow Q$ is h - $\{s, t\}$-normal, then $F_{\mathcal{A}}(c)$ is not h-1-normal.

- In particular, if c is h - E-normal for some $E \in \mathcal{P F}(G)$ containing \mathcal{N}, then $F_{\mathcal{A}}(c)$ is not h-1-normal.

The set of non-normal configurations

For $p: E \rightarrow Q, k \geq 1$, and $h: \mathbb{N} \rightarrow G$ injective, let

$$
L_{h, p, k, n}=\left\{c: G \rightarrow Q \left\lvert\, \frac{|\{i<n \mid h(i) \in \operatorname{occ}(p, c)\}|}{n} \leq \frac{1}{|Q|^{|E|}}-\frac{1}{k}\right.\right\}
$$

densinf ${ }_{h} \operatorname{occ}(p, c)<|Q|^{-|E|}$ if and only if there exists $k \geq 1$ such that

$$
c \in \underset{n}{\lim \sup } L_{h, p, k, n}=\bigcap_{n \geq 1} \bigcup_{m \geq n} L_{h, p, k, m} \stackrel{\text { def }}{=} L_{h, p, k}
$$

which is Σ_{C}-measurable. Then

$$
L_{h, E}=\bigcup_{p \in Q^{E}, k \geq 1} L_{h, p, k}
$$

is the set of all the configurations $c \in Q^{G}$ that are not h - E-normal.
When is it the case that $\mu_{\Pi}\left(L_{h, E}\right)=0$?

The Chernoff bound

Let Y_{0}, \ldots, Y_{n-1} be independent nonnegative random variables.
Let $S_{n}=Y_{0}+\ldots+Y_{n-1}, \mu=\mu(n)=\mathbb{E}\left(S_{n}\right)$.
For every $\delta \in(0,1)$,

$$
\mathbb{P}\left(S_{n}<\mu \cdot(1-\delta)\right)<e^{-\frac{\mu \delta^{2}}{2}} .
$$

In particular, if the Y_{i} 's are Bernoulli trials with probability p, and $0<\varepsilon<\min (p, 1-p)$, then for $\delta=\varepsilon / p$

$$
\sum_{0 \leq k<n \cdot(p-\varepsilon)}\binom{n}{k} p^{k}(1-p)^{n-k}<e^{-\frac{\varepsilon^{2} n}{2 p}} .
$$

A full set of normal configurations

Suppose that the sets $h(i) E, i \geq 0$, are pairwise disjoint.

- The random variables

$$
Y_{i}=\left[\left.c^{h(i)}\right|_{E}=p\right]
$$

are i.i.d. Bernoulli of parameter $t=|Q|^{-|E|}$.

- Set $S_{n}=Y_{0}+\ldots+Y_{n-1}$. Then for $\delta=|Q|^{|E|} / k$,

$$
L_{h, p, k, n}=\left\{c:\left.G \rightarrow Q\left|S_{n}<n \cdot\right| Q\right|^{-|E|} \cdot\left(1-|Q|^{|E|} / k\right)\right\}
$$

and

$$
\mu_{\Pi}\left(L_{h, p, k, n}\right)=\mathbb{P}\left(\left\{S_{n}<\mu \cdot(1-\delta)\right\}\right)<e^{-\frac{|Q|^{|E|}}{2 k^{2}} n}
$$

- By the Borel-Cantelli lemma, all the $L_{h, p, k}$ are null sets.

In conclusion: $\mu_{\Pi \text {-almost every } c: G \rightarrow Q}$ is h - E-normal

If it fails, it fails catastrophically

Let G be a non-amenable group.

- Let $\mathcal{A}=\langle Q, \mathcal{N}, f\rangle$ be the Guillon CA.
- Let $E \supseteq \mathcal{N} \cup\{1\}$.
- Let $h: \mathbb{N} \rightarrow G$ s.t. the $h(i) E, i \geq 0$, are pairwise disjoint.
- Then μ_{Π}-almost every $c \in Q^{G}$ is h - E - and h - 1 -normal \ldots
- ... so none of their preimages can be h - E-normal!

Hence, the set U of h - E-normal configurations satisfies

$$
\mu_{\Pi}(U)=1 \text { and } \mu_{\Pi}\left(F_{\mathcal{A}}^{-1}(U)\right)=0
$$

Back to randomness

Let G be an amenable group and let $\mathcal{A}=\langle Q, \mathcal{N}, f\rangle$ be a CA on G.

- If \mathcal{U} is B^{\prime}-measurable then so is $F_{\mathcal{A}}^{-1}(\mathcal{U})$.
- If \mathcal{A} is surjective and \mathcal{U} is a $\mathrm{M}-\mathrm{L} \mu_{\Pi}$-test, then so is $F_{\mathcal{A}}^{-1}(\mathcal{U})$.
- In these hypotheses, if $F_{\mathcal{A}}(c)$ fails \mathcal{U}, then c fails $F_{\mathcal{A}}^{-1}(\mathcal{U})$.

Summarizing:
if G is amenable, \mathcal{A} is surjective, and c is $\mathrm{M}-\mathrm{L} \mu_{\Pi}$-random, then $F_{\mathcal{A}}(c)$ is $\mathrm{M}-\mathrm{L} \mu_{\Pi}$-random

Fixing a flaw

$a \in Q^{\mathbb{N}}$ is M-L random relatively to $b \in Q^{\mathbb{N}}$ if it is M-L random when computability is considered according to Turing machines with oracle b.

Theorem (van Lambalgen, 1987)
Let $a, b \in Q^{\mathbb{N}}$ and

$$
c(n)= \begin{cases}a(k) & \text { if } n=2 k \\ b(k) & \text { if } n=2 k+1 .\end{cases}
$$

The following are equivalent:
(1) c is M-L random.
(2) a is M-L random, and b is M-L random relatively to a.
(3) b is M-L random, and a is M-L random relatively to b.

Another catastrophic failure!

Let G be an infinite f.g. group with decidable word problem. For every nonempty $E \in \mathcal{P F}(G)$ there exists a computable injective function $h: \mathbb{N} \rightarrow G$ such that:
(1) $h(\mathbb{N})$ is a recursive subset of G with infinite complement.
(2) $h(n) E \cap h(m) E=\emptyset$ for every $n \neq m$.
(3) For any alphabet Q, every M-L $\mu_{\Pi \text {-random configuration } c: G \rightarrow Q}$ is h - E-normal. (This follows from van Lambalgen's theorem.)

Let then \mathcal{A} be the Guillon CA.

- Construct h as above with $E=\mathcal{N} \cup\{1\}$.
- Let $c: G \rightarrow Q$ be a $\mathrm{M}-\mathrm{L} \mu_{\Pi}$-random configuration.
- Because of the above lemma, $F_{\mathcal{A}}(c)$ cannot be random.
- For the same reason, none of the preimages of c can be random.

A diagram of implications

Conclusions and future work

- The characterizations of surjective CA listed in [Calude et al., 2001] actually hold on arbitrary amenable groups-and precisely on those.
- Among those, preservation of the product measure is the one that fails catastrophically on paradoxical groups.
- Does Myhill's theorem fail for paradoxical groups?
(This problem seems very difficult!)
- Are there injective CA which are not balanced? (If no such CA exists, then Gottschalk's conjecture is true.)
- Does there exists a CA that sends a nonrich configuration into a rich one?

Thank you for attention!

Any questions?

