
What, if anything,
can be done in linear time?

Yuri Gurevich

Tallinn, April 29, 2014

Agenda

1. What linear time? Why linear time?

2. Propositional primal infon logic

3. A linear time decision algorithm

4. Extensions with

1. Disjunction

2. Conjunctions as sets

3. Transitivity

WHAT LINEAR TIME?
WHY LINEAR TIME?

Why

• Big data.

• Remark. In many cases, big-data algorithms
are approximate and randomized, necessarily
so.

What linear time?

• A short answer:
We use the standard computation model of
the analysis of algorithms.

• A longer answer, with examples and all,
follows.

Example 1: Sorting.

• A well-known lower bond is this:
Sorting 𝑛 items requires Ω(𝑛 ⋅ log 𝑛)
comparisons and thus Ω(𝑛 ⋅ log 𝑛) time.

• There is no way around the lower bound.
Or maybe there is?

An array A if length n

• Indices: 0, 1, …, n-1

• Values A[0], A[1], …, A[n-1]

Distinct natural numbers < 𝑛
can be sorted in time 𝑂(𝑛).

We illustrate this with
𝑛 = 7 and 𝐴 = 𝐴 0 , 𝐴 1 , 𝐴 2 = 3,6,0 .

1. Create and auxiliary array 𝐵 and zero it:
𝐵 = 〈0,0,0,0,0,0,0〉.

2. Traverse 𝐴; for each value 𝑘, set 𝐵[𝑘] = 1.
𝐵 becomes 1,0,0,1,0,0,1 .

3. Traverse 𝐵 outputing indices with positive
values: 〈0,3,6〉.

We forgo interesting generalizations.

The computation model

• Random Access Machine
with registers of length 𝑂(log 𝑛).
– Only the initial polynomial many registers are used,

with address of length 𝑂(log 𝑛).

– Relations =,≥,≤, and operations +,−
are constant time.

• The model reflects the standard computer
architecture and the regular intuition of
programmers.

Example 2: Tries

One application:
lexical analyzers

to, tea, ted, ten, A, inn

Example 3: Suffix arrays.

• Let 𝑠 = 𝑐0…𝑐𝑛−1. Each 𝑖 < 𝑛 is the 𝑘𝑒𝑦 for
the suffix 𝑐𝑖 …𝑐𝑛−1.

• The suffix array for 𝑠 is an array 𝐴 of length 𝑛
of 𝑠 where each 𝐴[𝑗] is (the key of) the 𝑗-th
suffix in the lexicographical order.

• An amazing algorithm constructs the suffix array
in linear time.

Parsing logic formulas

• Using the tools above + a deterministic
pushdown automaton, produce – in linear time –
the parse tree of a given logic formula.

• The nodes and edges are decorated with useful
labels and pointers.

• Two nodes may represent different occurrences
of the same subformula; call them homonyms. All
pointers 𝐻 𝑢 from any node 𝑢 to its homonymy
original can be constructed in 𝑂(𝑛).

PROPOSITIONAL PRIMAL INFON
LOGIC

Motivation for primal logic

• Access control. DKAL

Why propositional?

• DKAL rules have the form
𝑣1: 𝑇1, 𝑣2: 𝑇2, …

upon 𝜋(𝑤1, …)
if 𝛼(…)
actions

Meaning: If an arriving message fits the pattern 𝜋 and if the condition
𝛼 follows from your knowledge assertions, perform the actions.

• Often, by the time you arrive to check 𝛼, it is ground. The assertion
are typically not ground but only few particular ground instances are
relevant.

Expository simplifications

• For expository reasons, we restrict attention
to the “topless” (without ⊤) fragment that is
quote-free.

The derivation rules

𝑥 ∧ 𝑦

𝑥

𝑥 ∧ 𝑦

𝑦

𝑥, 𝑦

𝑥 ∧ 𝑦

𝑥, 𝑥 → 𝑦

𝑦

𝑦

𝑥 → 𝑦

The subformula property

• Theorem. If
𝛼1, … , 𝛼ℓ

is a shortest derivation of 𝜑 from 𝐻
then every 𝛼𝑖 is a subformula of 𝐻,𝜑.

• In the “quoteful” case, instead of subformulas
of a formula 𝛼, we have formulas local to 𝛼.
There are < |𝛼| such local formulas.

An interpolation lemma of sorts

• Lemma. If 𝐻 ⊢ 𝜑 then there is a set 𝐼 of
subformulas of 𝐻 that are also subformulas of
𝜑, such that

1. Formulas 𝐼 are derivable from H, and

2. 𝜑 is derivable from 𝐼 using only introduction
rules.

• We will not use the interpolation lemma but it
gives a useful optimization in the case where
the hypotheses change rarely.

The multi-derivation problem

• Definition. Given sets 𝐻 (hypotheses) and 𝑄
(queries) of formulas, decide which queries
follow from the hypotheses.

• Theorem. The multi-derivation problem for
propositional infon logic is solvable in linear
time.

• We explain the main ideas.

• 𝑛 is always the input size,
essentially 𝐻 + |𝑄|.

A LINEAR TIME DECISION ALGORITHM
FOR THE MULTI-DERIVATION PROBLEM

Approach: derive them all

Compute all subformulas of 𝐻,𝑄 derivable from
the hypotheses 𝐻.

High-level algorithm

• Initially all subformulas of 𝐻,𝑄 are raw,
only hypotheses are pending and
there are no processed formulas.

• Pick the first pending formula 𝛼,
apply all possible inference rules to 𝛼,
then mark 𝛼 processed.

– In the process some raw formulas may become
pending.

• Repeat until no formula is pending.

One easy case

• Apply the ∧-elimination rule
𝑥∧𝑦

𝑥
.

• In this case, 𝛼 is a conjunction. If the first
conjunct of 𝛼 is raw, mark it pending.

One harder case

• Apply the ∧-introduction rule
𝑥,𝑦

𝑥∧𝑦

with 𝛼 playing the role of 𝑥.

• All raw formulas of the form 𝛼 ∧ 𝑦 where y is
pending or processed, should be marked
pending.

• How do we find them? We don’t have the
time to walk through the raw formulas.

Local search

• Every homonymy original node 𝑢 is endowed
with four so-called use sets denoted

∧, 𝑙 , ∧, 𝑟 , →, 𝑙 , →, 𝑟

computed as follows.
• Traverse the parse tree, in the depth-first way.
• If a homonymy original 𝑢 is the left child of a

conjunction node 𝑤, put 𝐻(𝑤) into the use set
(∧, 𝑙) of 𝑢. If u is the right child of 𝑤, put 𝐻(𝑤)
use ∧, 𝑟 instead.

• Similarly for →.

Back to applying
𝑥∧𝑦

𝑥

• Recall: we are looking for raw formulas of the
form 𝛼 ∧ 𝑦 where 𝛼 is the first pending
formula.

• Just walk through the use set (∧, 𝑙) of 𝛼.

EXTENTION 1: DISJUNCTIONS

Motivations

Recall the DKAL rule
𝑣1: 𝑇1, … , 𝑣𝑗: 𝑇𝑗

upon 𝜋 𝑤1, …
if 𝛼 …
actions

and suppose that 𝛼 = 𝛽 ∨ 𝛾, e.g.
passport(traveller,UK) ∨ passport(traveller,EU).

There may be many such disjunctions. They may be
eliminated but they make rule much more succinct.

Add only introduction rules

𝑥

𝑥 ∨ 𝑦

𝑦

𝑥 ∨ 𝑦

The linear decision algorithm generalizes in a
rather obvious way.

EXTENSION 2: CONJUNCTIONS
(AND DISJUNCTIONS) AS SETS

Motivation

While 𝑥 ∧ 𝑦 entails 𝑦 ∧ 𝑥,

• 𝑥 ∧ 𝑦 → 𝑧 doesn’t entail 𝑦 ∧ 𝑥 → 𝑧,

• 𝑧 → (𝑥 ∧ 𝑦) doesn’t entail 𝑧 → 𝑦 ∧ 𝑥 ,

• 𝑥 ∧ 𝑦 ∧ 𝑧 → 𝑤 doesn’t entail

𝑥 ∧ 𝑦 ∧ 𝑧 → 𝑤, etc.

The idea, a problem, and a solution

• View conjunctions as sets of conjuncts.
This repairs the missing entailments.

• But sets are not constructive objects.

• Represent sets as sequences by ordering the
conjuncts lexicographically.

The decision algorithm

• The resulting multi-derivability problem is
solvable in expected linear time.

• It is the algorithm that introduces
randomization. No probability distribution on
inputs is assumed.

EXTENSION 3: TRANSITIVE PRIMAL
INFON LOGIC

Motivation

• In primal infon logic,

𝑥 → 𝑦 , (𝑦 → 𝑧) don’t entail (𝑥 → 𝑧).

New axiom and rule

• In the quoteless case, transitive primal infon
logic is the extension of primal infon logic with
an axiom 𝑥 → 𝑥 and the rule

𝑥 → 𝑦, 𝑦 → 𝑧

𝑥 → 𝑧

An alternative presentation of
transitivity

𝑥1 → 𝑥2, 𝑥2 → 𝑥3, … , 𝑥𝑘−1 → 𝑥𝑘
𝑥1 → 𝑥𝑘

Logically the alternative presentation is
equivalent to the original one but
algorithmically it makes a lot of difference.

Multi-derivability

• Multi-derivability problem for the transitive
primal infon logic is solvable in quadratic time.

THANK YOU

VAULT

High-level algorithm

Initially all local formulas are raw,
except that hypotheses are pending.
No formulas are processed.

1. Pick the first pending formula 𝛼,

2. apply all (applicable) inference rules 𝑅 to 𝛼;
if any of the conclusions are raw, make them pending.

3. mark 𝛼 processed.

4. Repeat until no formula is pending.

• Pending and processed formulas have been derived.

• Formulas move only from raw to pending to processed.

One easy case

• 𝛼 = 𝛽 ∧ 𝛾, 𝑅 is
𝑥 ∧ 𝑦

𝑥
⋅

• If 𝛽 is raw, mark it pending.

One harder case

• Apply 𝑅 =
𝑥, 𝑦

𝑥 ∧ 𝑦
to 𝛼, with 𝛼 being the left

premise.

– It will be convenient to abbreviate this sentence
thus: apply 𝑅𝑙 to 𝛼.

• All raw formulas 𝛼 ∧ 𝑦, with 𝑦 pending or
processed, should be marked pending.
But how do we find them?

Succinct representation, 1

• Local formulas are too big objects to manipulate in
linear time. So we work with the parse tree of 𝐻,𝑄.
The subtree rooted at a node u of ParseTree(𝐻,𝑄) is
the parse tree of some formula 𝜑, the formula of 𝑢.

• Draft definition. If 𝜑 = Formula(𝑢) then 𝑢 represents
𝜑.

• But then 𝜑 may have many representations.

• Call nodes 𝑢, 𝑣 homonyms if their formulas are
isomorphic.

Succinct representation, 2

• Lemma. There is a linear-time algorithm that

– chooses a homonymy leader in every homonymy
class, and

– sets pointers 𝐻𝑢 from any node 𝑢 to its
homonymy leader.

• The algorithm uses suffix arrays.

• Def. If 𝜑 = Formula(𝑢) then 𝐻𝑢 represents 𝜑.
Further, 𝐻𝑢 = N𝑜𝑑𝑒(𝜑).

The use sets US(𝑅𝑙 , 𝑢)

• Traverse the parse tree in the depth-first
manner. For every homonymy leader 𝑤 with
Formula(𝑤) = 𝑥 ∧ 𝑦,

put 𝑤 into the use set US(𝑅𝑙 , 𝐻𝑤𝑙).

– Here 𝑤𝑙 is the left child of 𝑤.

– Notice that 𝐻𝑤𝑙 =Node(𝑥).

– Notice that every Node(𝛼 ∧ 𝑦) occurs in
US(𝑅𝑙,Node(α)).

Applying 𝑅𝑙 to 𝛼

• Walk through US(𝑅𝑙 , Node(𝛼)) and mark
every raw 𝑤 there pending.

• How do you find Node(𝛼)?
That is how 𝛼 is given in the first place.

