What, if anything, can be done in linear time?

Yuri Gurevich

Tallinn, April 29, 2014

Agenda

1. What linear time? Why linear time?
2. Propositional primal infon logic
3. A linear time decision algorithm
4. Extensions with
5. Disjunction
6. Conjunctions as sets
7. Transitivity

WHAT LINEAR TIME?

 WHY LINEAR TIME?
Why

- Big data.
- Remark. In many cases, big-data algorithms are approximate and randomized, necessarily so.

What linear time?

- A short answer:

We use the standard computation model of the analysis of algorithms.

- A longer answer, with examples and all, follows.

Example 1: Sorting.

- A well-known lower bond is this:

Sorting n items requires $\Omega(n \cdot \log (n))$ comparisons and thus $\Omega(n \cdot \log (n))$ time.

- There is no way around the lower bound. Or maybe there is?

An array A if length n

- Indices: 0, 1, ..., n-1
- Values A[0], A[1], ..., A[n-1]

Distinct natural numbers $<n$ can be sorted in time $O(n)$.

We illustrate this with
$n=7$ and $A=\langle A[0], A[1], A[2]\rangle=\langle 3,6,0\rangle$.

1. Create and auxiliary array B and zero it: $B=\langle 0,0,0,0,0,0,0\rangle$.
2. Traverse A; for each value k, set $B[k]=1$. B becomes $\langle 1,0,0,1,0,0,1\rangle$.
3. Traverse B outputing indices with positive values: $\langle 0,3,6\rangle$.
We forgo interesting generalizations.

The computation model

- Random Access Machine with registers of length $O(\log n)$.
- Only the initial polynomial many registers are used, with address of length $O(\log n)$.
- Relations $=, \geq, \leq$, and operations,+are constant time.
- The model reflects the standard computer architecture and the regular intuition of programmers.

Example 2: Tries

One application: lexical analyzers

to, tea, ted, ten, A, inn

Example 3: Suffix arrays.

- Let $s=c_{0} \ldots c_{n-1}$. Each $i<n$ is the key for the suffix $c_{i} \ldots c_{n-1}$.
- The suffix array for s is an array A of length n of s where each $A[j]$ is (the key of) the j-th suffix in the lexicographical order.
- An amazing algorithm constructs the suffix array in linear time.

Parsing logic formulas

- Using the tools above + a deterministic pushdown automaton, produce - in linear time the parse tree of a given logic formula.
- The nodes and edges are decorated with useful labels and pointers.
- Two nodes may represent different occurrences of the same subformula; call them homonyms. All pointers $H(u)$ from any node u to its homonymy original can be constructed in $O(n)$.

PROPOSITIONAL PRIMAL INFON LOGIC

Motivation for primal logic

- Access control. DKAL

Why propositional?

- DKAL rules have the form

$$
\begin{aligned}
& v_{1}: T_{1}, v_{2}: T_{2}, \ldots \\
& \text { upon } \pi\left(w_{1}, \ldots\right) \\
& \text { if } \alpha(\ldots) \\
& \text { actions }
\end{aligned}
$$

Meaning: If an arriving message fits the pattern π and if the condition α follows from your knowledge assertions, perform the actions.

- Often, by the time you arrive to check α, it is ground. The assertion are typically not ground but only few particular ground instances are relevant.

Expository simplifications

- For expository reasons, we restrict attention to the "topless" (without T) fragment that is quote-free.

The derivation rules

$\frac{x \wedge y}{x} \quad \frac{x \wedge y}{y} \quad \frac{x, y}{x \wedge y}$

$$
\frac{x, x \rightarrow y}{y} \quad \frac{y}{x \rightarrow y}
$$

The subformula property

- Theorem. If

$$
\alpha_{1}, \ldots, \alpha_{\ell}
$$

is a shortest derivation of φ from H then every α_{i} is a subformula of H, φ.

- In the "quoteful" case, instead of subformulas of a formula α, we have formulas local to α. There are $<|\alpha|$ such local formulas.

An interpolation lemma of sorts

- Lemma. If $H \vdash \varphi$ then there is a set I of subformulas of H that are also subformulas of φ, such that

1. Formulas I are derivable from H , and
2. φ is derivable from I using only introduction rules.

- We will not use the interpolation lemma but it gives a useful optimization in the case where the hypotheses change rarely.

The multi-derivation problem

- Definition. Given sets H (hypotheses) and Q (queries) of formulas, decide which queries follow from the hypotheses.
- Theorem. The multi-derivation problem for propositional infon logic is solvable in linear time.
- We explain the main ideas.
- n is always the input size, essentially $|H|+|Q|$.

A LINEAR TIME DECISION ALGORITHM FOR THE MULTI-DERIVATION PROBLEM

Approach: derive them all

Compute all subformulas of H, Q derivable from the hypotheses H.

High-level algorithm

- Initially all subformulas of H, Q are raw, only hypotheses are pending and there are no processed formulas.
- Pick the first pending formula α, apply all possible inference rules to α, then mark α processed.
- In the process some raw formulas may become pending.
- Repeat until no formula is pending.

One easy case

- Apply the \wedge-elimination rule $\frac{x \wedge y}{x}$.
- In this case, α is a conjunction. If the first conjunct of α is raw, mark it pending.

One harder case

- Apply the \wedge-introduction rule $\frac{x, y}{x \wedge y}$ with α playing the role of x.
- All raw formulas of the form $\alpha \wedge y$ where y is pending or processed, should be marked pending.
- How do we find them? We don't have the time to walk through the raw formulas.

Local search

- Every homonymy original node u is endowed with four so-called use sets denoted

$$
(\wedge, l),(\wedge, r),(\rightarrow, l),(\rightarrow, r)
$$

computed as follows.

- Traverse the parse tree, in the depth-first way.
- If a homonymy original u is the left child of a conjunction node w, put $H(w)$ into the use set (\wedge, l) of u. If u is the right child of w, put $H(w)$ use (\wedge, r) instead.
- Similarly for \rightarrow.

Back to applying $\frac{x \wedge y}{x}$

- Recall: we are looking for raw formulas of the form $\alpha \wedge y$ where α is the first pending formula.
- Just walk through the use set (\wedge, l) of α.

EXTENTION 1: DISJUNCTIONS

Motivations

Recall the DKAL rule

$$
\begin{aligned}
& v_{1}: T_{1}, \ldots, v_{j}: T_{j} \\
& \text { upon } \pi\left(w_{1}, \ldots\right) \\
& \text { if } \alpha(\ldots) \\
& \text { actions }
\end{aligned}
$$

and suppose that $\alpha=\beta \vee \gamma$, e.g. passport(traveller,UK) V passport(traveller,EU).

There may be many such disjunctions. They may be eliminated but they make rule much more succinct.

Add only introduction rules

$$
\frac{x}{x \vee y} \quad \frac{y}{x \vee y}
$$

The linear decision algorithm generalizes in a rather obvious way.

EXTENSION 2: CONJUNCTIONS (AND DISJUNCTIONS) AS SETS

Motivation

While $x \wedge y$ entails $y \wedge x$,

- $(x \wedge y) \rightarrow z$ doesn't entail $(y \wedge x) \rightarrow z$,
- $z \rightarrow(x \wedge y)$ doesn't entail $z \rightarrow(y \wedge x)$,
- $(x \wedge y) \wedge z \rightarrow w$ doesn't entail $x \wedge(y \wedge z) \rightarrow w$, etc.

The idea, a problem, and a solution

- View conjunctions as sets of conjuncts. This repairs the missing entailments.
- But sets are not constructive objects.
- Represent sets as sequences by ordering the conjuncts lexicographically.

The decision algorithm

- The resulting multi-derivability problem is solvable in expected linear time.
- It is the algorithm that introduces randomization. No probability distribution on inputs is assumed.

EXTENSION 3: TRANSITIVE PRIMAL INFON LOGIC

Motivation

- In primal infon logic,
$(x \rightarrow y),(y \rightarrow z)$ don't entail $(x \rightarrow z)$.

New axiom and rule

- In the quoteless case, transitive primal infon logic is the extension of primal infon logic with an axiom $x \rightarrow x$ and the rule

$$
\frac{x \rightarrow y, y \rightarrow z}{x \rightarrow z}
$$

An alternative presentation of transitivity

$$
\frac{x_{1} \rightarrow x_{2}, x_{2} \rightarrow x_{3}, \ldots, x_{k-1} \rightarrow x_{k}}{x_{1} \rightarrow x_{k}}
$$

Logically the alternative presentation is equivalent to the original one but algorithmically it makes a lot of difference.

Multi-derivability

- Multi-derivability problem for the transitive primal infon logic is solvable in quadratic time.

THANK YOU

VAULT

High-level algorithm

Initially all local formulas are raw, except that hypotheses are pending.
No formulas are processed.

1. Pick the first pending formula α,
2. apply all (applicable) inference rules R to α; if any of the conclusions are raw, make them pending.
3. mark α processed.
4. Repeat until no formula is pending.

- Pending and processed formulas have been derived.
- Formulas move only from raw to pending to processed.

One easy case

- $\alpha=\beta \wedge \gamma, R$ is $\frac{x \wedge y}{x}$.
- If β is raw, mark it pending.

One harder case

- Apply $R=\frac{x, y}{x \wedge y}$ to α, with α being the left premise.
- It will be convenient to abbreviate this sentence thus: apply R_{l} to α.
- All raw formulas $\alpha \wedge y$, with y pending or processed, should be marked pending. But how do we find them?

Succinct representation, 1

- Local formulas are too big objects to manipulate in linear time. So we work with the parse tree of H, Q. The subtree rooted at a node u of $\operatorname{ParseTree}(H, Q)$ is the parse tree of some formula φ, the formula of u.
- Draft definition. If $\varphi=\operatorname{Formula}(u)$ then u represents φ.
- But then φ may have many representations.
- Call nodes u, v homonyms if their formulas are isomorphic.

Succinct representation, 2

- Lemma. There is a linear-time algorithm that
- chooses a homonymy leader in every homonymy class, and
- sets pointers $H u$ from any node u to its homonymy leader.
- The algorithm uses suffix arrays.
- Def. If $\varphi=$ Formula(u) then $H u$ represents φ. Further, $H u=\operatorname{Node}(\varphi)$.

The use sets $\operatorname{US}\left(R_{l}, u\right)$

- Traverse the parse tree in the depth-first manner. For every homonymy leader w with
Formula $(w)=x \wedge y$, put w into the use set $\operatorname{US}\left(R_{l}, H w_{l}\right)$.
- Here w_{l} is the left child of w.
- Notice that $H w_{l}=\operatorname{Node}(x)$.
- Notice that every Node $(\alpha \wedge y)$ occurs in $\operatorname{US}\left(R_{l}, \operatorname{Node}(\alpha)\right)$.

Applying R_{l} to α

- Walk through US $\left(R_{l}, \operatorname{Node}(\alpha)\right)$ and mark every raw w there pending.
- How do you find $\operatorname{Node}(\alpha)$?

That is how α is given in the first place.

