
Logic and programming The Temporal Curry–Howard Correspondence Conclusions and outlook

Using Logic for Programming Reactive Systems

Wolfgang Jeltsch

TTÜ Küberneetika Instituut

TTÜ Küberneetika Institudi sügisseminar
November 13, 2011



Logic and programming The Temporal Curry–Howard Correspondence Conclusions and outlook

1 Logic and programming

2 The Temporal Curry–Howard Correspondence

3 Conclusions and outlook



Logic and programming The Temporal Curry–Howard Correspondence Conclusions and outlook

Propositional logic

basic operators:
α ∧ β α and β
α ∨ β α or β
α→ β if α then β
⊥ false
> true

derived operators:
α↔ β α if and only if β

α↔ β := (α→ β) ∧ (β→ α)

¬α not α
¬α := α→ ⊥



Logic and programming The Temporal Curry–Howard Correspondence Conclusions and outlook

Simple types

operators:
α × β type of pairs that consist of an α-value

and a β-value
α+ β type of variants that are either an α-value

or a β-value
α→ β type of functions from α to β

0 empty type
1 singleton type



Logic and programming The Temporal Curry–Howard Correspondence Conclusions and outlook

Curry–Howard correspondence

correspondence between logic and type system:

type

proof

proposition

expression

well-known correspondences:
propositional logic←→ simple types:

〈α ∧ β〉 = 〈α〉 × 〈β〉

〈α ∨ β〉 = 〈α〉+ 〈β〉

〈α→ β〉 = 〈α〉 → 〈β〉

〈⊥〉 = 0

〈>〉 = 1

predicate logic←→ dependent types:
almost any specification expressible as a type
specifications checked by the compiler



Logic and programming The Temporal Curry–Howard Correspondence Conclusions and outlook

Temporal logic

lies between propositional and predicate logic:
not as expressible as predicate logic
easier to handle than predicate logic

trueness of a proposition depends on the time

all operators from propositional logic plus a few new ones:
�α α will always hold
^α α will eventually hold

α B β α will hold for some time, and then β will hold
�α α will hold at the next point in time

discrete vs. continuous time:
� requires a discrete time scale
by dropping �, we can also handle continuous time



Logic and programming The Temporal Curry–Howard Correspondence Conclusions and outlook

A Curry–Howard correspondence for temporal logic

type membership depends on the time

all simple type operators plus a few new ones:

� _ I �

a type member denotes a proof of the corresponding
logical formula:

�α a family of α-values, one for each future time
_α a future time togeter with an α-value

α I β a tuple of the following:
a future time (the “stop time”)
a family of α-values, one for each future time
before the stop time
a β-value, belonging to the stop time

�α an α-value, belonging to the next time



Logic and programming The Temporal Curry–Howard Correspondence Conclusions and outlook

Does this look familiar?

� and _ are essentially type operators from FRP
(Functional Reactive Programming)

FRP:
a declarative way of programming reactive systems

two core concepts:
behaviors time-varying values

events values occurring at a certain point in time

examples:
behavior position of the mouse

event a key press

executable system descriptions built by composing
behaviors and events

� and _ construct behavior and event types, respectively



Logic and programming The Temporal Curry–Howard Correspondence Conclusions and outlook

What about the other operators?

I-values are finite behaviors with a terminating event
examples:

an audio signal that terminates at some point:

(R × R) I 1

an audio signal that switches between stereo and mono:

(R × R) I R I (R × R) I R I . . .

(assuming I is right-associative)
an audio signal that is sometimes interrupted:

(R × R) I 1 I (R × R) I 1 I . . .

etc.
�-values for “Functional Reactive Dataflow Programming”
dataflow programming:

working with streams of values associated
with discrete times



Logic and programming The Temporal Curry–Howard Correspondence Conclusions and outlook

Conclusions and outlook

Curry–Howard correspondence as a one-to-one mapping
between concepts from logic and concepts from programming

programming can benefit from logic and vice versa

discovery of the Temporal Curry–Howard Correspondence
leads to improvements of FRP
examples shown in this talk:

I-types for specifying advanced temporal behavior
�-types for bringing the glory of FRP to dataflow programming

further examples:
a principled way of ensuring start time consistency
for avoiding problems with semantics and performance
a better structured interface to FRP
new techniques for implementing FRP


	Logic and programming
	The Temporal Curry–Howard Correspondence
	Conclusions and outlook

